//! The virtual memory representation of the MIR interpreter. use std::borrow::Cow; use std::convert::TryFrom; use std::iter; use std::ops::{Deref, DerefMut, Range}; use rustc_ast::ast::Mutability; use rustc_data_structures::sorted_map::SortedMap; use rustc_target::abi::{Align, HasDataLayout, Size}; use super::{ read_target_uint, write_target_uint, AllocId, InterpResult, Pointer, Scalar, ScalarMaybeUninit, UninitBytesAccess, }; #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)] #[derive(HashStable)] pub struct Allocation { /// The actual bytes of the allocation. /// Note that the bytes of a pointer represent the offset of the pointer. bytes: Vec, /// Maps from byte addresses to extra data for each pointer. /// Only the first byte of a pointer is inserted into the map; i.e., /// every entry in this map applies to `pointer_size` consecutive bytes starting /// at the given offset. relocations: Relocations, /// Denotes which part of this allocation is initialized. init_mask: InitMask, /// The size of the allocation. Currently, must always equal `bytes.len()`. pub size: Size, /// The alignment of the allocation to detect unaligned reads. /// (`Align` guarantees that this is a power of two.) pub align: Align, /// `true` if the allocation is mutable. /// Also used by codegen to determine if a static should be put into mutable memory, /// which happens for `static mut` and `static` with interior mutability. pub mutability: Mutability, /// Extra state for the machine. pub extra: Extra, } pub trait AllocationExtra: ::std::fmt::Debug + Clone { // There is no constructor in here because the constructor's type depends // on `MemoryKind`, and making things sufficiently generic leads to painful // inference failure. /// Hook for performing extra checks on a memory read access. /// /// Takes read-only access to the allocation so we can keep all the memory read /// operations take `&self`. Use a `RefCell` in `AllocExtra` if you /// need to mutate. #[inline(always)] fn memory_read( _alloc: &Allocation, _ptr: Pointer, _size: Size, ) -> InterpResult<'tcx> { Ok(()) } /// Hook for performing extra checks on a memory write access. #[inline(always)] fn memory_written( _alloc: &mut Allocation, _ptr: Pointer, _size: Size, ) -> InterpResult<'tcx> { Ok(()) } /// Hook for performing extra checks on a memory deallocation. /// `size` will be the size of the allocation. #[inline(always)] fn memory_deallocated( _alloc: &mut Allocation, _ptr: Pointer, _size: Size, ) -> InterpResult<'tcx> { Ok(()) } } // For `Tag = ()` and no extra state, we have a trivial implementation. impl AllocationExtra<()> for () {} // The constructors are all without extra; the extra gets added by a machine hook later. impl Allocation { /// Creates a read-only allocation initialized by the given bytes pub fn from_bytes<'a>(slice: impl Into>, align: Align) -> Self { let bytes = slice.into().into_owned(); let size = Size::from_bytes(bytes.len()); Self { bytes, relocations: Relocations::new(), init_mask: InitMask::new(size, true), size, align, mutability: Mutability::Not, extra: (), } } pub fn from_byte_aligned_bytes<'a>(slice: impl Into>) -> Self { Allocation::from_bytes(slice, Align::from_bytes(1).unwrap()) } pub fn uninit(size: Size, align: Align) -> Self { Allocation { bytes: vec![0; size.bytes_usize()], relocations: Relocations::new(), init_mask: InitMask::new(size, false), size, align, mutability: Mutability::Mut, extra: (), } } } impl Allocation<(), ()> { /// Add Tag and Extra fields pub fn with_tags_and_extra( self, mut tagger: impl FnMut(AllocId) -> T, extra: E, ) -> Allocation { Allocation { bytes: self.bytes, size: self.size, relocations: Relocations::from_presorted( self.relocations .iter() // The allocations in the relocations (pointers stored *inside* this allocation) // all get the base pointer tag. .map(|&(offset, ((), alloc))| { let tag = tagger(alloc); (offset, (tag, alloc)) }) .collect(), ), init_mask: self.init_mask, align: self.align, mutability: self.mutability, extra, } } } /// Raw accessors. Provide access to otherwise private bytes. impl Allocation { pub fn len(&self) -> usize { self.size.bytes_usize() } /// Looks at a slice which may describe uninitialized bytes or describe a relocation. This differs /// from `get_bytes_with_uninit_and_ptr` in that it does no relocation checks (even on the /// edges) at all. It further ignores `AllocationExtra` callbacks. /// This must not be used for reads affecting the interpreter execution. pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range) -> &[u8] { &self.bytes[range] } /// Returns the mask indicating which bytes are initialized. pub fn init_mask(&self) -> &InitMask { &self.init_mask } /// Returns the relocation list. pub fn relocations(&self) -> &Relocations { &self.relocations } } /// Byte accessors. impl<'tcx, Tag: Copy, Extra: AllocationExtra> Allocation { /// Just a small local helper function to avoid a bit of code repetition. /// Returns the range of this allocation that was meant. #[inline] fn check_bounds(&self, offset: Size, size: Size) -> Range { let end = offset + size; // This does overflow checking. let end = usize::try_from(end.bytes()).expect("access too big for this host architecture"); assert!( end <= self.len(), "Out-of-bounds access at offset {}, size {} in allocation of size {}", offset.bytes(), size.bytes(), self.len() ); offset.bytes_usize()..end } /// The last argument controls whether we error out when there are uninitialized /// or pointer bytes. You should never call this, call `get_bytes` or /// `get_bytes_with_uninit_and_ptr` instead, /// /// This function also guarantees that the resulting pointer will remain stable /// even when new allocations are pushed to the `HashMap`. `copy_repeatedly` relies /// on that. /// /// It is the caller's responsibility to check bounds and alignment beforehand. fn get_bytes_internal( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, check_init_and_ptr: bool, ) -> InterpResult<'tcx, &[u8]> { let range = self.check_bounds(ptr.offset, size); if check_init_and_ptr { self.check_init(ptr, size)?; self.check_relocations(cx, ptr, size)?; } else { // We still don't want relocations on the *edges*. self.check_relocation_edges(cx, ptr, size)?; } AllocationExtra::memory_read(self, ptr, size)?; Ok(&self.bytes[range]) } /// Checks that these bytes are initialized and not pointer bytes, and then return them /// as a slice. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods /// on `InterpCx` instead. #[inline] pub fn get_bytes( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx, &[u8]> { self.get_bytes_internal(cx, ptr, size, true) } /// It is the caller's responsibility to handle uninitialized and pointer bytes. /// However, this still checks that there are no relocations on the *edges*. /// /// It is the caller's responsibility to check bounds and alignment beforehand. #[inline] pub fn get_bytes_with_uninit_and_ptr( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx, &[u8]> { self.get_bytes_internal(cx, ptr, size, false) } /// Just calling this already marks everything as defined and removes relocations, /// so be sure to actually put data there! /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods /// on `InterpCx` instead. pub fn get_bytes_mut( &mut self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx, &mut [u8]> { let range = self.check_bounds(ptr.offset, size); self.mark_init(ptr, size, true); self.clear_relocations(cx, ptr, size)?; AllocationExtra::memory_written(self, ptr, size)?; Ok(&mut self.bytes[range]) } } /// Reading and writing. impl<'tcx, Tag: Copy, Extra: AllocationExtra> Allocation { /// Reads bytes until a `0` is encountered. Will error if the end of the allocation is reached /// before a `0` is found. /// /// Most likely, you want to call `Memory::read_c_str` instead of this method. pub fn read_c_str( &self, cx: &impl HasDataLayout, ptr: Pointer, ) -> InterpResult<'tcx, &[u8]> { let offset = ptr.offset.bytes_usize(); Ok(match self.bytes[offset..].iter().position(|&c| c == 0) { Some(size) => { let size_with_null = Size::from_bytes(size) + Size::from_bytes(1); // Go through `get_bytes` for checks and AllocationExtra hooks. // We read the null, so we include it in the request, but we want it removed // from the result, so we do subslicing. &self.get_bytes(cx, ptr, size_with_null)?[..size] } // This includes the case where `offset` is out-of-bounds to begin with. None => throw_ub!(UnterminatedCString(ptr.erase_tag())), }) } /// Validates that `ptr.offset` and `ptr.offset + size` do not point to the middle of a /// relocation. If `allow_uninit_and_ptr` is `false`, also enforces that the memory in the /// given range contains neither relocations nor uninitialized bytes. pub fn check_bytes( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, allow_uninit_and_ptr: bool, ) -> InterpResult<'tcx> { // Check bounds and relocations on the edges. self.get_bytes_with_uninit_and_ptr(cx, ptr, size)?; // Check uninit and ptr. if !allow_uninit_and_ptr { self.check_init(ptr, size)?; self.check_relocations(cx, ptr, size)?; } Ok(()) } /// Writes `src` to the memory starting at `ptr.offset`. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `Memory::write_bytes` instead of this method. pub fn write_bytes( &mut self, cx: &impl HasDataLayout, ptr: Pointer, src: impl IntoIterator, ) -> InterpResult<'tcx> { let mut src = src.into_iter(); let (lower, upper) = src.size_hint(); let len = upper.expect("can only write bounded iterators"); assert_eq!(lower, len, "can only write iterators with a precise length"); let bytes = self.get_bytes_mut(cx, ptr, Size::from_bytes(len))?; // `zip` would stop when the first iterator ends; we want to definitely // cover all of `bytes`. for dest in bytes { *dest = src.next().expect("iterator was shorter than it said it would be"); } src.next().expect_none("iterator was longer than it said it would be"); Ok(()) } /// Reads a *non-ZST* scalar. /// /// ZSTs can't be read for two reasons: /// * byte-order cannot work with zero-element buffers; /// * in order to obtain a `Pointer`, we need to check for ZSTness anyway due to integer /// pointers being valid for ZSTs. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `InterpCx::read_scalar` instead of this method. pub fn read_scalar( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx, ScalarMaybeUninit> { // `get_bytes_unchecked` tests relocation edges. let bytes = self.get_bytes_with_uninit_and_ptr(cx, ptr, size)?; // Uninit check happens *after* we established that the alignment is correct. // We must not return `Ok()` for unaligned pointers! if self.is_init(ptr, size).is_err() { // This inflates uninitialized bytes to the entire scalar, even if only a few // bytes are uninitialized. return Ok(ScalarMaybeUninit::Uninit); } // Now we do the actual reading. let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap(); // See if we got a pointer. if size != cx.data_layout().pointer_size { // *Now*, we better make sure that the inside is free of relocations too. self.check_relocations(cx, ptr, size)?; } else { if let Some(&(tag, alloc_id)) = self.relocations.get(&ptr.offset) { let ptr = Pointer::new_with_tag(alloc_id, Size::from_bytes(bits), tag); return Ok(ScalarMaybeUninit::Scalar(ptr.into())); } } // We don't. Just return the bits. Ok(ScalarMaybeUninit::Scalar(Scalar::from_uint(bits, size))) } /// Reads a pointer-sized scalar. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `InterpCx::read_scalar` instead of this method. pub fn read_ptr_sized( &self, cx: &impl HasDataLayout, ptr: Pointer, ) -> InterpResult<'tcx, ScalarMaybeUninit> { self.read_scalar(cx, ptr, cx.data_layout().pointer_size) } /// Writes a *non-ZST* scalar. /// /// ZSTs can't be read for two reasons: /// * byte-order cannot work with zero-element buffers; /// * in order to obtain a `Pointer`, we need to check for ZSTness anyway due to integer /// pointers being valid for ZSTs. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `InterpCx::write_scalar` instead of this method. pub fn write_scalar( &mut self, cx: &impl HasDataLayout, ptr: Pointer, val: ScalarMaybeUninit, type_size: Size, ) -> InterpResult<'tcx> { let val = match val { ScalarMaybeUninit::Scalar(scalar) => scalar, ScalarMaybeUninit::Uninit => { self.mark_init(ptr, type_size, false); return Ok(()); } }; let bytes = match val.to_bits_or_ptr(type_size, cx) { Err(val) => u128::from(val.offset.bytes()), Ok(data) => data, }; let endian = cx.data_layout().endian; let dst = self.get_bytes_mut(cx, ptr, type_size)?; write_target_uint(endian, dst, bytes).unwrap(); // See if we have to also write a relocation. if let Scalar::Ptr(val) = val { self.relocations.insert(ptr.offset, (val.tag, val.alloc_id)); } Ok(()) } /// Writes a pointer-sized scalar. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `InterpCx::write_scalar` instead of this method. pub fn write_ptr_sized( &mut self, cx: &impl HasDataLayout, ptr: Pointer, val: ScalarMaybeUninit, ) -> InterpResult<'tcx> { let ptr_size = cx.data_layout().pointer_size; self.write_scalar(cx, ptr, val, ptr_size) } } /// Relocations. impl<'tcx, Tag: Copy, Extra> Allocation { /// Returns all relocations overlapping with the given pointer-offset pair. pub fn get_relocations( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> &[(Size, (Tag, AllocId))] { // We have to go back `pointer_size - 1` bytes, as that one would still overlap with // the beginning of this range. let start = ptr.offset.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1); let end = ptr.offset + size; // This does overflow checking. self.relocations.range(Size::from_bytes(start)..end) } /// Checks that there are no relocations overlapping with the given range. #[inline(always)] fn check_relocations( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx> { if self.get_relocations(cx, ptr, size).is_empty() { Ok(()) } else { throw_unsup!(ReadPointerAsBytes) } } /// Removes all relocations inside the given range. /// If there are relocations overlapping with the edges, they /// are removed as well *and* the bytes they cover are marked as /// uninitialized. This is a somewhat odd "spooky action at a distance", /// but it allows strictly more code to run than if we would just error /// immediately in that case. fn clear_relocations( &mut self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx> { // Find the start and end of the given range and its outermost relocations. let (first, last) = { // Find all relocations overlapping the given range. let relocations = self.get_relocations(cx, ptr, size); if relocations.is_empty() { return Ok(()); } ( relocations.first().unwrap().0, relocations.last().unwrap().0 + cx.data_layout().pointer_size, ) }; let start = ptr.offset; let end = start + size; // `Size` addition // Mark parts of the outermost relocations as uninitialized if they partially fall outside the // given range. if first < start { self.init_mask.set_range(first, start, false); } if last > end { self.init_mask.set_range(end, last, false); } // Forget all the relocations. self.relocations.remove_range(first..last); Ok(()) } /// Errors if there are relocations overlapping with the edges of the /// given memory range. #[inline] fn check_relocation_edges( &self, cx: &impl HasDataLayout, ptr: Pointer, size: Size, ) -> InterpResult<'tcx> { self.check_relocations(cx, ptr, Size::ZERO)?; self.check_relocations(cx, ptr.offset(size, cx)?, Size::ZERO)?; Ok(()) } } /// Uninitialized bytes. impl<'tcx, Tag: Copy, Extra> Allocation { /// Checks whether the given range is entirely initialized. /// /// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte /// indexes of the first contiguous uninitialized access. fn is_init(&self, ptr: Pointer, size: Size) -> Result<(), Range> { self.init_mask.is_range_initialized(ptr.offset, ptr.offset + size) // `Size` addition } /// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes` /// error which will report the first range of bytes which is uninitialized. fn check_init(&self, ptr: Pointer, size: Size) -> InterpResult<'tcx> { self.is_init(ptr, size).or_else(|idx_range| { throw_ub!(InvalidUninitBytes(Some(Box::new(UninitBytesAccess { access_ptr: ptr.erase_tag(), access_size: size, uninit_ptr: Pointer::new(ptr.alloc_id, idx_range.start), uninit_size: idx_range.end - idx_range.start, // `Size` subtraction })))) }) } pub fn mark_init(&mut self, ptr: Pointer, size: Size, is_init: bool) { if size.bytes() == 0 { return; } self.init_mask.set_range(ptr.offset, ptr.offset + size, is_init); } } /// Run-length encoding of the uninit mask. /// Used to copy parts of a mask multiple times to another allocation. pub struct InitMaskCompressed { /// Whether the first range is initialized. initial: bool, /// The lengths of ranges that are run-length encoded. /// The initialization state of the ranges alternate starting with `initial`. ranges: smallvec::SmallVec<[u64; 1]>, } impl InitMaskCompressed { pub fn no_bytes_init(&self) -> bool { // The `ranges` are run-length encoded and of alternating initialization state. // So if `ranges.len() > 1` then the second block is an initialized range. !self.initial && self.ranges.len() == 1 } } /// Transferring the initialization mask to other allocations. impl Allocation { /// Creates a run-length encoding of the initialization mask. pub fn compress_uninit_range(&self, src: Pointer, size: Size) -> InitMaskCompressed { // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`), // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from // the source and write it to the destination. Even if we optimized the memory accesses, // we'd be doing all of this `repeat` times. // Therefore we precompute a compressed version of the initialization mask of the source value and // then write it back `repeat` times without computing any more information from the source. // A precomputed cache for ranges of initialized / uninitialized bits // 0000010010001110 will become // `[5, 1, 2, 1, 3, 3, 1]`, // where each element toggles the state. let mut ranges = smallvec::SmallVec::<[u64; 1]>::new(); let initial = self.init_mask.get(src.offset); let mut cur_len = 1; let mut cur = initial; for i in 1..size.bytes() { // FIXME: optimize to bitshift the current uninitialized block's bits and read the top bit. if self.init_mask.get(src.offset + Size::from_bytes(i)) == cur { cur_len += 1; } else { ranges.push(cur_len); cur_len = 1; cur = !cur; } } ranges.push(cur_len); InitMaskCompressed { ranges, initial } } /// Applies multiple instances of the run-length encoding to the initialization mask. pub fn mark_compressed_init_range( &mut self, defined: &InitMaskCompressed, dest: Pointer, size: Size, repeat: u64, ) { // An optimization where we can just overwrite an entire range of initialization // bits if they are going to be uniformly `1` or `0`. if defined.ranges.len() <= 1 { self.init_mask.set_range_inbounds( dest.offset, dest.offset + size * repeat, // `Size` operations defined.initial, ); return; } for mut j in 0..repeat { j *= size.bytes(); j += dest.offset.bytes(); let mut cur = defined.initial; for range in &defined.ranges { let old_j = j; j += range; self.init_mask.set_range_inbounds( Size::from_bytes(old_j), Size::from_bytes(j), cur, ); cur = !cur; } } } } /// Relocations. #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)] pub struct Relocations(SortedMap); impl Relocations { pub fn new() -> Self { Relocations(SortedMap::new()) } // The caller must guarantee that the given relocations are already sorted // by address and contain no duplicates. pub fn from_presorted(r: Vec<(Size, (Tag, Id))>) -> Self { Relocations(SortedMap::from_presorted_elements(r)) } } impl Deref for Relocations { type Target = SortedMap; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for Relocations { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } /// A partial, owned list of relocations to transfer into another allocation. pub struct AllocationRelocations { relative_relocations: Vec<(Size, (Tag, AllocId))>, } impl Allocation { pub fn prepare_relocation_copy( &self, cx: &impl HasDataLayout, src: Pointer, size: Size, dest: Pointer, length: u64, ) -> AllocationRelocations { let relocations = self.get_relocations(cx, src, size); if relocations.is_empty() { return AllocationRelocations { relative_relocations: Vec::new() }; } let mut new_relocations = Vec::with_capacity(relocations.len() * (length as usize)); for i in 0..length { new_relocations.extend(relocations.iter().map(|&(offset, reloc)| { // compute offset for current repetition let dest_offset = dest.offset + size * i; // `Size` operations ( // shift offsets from source allocation to destination allocation (offset + dest_offset) - src.offset, // `Size` operations reloc, ) })); } AllocationRelocations { relative_relocations: new_relocations } } /// Applies a relocation copy. /// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected /// to be clear of relocations. pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations) { self.relocations.insert_presorted(relocations.relative_relocations); } } //////////////////////////////////////////////////////////////////////////////// // Uninitialized byte tracking //////////////////////////////////////////////////////////////////////////////// type Block = u64; /// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte /// is initialized. If it is `false` the byte is uninitialized. #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)] #[derive(HashStable)] pub struct InitMask { blocks: Vec, len: Size, } impl InitMask { pub const BLOCK_SIZE: u64 = 64; pub fn new(size: Size, state: bool) -> Self { let mut m = InitMask { blocks: vec![], len: Size::ZERO }; m.grow(size, state); m } /// Checks whether the range `start..end` (end-exclusive) is entirely initialized. /// /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte /// indexes for the first contiguous span of the uninitialized access. #[inline] pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), Range> { if end > self.len { return Err(self.len..end); } // FIXME(oli-obk): optimize this for allocations larger than a block. let idx = (start.bytes()..end.bytes()).map(Size::from_bytes).find(|&i| !self.get(i)); match idx { Some(idx) => { let uninit_end = (idx.bytes()..end.bytes()) .map(Size::from_bytes) .find(|&i| self.get(i)) .unwrap_or(end); Err(idx..uninit_end) } None => Ok(()), } } pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) { let len = self.len; if end > len { self.grow(end - len, new_state); } self.set_range_inbounds(start, end, new_state); } pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) { let (blocka, bita) = bit_index(start); let (blockb, bitb) = bit_index(end); if blocka == blockb { // First set all bits except the first `bita`, // then unset the last `64 - bitb` bits. let range = if bitb == 0 { u64::MAX << bita } else { (u64::MAX << bita) & (u64::MAX >> (64 - bitb)) }; if new_state { self.blocks[blocka] |= range; } else { self.blocks[blocka] &= !range; } return; } // across block boundaries if new_state { // Set `bita..64` to `1`. self.blocks[blocka] |= u64::MAX << bita; // Set `0..bitb` to `1`. if bitb != 0 { self.blocks[blockb] |= u64::MAX >> (64 - bitb); } // Fill in all the other blocks (much faster than one bit at a time). for block in (blocka + 1)..blockb { self.blocks[block] = u64::MAX; } } else { // Set `bita..64` to `0`. self.blocks[blocka] &= !(u64::MAX << bita); // Set `0..bitb` to `0`. if bitb != 0 { self.blocks[blockb] &= !(u64::MAX >> (64 - bitb)); } // Fill in all the other blocks (much faster than one bit at a time). for block in (blocka + 1)..blockb { self.blocks[block] = 0; } } } #[inline] pub fn get(&self, i: Size) -> bool { let (block, bit) = bit_index(i); (self.blocks[block] & (1 << bit)) != 0 } #[inline] pub fn set(&mut self, i: Size, new_state: bool) { let (block, bit) = bit_index(i); self.set_bit(block, bit, new_state); } #[inline] fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) { if new_state { self.blocks[block] |= 1 << bit; } else { self.blocks[block] &= !(1 << bit); } } pub fn grow(&mut self, amount: Size, new_state: bool) { if amount.bytes() == 0 { return; } let unused_trailing_bits = u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes(); if amount.bytes() > unused_trailing_bits { let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1; self.blocks.extend( // FIXME(oli-obk): optimize this by repeating `new_state as Block`. iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()), ); } let start = self.len; self.len += amount; self.set_range_inbounds(start, start + amount, new_state); // `Size` operation } } #[inline] fn bit_index(bits: Size) -> (usize, usize) { let bits = bits.bytes(); let a = bits / InitMask::BLOCK_SIZE; let b = bits % InitMask::BLOCK_SIZE; (usize::try_from(a).unwrap(), usize::try_from(b).unwrap()) }