//! Type context book-keeping. use crate::arena::Arena; use crate::dep_graph::{self, DepConstructor, DepGraph}; use crate::hir::exports::ExportMap; use crate::ich::{NodeIdHashingMode, StableHashingContext}; use crate::infer::canonical::{Canonical, CanonicalVarInfo, CanonicalVarInfos}; use crate::lint::{struct_lint_level, LintDiagnosticBuilder, LintSource}; use crate::middle; use crate::middle::cstore::{CrateStoreDyn, EncodedMetadata}; use crate::middle::resolve_lifetime::{self, ObjectLifetimeDefault}; use crate::middle::stability; use crate::mir::interpret::{self, Allocation, ConstValue, Scalar}; use crate::mir::{Body, Field, Local, Place, PlaceElem, ProjectionKind, Promoted}; use crate::traits; use crate::ty::steal::Steal; use crate::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSubsts}; use crate::ty::TyKind::*; use crate::ty::{ self, query, AdtDef, AdtKind, BindingMode, BoundVar, CanonicalPolyFnSig, Const, ConstVid, DefIdTree, ExistentialPredicate, FloatVar, FloatVid, GenericParamDefKind, InferConst, InferTy, IntVar, IntVid, List, ParamConst, ParamTy, PolyFnSig, Predicate, PredicateInner, PredicateKind, ProjectionTy, Region, RegionKind, ReprOptions, TraitObjectVisitor, Ty, TyKind, TyS, TyVar, TyVid, TypeAndMut, }; use rustc_ast::ast; use rustc_ast::expand::allocator::AllocatorKind; use rustc_attr as attr; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::profiling::SelfProfilerRef; use rustc_data_structures::sharded::{IntoPointer, ShardedHashMap}; use rustc_data_structures::stable_hasher::{ hash_stable_hashmap, HashStable, StableHasher, StableVec, }; use rustc_data_structures::sync::{self, Lock, Lrc, WorkerLocal}; use rustc_errors::ErrorReported; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LOCAL_CRATE}; use rustc_hir::definitions::{DefPathHash, Definitions}; use rustc_hir::intravisit::Visitor; use rustc_hir::lang_items::{self, PanicLocationLangItem}; use rustc_hir::{HirId, ItemKind, ItemLocalId, ItemLocalMap, ItemLocalSet, Node, TraitCandidate}; use rustc_index::vec::{Idx, IndexVec}; use rustc_macros::HashStable; use rustc_session::config::{BorrowckMode, CrateType, OutputFilenames}; use rustc_session::lint::{Level, Lint}; use rustc_session::Session; use rustc_span::source_map::MultiSpan; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::{Span, DUMMY_SP}; use rustc_target::abi::{Layout, TargetDataLayout, VariantIdx}; use rustc_target::spec::abi; use smallvec::SmallVec; use std::any::Any; use std::borrow::Borrow; use std::cmp::Ordering; use std::collections::hash_map::{self, Entry}; use std::fmt; use std::hash::{Hash, Hasher}; use std::iter; use std::mem; use std::ops::{Bound, Deref}; use std::sync::Arc; type InternedSet<'tcx, T> = ShardedHashMap, ()>; pub struct CtxtInterners<'tcx> { /// The arena that types, regions, etc. are allocated from. arena: &'tcx WorkerLocal>, /// Specifically use a speedy hash algorithm for these hash sets, since /// they're accessed quite often. type_: InternedSet<'tcx, TyS<'tcx>>, type_list: InternedSet<'tcx, List>>, substs: InternedSet<'tcx, InternalSubsts<'tcx>>, canonical_var_infos: InternedSet<'tcx, List>, region: InternedSet<'tcx, RegionKind>, existential_predicates: InternedSet<'tcx, List>>, predicate: InternedSet<'tcx, PredicateInner<'tcx>>, predicates: InternedSet<'tcx, List>>, projs: InternedSet<'tcx, List>, place_elems: InternedSet<'tcx, List>>, const_: InternedSet<'tcx, Const<'tcx>>, chalk_environment_clause_list: InternedSet<'tcx, List>>, } impl<'tcx> CtxtInterners<'tcx> { fn new(arena: &'tcx WorkerLocal>) -> CtxtInterners<'tcx> { CtxtInterners { arena, type_: Default::default(), type_list: Default::default(), substs: Default::default(), region: Default::default(), existential_predicates: Default::default(), canonical_var_infos: Default::default(), predicate: Default::default(), predicates: Default::default(), projs: Default::default(), place_elems: Default::default(), const_: Default::default(), chalk_environment_clause_list: Default::default(), } } /// Interns a type. #[allow(rustc::usage_of_ty_tykind)] #[inline(never)] fn intern_ty(&self, kind: TyKind<'tcx>) -> Ty<'tcx> { self.type_ .intern(kind, |kind| { let flags = super::flags::FlagComputation::for_kind(&kind); let ty_struct = TyS { kind, flags: flags.flags, outer_exclusive_binder: flags.outer_exclusive_binder, }; Interned(self.arena.alloc(ty_struct)) }) .0 } #[inline(never)] fn intern_predicate(&self, kind: PredicateKind<'tcx>) -> &'tcx PredicateInner<'tcx> { self.predicate .intern(kind, |kind| { let flags = super::flags::FlagComputation::for_predicate(&kind); let predicate_struct = PredicateInner { kind, flags: flags.flags, outer_exclusive_binder: flags.outer_exclusive_binder, }; Interned(self.arena.alloc(predicate_struct)) }) .0 } } pub struct CommonTypes<'tcx> { pub unit: Ty<'tcx>, pub bool: Ty<'tcx>, pub char: Ty<'tcx>, pub isize: Ty<'tcx>, pub i8: Ty<'tcx>, pub i16: Ty<'tcx>, pub i32: Ty<'tcx>, pub i64: Ty<'tcx>, pub i128: Ty<'tcx>, pub usize: Ty<'tcx>, pub u8: Ty<'tcx>, pub u16: Ty<'tcx>, pub u32: Ty<'tcx>, pub u64: Ty<'tcx>, pub u128: Ty<'tcx>, pub f32: Ty<'tcx>, pub f64: Ty<'tcx>, pub str_: Ty<'tcx>, pub never: Ty<'tcx>, pub self_param: Ty<'tcx>, /// Dummy type used for the `Self` of a `TraitRef` created for converting /// a trait object, and which gets removed in `ExistentialTraitRef`. /// This type must not appear anywhere in other converted types. pub trait_object_dummy_self: Ty<'tcx>, } pub struct CommonLifetimes<'tcx> { /// `ReEmpty` in the root universe. pub re_root_empty: Region<'tcx>, /// `ReStatic` pub re_static: Region<'tcx>, /// Erased region, used after type-checking pub re_erased: Region<'tcx>, } pub struct CommonConsts<'tcx> { pub unit: &'tcx Const<'tcx>, } pub struct LocalTableInContext<'a, V> { hir_owner: LocalDefId, data: &'a ItemLocalMap, } /// Validate that the given HirId (respectively its `local_id` part) can be /// safely used as a key in the maps of a TypeckResults. For that to be /// the case, the HirId must have the same `owner` as all the other IDs in /// this table (signified by `hir_owner`). Otherwise the HirId /// would be in a different frame of reference and using its `local_id` /// would result in lookup errors, or worse, in silently wrong data being /// stored/returned. fn validate_hir_id_for_typeck_results(hir_owner: LocalDefId, hir_id: hir::HirId) { if hir_id.owner != hir_owner { ty::tls::with(|tcx| { bug!( "node {} with HirId::owner {:?} cannot be placed in TypeckResults with hir_owner {:?}", tcx.hir().node_to_string(hir_id), hir_id.owner, hir_owner ) }); } } impl<'a, V> LocalTableInContext<'a, V> { pub fn contains_key(&self, id: hir::HirId) -> bool { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.contains_key(&id.local_id) } pub fn get(&self, id: hir::HirId) -> Option<&V> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.get(&id.local_id) } pub fn iter(&self) -> hash_map::Iter<'_, hir::ItemLocalId, V> { self.data.iter() } } impl<'a, V> ::std::ops::Index for LocalTableInContext<'a, V> { type Output = V; fn index(&self, key: hir::HirId) -> &V { self.get(key).expect("LocalTableInContext: key not found") } } pub struct LocalTableInContextMut<'a, V> { hir_owner: LocalDefId, data: &'a mut ItemLocalMap, } impl<'a, V> LocalTableInContextMut<'a, V> { pub fn get_mut(&mut self, id: hir::HirId) -> Option<&mut V> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.get_mut(&id.local_id) } pub fn entry(&mut self, id: hir::HirId) -> Entry<'_, hir::ItemLocalId, V> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.entry(id.local_id) } pub fn insert(&mut self, id: hir::HirId, val: V) -> Option { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.insert(id.local_id, val) } pub fn remove(&mut self, id: hir::HirId) -> Option { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.remove(&id.local_id) } } /// All information necessary to validate and reveal an `impl Trait`. #[derive(TyEncodable, TyDecodable, Debug, HashStable)] pub struct ResolvedOpaqueTy<'tcx> { /// The revealed type as seen by this function. pub concrete_type: Ty<'tcx>, /// Generic parameters on the opaque type as passed by this function. /// For `type Foo = impl Bar; fn foo() -> Foo { .. }` /// this is `[T, U]`, not `[A, B]`. pub substs: SubstsRef<'tcx>, } /// Whenever a value may be live across a generator yield, the type of that value winds up in the /// `GeneratorInteriorTypeCause` struct. This struct adds additional information about such /// captured types that can be useful for diagnostics. In particular, it stores the span that /// caused a given type to be recorded, along with the scope that enclosed the value (which can /// be used to find the await that the value is live across). /// /// For example: /// /// ```ignore (pseudo-Rust) /// async move { /// let x: T = expr; /// foo.await /// ... /// } /// ``` /// /// Here, we would store the type `T`, the span of the value `x`, the "scope-span" for /// the scope that contains `x`, the expr `T` evaluated from, and the span of `foo.await`. #[derive(TyEncodable, TyDecodable, Clone, Debug, Eq, Hash, PartialEq, HashStable)] pub struct GeneratorInteriorTypeCause<'tcx> { /// Type of the captured binding. pub ty: Ty<'tcx>, /// Span of the binding that was captured. pub span: Span, /// Span of the scope of the captured binding. pub scope_span: Option, /// Span of `.await` or `yield` expression. pub yield_span: Span, /// Expr which the type evaluated from. pub expr: Option, } #[derive(TyEncodable, TyDecodable, Debug)] pub struct TypeckResults<'tcx> { /// The `HirId::owner` all `ItemLocalId`s in this table are relative to. pub hir_owner: LocalDefId, /// Resolved definitions for `::X` associated paths and /// method calls, including those of overloaded operators. type_dependent_defs: ItemLocalMap>, /// Resolved field indices for field accesses in expressions (`S { field }`, `obj.field`) /// or patterns (`S { field }`). The index is often useful by itself, but to learn more /// about the field you also need definition of the variant to which the field /// belongs, but it may not exist if it's a tuple field (`tuple.0`). field_indices: ItemLocalMap, /// Stores the types for various nodes in the AST. Note that this table /// is not guaranteed to be populated until after typeck. See /// typeck::check::fn_ctxt for details. node_types: ItemLocalMap>, /// Stores the type parameters which were substituted to obtain the type /// of this node. This only applies to nodes that refer to entities /// parameterized by type parameters, such as generic fns, types, or /// other items. node_substs: ItemLocalMap>, /// This will either store the canonicalized types provided by the user /// or the substitutions that the user explicitly gave (if any) attached /// to `id`. These will not include any inferred values. The canonical form /// is used to capture things like `_` or other unspecified values. /// /// For example, if the user wrote `foo.collect::>()`, then the /// canonical substitutions would include only `for { Vec }`. /// /// See also `AscribeUserType` statement in MIR. user_provided_types: ItemLocalMap>, /// Stores the canonicalized types provided by the user. See also /// `AscribeUserType` statement in MIR. pub user_provided_sigs: DefIdMap>, adjustments: ItemLocalMap>>, /// Stores the actual binding mode for all instances of hir::BindingAnnotation. pat_binding_modes: ItemLocalMap, /// Stores the types which were implicitly dereferenced in pattern binding modes /// for later usage in THIR lowering. For example, /// /// ``` /// match &&Some(5i32) { /// Some(n) => {}, /// _ => {}, /// } /// ``` /// leads to a `vec![&&Option, &Option]`. Empty vectors are not stored. /// /// See: /// https://github.com/rust-lang/rfcs/blob/master/text/2005-match-ergonomics.md#definitions pat_adjustments: ItemLocalMap>>, /// Borrows pub upvar_capture_map: ty::UpvarCaptureMap<'tcx>, /// Records the reasons that we picked the kind of each closure; /// not all closures are present in the map. closure_kind_origins: ItemLocalMap<(Span, Symbol)>, /// For each fn, records the "liberated" types of its arguments /// and return type. Liberated means that all bound regions /// (including late-bound regions) are replaced with free /// equivalents. This table is not used in codegen (since regions /// are erased there) and hence is not serialized to metadata. liberated_fn_sigs: ItemLocalMap>, /// For each FRU expression, record the normalized types of the fields /// of the struct - this is needed because it is non-trivial to /// normalize while preserving regions. This table is used only in /// MIR construction and hence is not serialized to metadata. fru_field_types: ItemLocalMap>>, /// For every coercion cast we add the HIR node ID of the cast /// expression to this set. coercion_casts: ItemLocalSet, /// Set of trait imports actually used in the method resolution. /// This is used for warning unused imports. During type /// checking, this `Lrc` should not be cloned: it must have a ref-count /// of 1 so that we can insert things into the set mutably. pub used_trait_imports: Lrc>, /// If any errors occurred while type-checking this body, /// this field will be set to `Some(ErrorReported)`. pub tainted_by_errors: Option, /// All the opaque types that are restricted to concrete types /// by this function. pub concrete_opaque_types: FxHashMap>, /// Given the closure ID this map provides the list of UpvarIDs used by it. /// The upvarID contains the HIR node ID and it also contains the full path /// leading to the member of the struct or tuple that is used instead of the /// entire variable. pub closure_captures: ty::UpvarListMap, /// Stores the type, expression, span and optional scope span of all types /// that are live across the yield of this generator (if a generator). pub generator_interior_types: Vec>, } impl<'tcx> TypeckResults<'tcx> { pub fn new(hir_owner: LocalDefId) -> TypeckResults<'tcx> { TypeckResults { hir_owner, type_dependent_defs: Default::default(), field_indices: Default::default(), user_provided_types: Default::default(), user_provided_sigs: Default::default(), node_types: Default::default(), node_substs: Default::default(), adjustments: Default::default(), pat_binding_modes: Default::default(), pat_adjustments: Default::default(), upvar_capture_map: Default::default(), closure_kind_origins: Default::default(), liberated_fn_sigs: Default::default(), fru_field_types: Default::default(), coercion_casts: Default::default(), used_trait_imports: Lrc::new(Default::default()), tainted_by_errors: None, concrete_opaque_types: Default::default(), closure_captures: Default::default(), generator_interior_types: Default::default(), } } /// Returns the final resolution of a `QPath` in an `Expr` or `Pat` node. pub fn qpath_res(&self, qpath: &hir::QPath<'_>, id: hir::HirId) -> Res { match *qpath { hir::QPath::Resolved(_, ref path) => path.res, hir::QPath::TypeRelative(..) => self .type_dependent_def(id) .map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), } } pub fn type_dependent_defs( &self, ) -> LocalTableInContext<'_, Result<(DefKind, DefId), ErrorReported>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.type_dependent_defs } } pub fn type_dependent_def(&self, id: HirId) -> Option<(DefKind, DefId)> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.type_dependent_defs.get(&id.local_id).cloned().and_then(|r| r.ok()) } pub fn type_dependent_def_id(&self, id: HirId) -> Option { self.type_dependent_def(id).map(|(_, def_id)| def_id) } pub fn type_dependent_defs_mut( &mut self, ) -> LocalTableInContextMut<'_, Result<(DefKind, DefId), ErrorReported>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.type_dependent_defs } } pub fn field_indices(&self) -> LocalTableInContext<'_, usize> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.field_indices } } pub fn field_indices_mut(&mut self) -> LocalTableInContextMut<'_, usize> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.field_indices } } pub fn user_provided_types(&self) -> LocalTableInContext<'_, CanonicalUserType<'tcx>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.user_provided_types } } pub fn user_provided_types_mut( &mut self, ) -> LocalTableInContextMut<'_, CanonicalUserType<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.user_provided_types } } pub fn node_types(&self) -> LocalTableInContext<'_, Ty<'tcx>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.node_types } } pub fn node_types_mut(&mut self) -> LocalTableInContextMut<'_, Ty<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.node_types } } pub fn node_type(&self, id: hir::HirId) -> Ty<'tcx> { self.node_type_opt(id).unwrap_or_else(|| { bug!("node_type: no type for node `{}`", tls::with(|tcx| tcx.hir().node_to_string(id))) }) } pub fn node_type_opt(&self, id: hir::HirId) -> Option> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.node_types.get(&id.local_id).cloned() } pub fn node_substs_mut(&mut self) -> LocalTableInContextMut<'_, SubstsRef<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.node_substs } } pub fn node_substs(&self, id: hir::HirId) -> SubstsRef<'tcx> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.node_substs.get(&id.local_id).cloned().unwrap_or_else(|| InternalSubsts::empty()) } pub fn node_substs_opt(&self, id: hir::HirId) -> Option> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.node_substs.get(&id.local_id).cloned() } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. pub fn pat_ty(&self, pat: &hir::Pat<'_>) -> Ty<'tcx> { self.node_type(pat.hir_id) } pub fn pat_ty_opt(&self, pat: &hir::Pat<'_>) -> Option> { self.node_type_opt(pat.hir_id) } // Returns the type of an expression as a monotype. // // NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in // some cases, we insert `Adjustment` annotations such as auto-deref or // auto-ref. The type returned by this function does not consider such // adjustments. See `expr_ty_adjusted()` instead. // // NB (2): This type doesn't provide type parameter substitutions; e.g., if you // ask for the type of "id" in "id(3)", it will return "fn(&isize) -> isize" // instead of "fn(ty) -> T with T = isize". pub fn expr_ty(&self, expr: &hir::Expr<'_>) -> Ty<'tcx> { self.node_type(expr.hir_id) } pub fn expr_ty_opt(&self, expr: &hir::Expr<'_>) -> Option> { self.node_type_opt(expr.hir_id) } pub fn adjustments(&self) -> LocalTableInContext<'_, Vec>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.adjustments } } pub fn adjustments_mut( &mut self, ) -> LocalTableInContextMut<'_, Vec>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.adjustments } } pub fn expr_adjustments(&self, expr: &hir::Expr<'_>) -> &[ty::adjustment::Adjustment<'tcx>] { validate_hir_id_for_typeck_results(self.hir_owner, expr.hir_id); self.adjustments.get(&expr.hir_id.local_id).map_or(&[], |a| &a[..]) } /// Returns the type of `expr`, considering any `Adjustment` /// entry recorded for that expression. pub fn expr_ty_adjusted(&self, expr: &hir::Expr<'_>) -> Ty<'tcx> { self.expr_adjustments(expr).last().map_or_else(|| self.expr_ty(expr), |adj| adj.target) } pub fn expr_ty_adjusted_opt(&self, expr: &hir::Expr<'_>) -> Option> { self.expr_adjustments(expr).last().map(|adj| adj.target).or_else(|| self.expr_ty_opt(expr)) } pub fn is_method_call(&self, expr: &hir::Expr<'_>) -> bool { // Only paths and method calls/overloaded operators have // entries in type_dependent_defs, ignore the former here. if let hir::ExprKind::Path(_) = expr.kind { return false; } match self.type_dependent_defs().get(expr.hir_id) { Some(Ok((DefKind::AssocFn, _))) => true, _ => false, } } pub fn extract_binding_mode(&self, s: &Session, id: HirId, sp: Span) -> Option { self.pat_binding_modes().get(id).copied().or_else(|| { s.delay_span_bug(sp, "missing binding mode"); None }) } pub fn pat_binding_modes(&self) -> LocalTableInContext<'_, BindingMode> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.pat_binding_modes } } pub fn pat_binding_modes_mut(&mut self) -> LocalTableInContextMut<'_, BindingMode> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.pat_binding_modes } } pub fn pat_adjustments(&self) -> LocalTableInContext<'_, Vec>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.pat_adjustments } } pub fn pat_adjustments_mut(&mut self) -> LocalTableInContextMut<'_, Vec>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.pat_adjustments } } pub fn upvar_capture(&self, upvar_id: ty::UpvarId) -> ty::UpvarCapture<'tcx> { self.upvar_capture_map[&upvar_id] } pub fn closure_kind_origins(&self) -> LocalTableInContext<'_, (Span, Symbol)> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.closure_kind_origins } } pub fn closure_kind_origins_mut(&mut self) -> LocalTableInContextMut<'_, (Span, Symbol)> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.closure_kind_origins } } pub fn liberated_fn_sigs(&self) -> LocalTableInContext<'_, ty::FnSig<'tcx>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.liberated_fn_sigs } } pub fn liberated_fn_sigs_mut(&mut self) -> LocalTableInContextMut<'_, ty::FnSig<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.liberated_fn_sigs } } pub fn fru_field_types(&self) -> LocalTableInContext<'_, Vec>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.fru_field_types } } pub fn fru_field_types_mut(&mut self) -> LocalTableInContextMut<'_, Vec>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.fru_field_types } } pub fn is_coercion_cast(&self, hir_id: hir::HirId) -> bool { validate_hir_id_for_typeck_results(self.hir_owner, hir_id); self.coercion_casts.contains(&hir_id.local_id) } pub fn set_coercion_cast(&mut self, id: ItemLocalId) { self.coercion_casts.insert(id); } pub fn coercion_casts(&self) -> &ItemLocalSet { &self.coercion_casts } } impl<'a, 'tcx> HashStable> for TypeckResults<'tcx> { fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { let ty::TypeckResults { hir_owner, ref type_dependent_defs, ref field_indices, ref user_provided_types, ref user_provided_sigs, ref node_types, ref node_substs, ref adjustments, ref pat_binding_modes, ref pat_adjustments, ref upvar_capture_map, ref closure_kind_origins, ref liberated_fn_sigs, ref fru_field_types, ref coercion_casts, ref used_trait_imports, tainted_by_errors, ref concrete_opaque_types, ref closure_captures, ref generator_interior_types, } = *self; hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| { type_dependent_defs.hash_stable(hcx, hasher); field_indices.hash_stable(hcx, hasher); user_provided_types.hash_stable(hcx, hasher); user_provided_sigs.hash_stable(hcx, hasher); node_types.hash_stable(hcx, hasher); node_substs.hash_stable(hcx, hasher); adjustments.hash_stable(hcx, hasher); pat_binding_modes.hash_stable(hcx, hasher); pat_adjustments.hash_stable(hcx, hasher); hash_stable_hashmap(hcx, hasher, upvar_capture_map, |up_var_id, hcx| { let ty::UpvarId { var_path, closure_expr_id } = *up_var_id; assert_eq!(var_path.hir_id.owner, hir_owner); ( hcx.local_def_path_hash(var_path.hir_id.owner), var_path.hir_id.local_id, hcx.local_def_path_hash(closure_expr_id), ) }); closure_kind_origins.hash_stable(hcx, hasher); liberated_fn_sigs.hash_stable(hcx, hasher); fru_field_types.hash_stable(hcx, hasher); coercion_casts.hash_stable(hcx, hasher); used_trait_imports.hash_stable(hcx, hasher); tainted_by_errors.hash_stable(hcx, hasher); concrete_opaque_types.hash_stable(hcx, hasher); closure_captures.hash_stable(hcx, hasher); generator_interior_types.hash_stable(hcx, hasher); }) } } rustc_index::newtype_index! { pub struct UserTypeAnnotationIndex { derive [HashStable] DEBUG_FORMAT = "UserType({})", const START_INDEX = 0, } } /// Mapping of type annotation indices to canonical user type annotations. pub type CanonicalUserTypeAnnotations<'tcx> = IndexVec>; #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, Lift)] pub struct CanonicalUserTypeAnnotation<'tcx> { pub user_ty: CanonicalUserType<'tcx>, pub span: Span, pub inferred_ty: Ty<'tcx>, } /// Canonicalized user type annotation. pub type CanonicalUserType<'tcx> = Canonical<'tcx, UserType<'tcx>>; impl CanonicalUserType<'tcx> { /// Returns `true` if this represents a substitution of the form `[?0, ?1, ?2]`, /// i.e., each thing is mapped to a canonical variable with the same index. pub fn is_identity(&self) -> bool { match self.value { UserType::Ty(_) => false, UserType::TypeOf(_, user_substs) => { if user_substs.user_self_ty.is_some() { return false; } user_substs.substs.iter().zip(BoundVar::new(0)..).all(|(kind, cvar)| { match kind.unpack() { GenericArgKind::Type(ty) => match ty.kind { ty::Bound(debruijn, b) => { // We only allow a `ty::INNERMOST` index in substitutions. assert_eq!(debruijn, ty::INNERMOST); cvar == b.var } _ => false, }, GenericArgKind::Lifetime(r) => match r { ty::ReLateBound(debruijn, br) => { // We only allow a `ty::INNERMOST` index in substitutions. assert_eq!(*debruijn, ty::INNERMOST); cvar == br.assert_bound_var() } _ => false, }, GenericArgKind::Const(ct) => match ct.val { ty::ConstKind::Bound(debruijn, b) => { // We only allow a `ty::INNERMOST` index in substitutions. assert_eq!(debruijn, ty::INNERMOST); cvar == b } _ => false, }, } }) } } } } /// A user-given type annotation attached to a constant. These arise /// from constants that are named via paths, like `Foo::::new` and /// so forth. #[derive(Copy, Clone, Debug, PartialEq, TyEncodable, TyDecodable)] #[derive(HashStable, TypeFoldable, Lift)] pub enum UserType<'tcx> { Ty(Ty<'tcx>), /// The canonical type is the result of `type_of(def_id)` with the /// given substitutions applied. TypeOf(DefId, UserSubsts<'tcx>), } impl<'tcx> CommonTypes<'tcx> { fn new(interners: &CtxtInterners<'tcx>) -> CommonTypes<'tcx> { let mk = |ty| interners.intern_ty(ty); CommonTypes { unit: mk(Tuple(List::empty())), bool: mk(Bool), char: mk(Char), never: mk(Never), isize: mk(Int(ast::IntTy::Isize)), i8: mk(Int(ast::IntTy::I8)), i16: mk(Int(ast::IntTy::I16)), i32: mk(Int(ast::IntTy::I32)), i64: mk(Int(ast::IntTy::I64)), i128: mk(Int(ast::IntTy::I128)), usize: mk(Uint(ast::UintTy::Usize)), u8: mk(Uint(ast::UintTy::U8)), u16: mk(Uint(ast::UintTy::U16)), u32: mk(Uint(ast::UintTy::U32)), u64: mk(Uint(ast::UintTy::U64)), u128: mk(Uint(ast::UintTy::U128)), f32: mk(Float(ast::FloatTy::F32)), f64: mk(Float(ast::FloatTy::F64)), str_: mk(Str), self_param: mk(ty::Param(ty::ParamTy { index: 0, name: kw::SelfUpper })), trait_object_dummy_self: mk(Infer(ty::FreshTy(0))), } } } impl<'tcx> CommonLifetimes<'tcx> { fn new(interners: &CtxtInterners<'tcx>) -> CommonLifetimes<'tcx> { let mk = |r| interners.region.intern(r, |r| Interned(interners.arena.alloc(r))).0; CommonLifetimes { re_root_empty: mk(RegionKind::ReEmpty(ty::UniverseIndex::ROOT)), re_static: mk(RegionKind::ReStatic), re_erased: mk(RegionKind::ReErased), } } } impl<'tcx> CommonConsts<'tcx> { fn new(interners: &CtxtInterners<'tcx>, types: &CommonTypes<'tcx>) -> CommonConsts<'tcx> { let mk_const = |c| interners.const_.intern(c, |c| Interned(interners.arena.alloc(c))).0; CommonConsts { unit: mk_const(ty::Const { val: ty::ConstKind::Value(ConstValue::Scalar(Scalar::zst())), ty: types.unit, }), } } } // This struct contains information regarding the `ReFree(FreeRegion)` corresponding to a lifetime // conflict. #[derive(Debug)] pub struct FreeRegionInfo { // `LocalDefId` corresponding to FreeRegion pub def_id: LocalDefId, // the bound region corresponding to FreeRegion pub boundregion: ty::BoundRegion, // checks if bound region is in Impl Item pub is_impl_item: bool, } /// The central data structure of the compiler. It stores references /// to the various **arenas** and also houses the results of the /// various **compiler queries** that have been performed. See the /// [rustc dev guide] for more details. /// /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/ty.html #[derive(Copy, Clone)] #[rustc_diagnostic_item = "TyCtxt"] pub struct TyCtxt<'tcx> { gcx: &'tcx GlobalCtxt<'tcx>, } impl<'tcx> Deref for TyCtxt<'tcx> { type Target = &'tcx GlobalCtxt<'tcx>; #[inline(always)] fn deref(&self) -> &Self::Target { &self.gcx } } pub struct GlobalCtxt<'tcx> { pub arena: &'tcx WorkerLocal>, interners: CtxtInterners<'tcx>, pub(crate) cstore: Box, pub sess: &'tcx Session, /// This only ever stores a `LintStore` but we don't want a dependency on that type here. /// /// FIXME(Centril): consider `dyn LintStoreMarker` once /// we can upcast to `Any` for some additional type safety. pub lint_store: Lrc, pub dep_graph: DepGraph, pub prof: SelfProfilerRef, /// Common types, pre-interned for your convenience. pub types: CommonTypes<'tcx>, /// Common lifetimes, pre-interned for your convenience. pub lifetimes: CommonLifetimes<'tcx>, /// Common consts, pre-interned for your convenience. pub consts: CommonConsts<'tcx>, /// Resolutions of `extern crate` items produced by resolver. extern_crate_map: FxHashMap, /// Map indicating what traits are in scope for places where this /// is relevant; generated by resolve. trait_map: FxHashMap>>, /// Export map produced by name resolution. export_map: ExportMap, pub(crate) untracked_crate: &'tcx hir::Crate<'tcx>, pub(crate) definitions: &'tcx Definitions, /// A map from `DefPathHash` -> `DefId`. Includes `DefId`s from the local crate /// as well as all upstream crates. Only populated in incremental mode. pub def_path_hash_to_def_id: Option>, pub queries: query::Queries<'tcx>, maybe_unused_trait_imports: FxHashSet, maybe_unused_extern_crates: Vec<(LocalDefId, Span)>, /// A map of glob use to a set of names it actually imports. Currently only /// used in save-analysis. glob_map: FxHashMap>, /// Extern prelude entries. The value is `true` if the entry was introduced /// via `extern crate` item and not `--extern` option or compiler built-in. pub extern_prelude: FxHashMap, // Internal caches for metadata decoding. No need to track deps on this. pub ty_rcache: Lock>>, pub pred_rcache: Lock>>, /// Caches the results of trait selection. This cache is used /// for things that do not have to do with the parameters in scope. pub selection_cache: traits::SelectionCache<'tcx>, /// Caches the results of trait evaluation. This cache is used /// for things that do not have to do with the parameters in scope. /// Merge this with `selection_cache`? pub evaluation_cache: traits::EvaluationCache<'tcx>, /// The definite name of the current crate after taking into account /// attributes, commandline parameters, etc. pub crate_name: Symbol, /// Data layout specification for the current target. pub data_layout: TargetDataLayout, /// `#[stable]` and `#[unstable]` attributes stability_interner: ShardedHashMap<&'tcx attr::Stability, ()>, /// `#[rustc_const_stable]` and `#[rustc_const_unstable]` attributes const_stability_interner: ShardedHashMap<&'tcx attr::ConstStability, ()>, /// Stores the value of constants (and deduplicates the actual memory) allocation_interner: ShardedHashMap<&'tcx Allocation, ()>, /// Stores memory for globals (statics/consts). pub(crate) alloc_map: Lock>, layout_interner: ShardedHashMap<&'tcx Layout, ()>, output_filenames: Arc, } impl<'tcx> TyCtxt<'tcx> { pub fn typeck_opt_const_arg( self, def: ty::WithOptConstParam, ) -> &'tcx TypeckResults<'tcx> { if let Some(param_did) = def.const_param_did { self.typeck_const_arg((def.did, param_did)) } else { self.typeck(def.did) } } pub fn alloc_steal_mir(self, mir: Body<'tcx>) -> &'tcx Steal> { self.arena.alloc(Steal::new(mir)) } pub fn alloc_steal_promoted( self, promoted: IndexVec>, ) -> &'tcx Steal>> { self.arena.alloc(Steal::new(promoted)) } pub fn alloc_adt_def( self, did: DefId, kind: AdtKind, variants: IndexVec, repr: ReprOptions, ) -> &'tcx ty::AdtDef { self.arena.alloc(ty::AdtDef::new(self, did, kind, variants, repr)) } pub fn intern_const_alloc(self, alloc: Allocation) -> &'tcx Allocation { self.allocation_interner.intern(alloc, |alloc| self.arena.alloc(alloc)) } /// Allocates a read-only byte or string literal for `mir::interpret`. pub fn allocate_bytes(self, bytes: &[u8]) -> interpret::AllocId { // Create an allocation that just contains these bytes. let alloc = interpret::Allocation::from_byte_aligned_bytes(bytes); let alloc = self.intern_const_alloc(alloc); self.create_memory_alloc(alloc) } pub fn intern_stability(self, stab: attr::Stability) -> &'tcx attr::Stability { self.stability_interner.intern(stab, |stab| self.arena.alloc(stab)) } pub fn intern_const_stability(self, stab: attr::ConstStability) -> &'tcx attr::ConstStability { self.const_stability_interner.intern(stab, |stab| self.arena.alloc(stab)) } pub fn intern_layout(self, layout: Layout) -> &'tcx Layout { self.layout_interner.intern(layout, |layout| self.arena.alloc(layout)) } /// Returns a range of the start/end indices specified with the /// `rustc_layout_scalar_valid_range` attribute. pub fn layout_scalar_valid_range(self, def_id: DefId) -> (Bound, Bound) { let attrs = self.get_attrs(def_id); let get = |name| { let attr = match attrs.iter().find(|a| self.sess.check_name(a, name)) { Some(attr) => attr, None => return Bound::Unbounded, }; debug!("layout_scalar_valid_range: attr={:?}", attr); for meta in attr.meta_item_list().expect("rustc_layout_scalar_valid_range takes args") { match meta.literal().expect("attribute takes lit").kind { ast::LitKind::Int(a, _) => return Bound::Included(a), _ => span_bug!(attr.span, "rustc_layout_scalar_valid_range expects int arg"), } } span_bug!(attr.span, "no arguments to `rustc_layout_scalar_valid_range` attribute"); }; ( get(sym::rustc_layout_scalar_valid_range_start), get(sym::rustc_layout_scalar_valid_range_end), ) } pub fn lift>(self, value: &T) -> Option { value.lift_to_tcx(self) } /// Creates a type context and call the closure with a `TyCtxt` reference /// to the context. The closure enforces that the type context and any interned /// value (types, substs, etc.) can only be used while `ty::tls` has a valid /// reference to the context, to allow formatting values that need it. pub fn create_global_ctxt( s: &'tcx Session, lint_store: Lrc, local_providers: ty::query::Providers, extern_providers: ty::query::Providers, arena: &'tcx WorkerLocal>, resolutions: ty::ResolverOutputs, krate: &'tcx hir::Crate<'tcx>, definitions: &'tcx Definitions, dep_graph: DepGraph, on_disk_query_result_cache: query::OnDiskCache<'tcx>, crate_name: &str, output_filenames: &OutputFilenames, ) -> GlobalCtxt<'tcx> { let data_layout = TargetDataLayout::parse(&s.target.target).unwrap_or_else(|err| { s.fatal(&err); }); let interners = CtxtInterners::new(arena); let common_types = CommonTypes::new(&interners); let common_lifetimes = CommonLifetimes::new(&interners); let common_consts = CommonConsts::new(&interners, &common_types); let cstore = resolutions.cstore; let crates = cstore.crates_untracked(); let max_cnum = crates.iter().map(|c| c.as_usize()).max().unwrap_or(0); let mut providers = IndexVec::from_elem_n(extern_providers, max_cnum + 1); providers[LOCAL_CRATE] = local_providers; let def_path_hash_to_def_id = if s.opts.build_dep_graph() { let def_path_tables = crates .iter() .map(|&cnum| (cnum, cstore.def_path_table(cnum))) .chain(iter::once((LOCAL_CRATE, definitions.def_path_table()))); // Precompute the capacity of the hashmap so we don't have to // re-allocate when populating it. let capacity = def_path_tables.clone().map(|(_, t)| t.size()).sum::(); let mut map: FxHashMap<_, _> = FxHashMap::with_capacity_and_hasher(capacity, ::std::default::Default::default()); for (cnum, def_path_table) in def_path_tables { def_path_table.add_def_path_hashes_to(cnum, &mut map); } Some(map) } else { None }; let mut trait_map: FxHashMap<_, FxHashMap<_, _>> = FxHashMap::default(); for (hir_id, v) in krate.trait_map.iter() { let map = trait_map.entry(hir_id.owner).or_default(); map.insert(hir_id.local_id, StableVec::new(v.to_vec())); } GlobalCtxt { sess: s, lint_store, cstore, arena, interners, dep_graph, prof: s.prof.clone(), types: common_types, lifetimes: common_lifetimes, consts: common_consts, extern_crate_map: resolutions.extern_crate_map, trait_map, export_map: resolutions.export_map, maybe_unused_trait_imports: resolutions.maybe_unused_trait_imports, maybe_unused_extern_crates: resolutions.maybe_unused_extern_crates, glob_map: resolutions.glob_map, extern_prelude: resolutions.extern_prelude, untracked_crate: krate, definitions, def_path_hash_to_def_id, queries: query::Queries::new(providers, extern_providers, on_disk_query_result_cache), ty_rcache: Default::default(), pred_rcache: Default::default(), selection_cache: Default::default(), evaluation_cache: Default::default(), crate_name: Symbol::intern(crate_name), data_layout, layout_interner: Default::default(), stability_interner: Default::default(), const_stability_interner: Default::default(), allocation_interner: Default::default(), alloc_map: Lock::new(interpret::AllocMap::new()), output_filenames: Arc::new(output_filenames.clone()), } } /// Constructs a `TyKind::Error` type and registers a `delay_span_bug` to ensure it gets used. #[track_caller] pub fn ty_error(self) -> Ty<'tcx> { self.ty_error_with_message(DUMMY_SP, "TyKind::Error constructed but no error reported") } /// Constructs a `TyKind::Error` type and registers a `delay_span_bug` with the given `msg` to /// ensure it gets used. #[track_caller] pub fn ty_error_with_message>(self, span: S, msg: &str) -> Ty<'tcx> { self.sess.delay_span_bug(span, msg); self.mk_ty(Error(super::sty::DelaySpanBugEmitted(()))) } /// Like `err` but for constants. #[track_caller] pub fn const_error(self, ty: Ty<'tcx>) -> &'tcx Const<'tcx> { self.sess .delay_span_bug(DUMMY_SP, "ty::ConstKind::Error constructed but no error reported."); self.mk_const(ty::Const { val: ty::ConstKind::Error(super::sty::DelaySpanBugEmitted(())), ty, }) } pub fn consider_optimizing String>(&self, msg: T) -> bool { let cname = self.crate_name(LOCAL_CRATE).as_str(); self.sess.consider_optimizing(&cname, msg) } pub fn lib_features(self) -> &'tcx middle::lib_features::LibFeatures { self.get_lib_features(LOCAL_CRATE) } /// Obtain all lang items of this crate and all dependencies (recursively) pub fn lang_items(self) -> &'tcx rustc_hir::lang_items::LanguageItems { self.get_lang_items(LOCAL_CRATE) } /// Obtain the given diagnostic item's `DefId`. Use `is_diagnostic_item` if you just want to /// compare against another `DefId`, since `is_diagnostic_item` is cheaper. pub fn get_diagnostic_item(self, name: Symbol) -> Option { self.all_diagnostic_items(LOCAL_CRATE).get(&name).copied() } /// Check whether the diagnostic item with the given `name` has the given `DefId`. pub fn is_diagnostic_item(self, name: Symbol, did: DefId) -> bool { self.diagnostic_items(did.krate).get(&name) == Some(&did) } pub fn stability(self) -> &'tcx stability::Index<'tcx> { self.stability_index(LOCAL_CRATE) } pub fn crates(self) -> &'tcx [CrateNum] { self.all_crate_nums(LOCAL_CRATE) } pub fn allocator_kind(self) -> Option { self.cstore.allocator_kind() } pub fn features(self) -> &'tcx rustc_feature::Features { self.features_query(LOCAL_CRATE) } pub fn def_key(self, id: DefId) -> rustc_hir::definitions::DefKey { if let Some(id) = id.as_local() { self.hir().def_key(id) } else { self.cstore.def_key(id) } } /// Converts a `DefId` into its fully expanded `DefPath` (every /// `DefId` is really just an interned `DefPath`). /// /// Note that if `id` is not local to this crate, the result will /// be a non-local `DefPath`. pub fn def_path(self, id: DefId) -> rustc_hir::definitions::DefPath { if let Some(id) = id.as_local() { self.hir().def_path(id) } else { self.cstore.def_path(id) } } /// Returns whether or not the crate with CrateNum 'cnum' /// is marked as a private dependency pub fn is_private_dep(self, cnum: CrateNum) -> bool { if cnum == LOCAL_CRATE { false } else { self.cstore.crate_is_private_dep_untracked(cnum) } } #[inline] pub fn def_path_hash(self, def_id: DefId) -> rustc_hir::definitions::DefPathHash { if let Some(def_id) = def_id.as_local() { self.definitions.def_path_hash(def_id) } else { self.cstore.def_path_hash(def_id) } } pub fn def_path_debug_str(self, def_id: DefId) -> String { // We are explicitly not going through queries here in order to get // crate name and disambiguator since this code is called from debug!() // statements within the query system and we'd run into endless // recursion otherwise. let (crate_name, crate_disambiguator) = if def_id.is_local() { (self.crate_name, self.sess.local_crate_disambiguator()) } else { ( self.cstore.crate_name_untracked(def_id.krate), self.cstore.crate_disambiguator_untracked(def_id.krate), ) }; format!( "{}[{}]{}", crate_name, // Don't print the whole crate disambiguator. That's just // annoying in debug output. &(crate_disambiguator.to_fingerprint().to_hex())[..4], self.def_path(def_id).to_string_no_crate() ) } pub fn metadata_encoding_version(self) -> Vec { self.cstore.metadata_encoding_version().to_vec() } pub fn encode_metadata(self) -> EncodedMetadata { let _prof_timer = self.prof.verbose_generic_activity("generate_crate_metadata"); self.cstore.encode_metadata(self) } // Note that this is *untracked* and should only be used within the query // system if the result is otherwise tracked through queries pub fn cstore_as_any(self) -> &'tcx dyn Any { self.cstore.as_any() } #[inline(always)] pub fn create_stable_hashing_context(self) -> StableHashingContext<'tcx> { let krate = self.gcx.untracked_crate; StableHashingContext::new(self.sess, krate, self.definitions, &*self.cstore) } #[inline(always)] pub fn create_no_span_stable_hashing_context(self) -> StableHashingContext<'tcx> { let krate = self.gcx.untracked_crate; StableHashingContext::ignore_spans(self.sess, krate, self.definitions, &*self.cstore) } // This method makes sure that we have a DepNode and a Fingerprint for // every upstream crate. It needs to be called once right after the tcx is // created. // With full-fledged red/green, the method will probably become unnecessary // as this will be done on-demand. pub fn allocate_metadata_dep_nodes(self) { // We cannot use the query versions of crates() and crate_hash(), since // those would need the DepNodes that we are allocating here. for cnum in self.cstore.crates_untracked() { let dep_node = DepConstructor::CrateMetadata(self, cnum); let crate_hash = self.cstore.crate_hash_untracked(cnum); self.dep_graph.with_task( dep_node, self, crate_hash, |_, x| x, // No transformation needed dep_graph::hash_result, ); } } pub fn serialize_query_result_cache(self, encoder: &mut E) -> Result<(), E::Error> where E: ty::codec::OpaqueEncoder, { self.queries.on_disk_cache.serialize(self, encoder) } /// If `true`, we should use the MIR-based borrowck, but also /// fall back on the AST borrowck if the MIR-based one errors. pub fn migrate_borrowck(self) -> bool { self.borrowck_mode().migrate() } /// What mode(s) of borrowck should we run? AST? MIR? both? /// (Also considers the `#![feature(nll)]` setting.) pub fn borrowck_mode(self) -> BorrowckMode { // Here are the main constraints we need to deal with: // // 1. An opts.borrowck_mode of `BorrowckMode::Migrate` is // synonymous with no `-Z borrowck=...` flag at all. // // 2. We want to allow developers on the Nightly channel // to opt back into the "hard error" mode for NLL, // (which they can do via specifying `#![feature(nll)]` // explicitly in their crate). // // So, this precedence list is how pnkfelix chose to work with // the above constraints: // // * `#![feature(nll)]` *always* means use NLL with hard // errors. (To simplify the code here, it now even overrides // a user's attempt to specify `-Z borrowck=compare`, which // we arguably do not need anymore and should remove.) // // * Otherwise, if no `-Z borrowck=...` then use migrate mode // // * Otherwise, use the behavior requested via `-Z borrowck=...` if self.features().nll { return BorrowckMode::Mir; } self.sess.opts.borrowck_mode } /// If `true`, we should use lazy normalization for constants, otherwise /// we still evaluate them eagerly. #[inline] pub fn lazy_normalization(self) -> bool { let features = self.features(); // Note: We do not enable lazy normalization for `features.min_const_generics`. features.const_generics || features.lazy_normalization_consts } #[inline] pub fn local_crate_exports_generics(self) -> bool { debug_assert!(self.sess.opts.share_generics()); self.sess.crate_types().iter().any(|crate_type| { match crate_type { CrateType::Executable | CrateType::Staticlib | CrateType::ProcMacro | CrateType::Cdylib => false, // FIXME rust-lang/rust#64319, rust-lang/rust#64872: // We want to block export of generics from dylibs, // but we must fix rust-lang/rust#65890 before we can // do that robustly. CrateType::Dylib => true, CrateType::Rlib => true, } }) } // Returns the `DefId` and the `BoundRegion` corresponding to the given region. pub fn is_suitable_region(&self, region: Region<'tcx>) -> Option { let (suitable_region_binding_scope, bound_region) = match *region { ty::ReFree(ref free_region) => { (free_region.scope.expect_local(), free_region.bound_region) } ty::ReEarlyBound(ref ebr) => ( self.parent(ebr.def_id).unwrap().expect_local(), ty::BoundRegion::BrNamed(ebr.def_id, ebr.name), ), _ => return None, // not a free region }; let hir_id = self.hir().as_local_hir_id(suitable_region_binding_scope); let is_impl_item = match self.hir().find(hir_id) { Some(Node::Item(..) | Node::TraitItem(..)) => false, Some(Node::ImplItem(..)) => { self.is_bound_region_in_impl_item(suitable_region_binding_scope) } _ => return None, }; Some(FreeRegionInfo { def_id: suitable_region_binding_scope, boundregion: bound_region, is_impl_item, }) } /// Given a `DefId` for an `fn`, return all the `dyn` and `impl` traits in its return type. pub fn return_type_impl_or_dyn_traits( &self, scope_def_id: LocalDefId, ) -> Vec<&'tcx hir::Ty<'tcx>> { let hir_id = self.hir().as_local_hir_id(scope_def_id); let hir_output = match self.hir().get(hir_id) { Node::Item(hir::Item { kind: ItemKind::Fn( hir::FnSig { decl: hir::FnDecl { output: hir::FnRetTy::Return(ty), .. }, .. }, .., ), .. }) | Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn( hir::FnSig { decl: hir::FnDecl { output: hir::FnRetTy::Return(ty), .. }, .. }, _, ), .. }) | Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn( hir::FnSig { decl: hir::FnDecl { output: hir::FnRetTy::Return(ty), .. }, .. }, _, ), .. }) => ty, _ => return vec![], }; let mut v = TraitObjectVisitor(vec![], self.hir()); v.visit_ty(hir_output); v.0 } pub fn return_type_impl_trait(&self, scope_def_id: LocalDefId) -> Option<(Ty<'tcx>, Span)> { // HACK: `type_of_def_id()` will fail on these (#55796), so return `None`. let hir_id = self.hir().as_local_hir_id(scope_def_id); match self.hir().get(hir_id) { Node::Item(item) => { match item.kind { ItemKind::Fn(..) => { /* `type_of_def_id()` will work */ } _ => { return None; } } } _ => { /* `type_of_def_id()` will work or panic */ } } let ret_ty = self.type_of(scope_def_id); match ret_ty.kind { ty::FnDef(_, _) => { let sig = ret_ty.fn_sig(*self); let output = self.erase_late_bound_regions(&sig.output()); if output.is_impl_trait() { let fn_decl = self.hir().fn_decl_by_hir_id(hir_id).unwrap(); Some((output, fn_decl.output.span())) } else { None } } _ => None, } } // Checks if the bound region is in Impl Item. pub fn is_bound_region_in_impl_item(&self, suitable_region_binding_scope: LocalDefId) -> bool { let container_id = self.associated_item(suitable_region_binding_scope.to_def_id()).container.id(); if self.impl_trait_ref(container_id).is_some() { // For now, we do not try to target impls of traits. This is // because this message is going to suggest that the user // change the fn signature, but they may not be free to do so, // since the signature must match the trait. // // FIXME(#42706) -- in some cases, we could do better here. return true; } false } /// Determines whether identifiers in the assembly have strict naming rules. /// Currently, only NVPTX* targets need it. pub fn has_strict_asm_symbol_naming(&self) -> bool { self.sess.target.target.arch.contains("nvptx") } /// Returns `&'static core::panic::Location<'static>`. pub fn caller_location_ty(&self) -> Ty<'tcx> { self.mk_imm_ref( self.lifetimes.re_static, self.type_of(self.require_lang_item(PanicLocationLangItem, None)) .subst(*self, self.mk_substs([self.lifetimes.re_static.into()].iter())), ) } /// Returns a displayable description and article for the given `def_id` (e.g. `("a", "struct")`). pub fn article_and_description(&self, def_id: DefId) -> (&'static str, &'static str) { match self.def_kind(def_id) { DefKind::Generator => match self.generator_kind(def_id).unwrap() { rustc_hir::GeneratorKind::Async(..) => ("an", "async closure"), rustc_hir::GeneratorKind::Gen => ("a", "generator"), }, def_kind => (def_kind.article(), def_kind.descr(def_id)), } } } /// A trait implemented for all `X<'a>` types that can be safely and /// efficiently converted to `X<'tcx>` as long as they are part of the /// provided `TyCtxt<'tcx>`. /// This can be done, for example, for `Ty<'tcx>` or `SubstsRef<'tcx>` /// by looking them up in their respective interners. /// /// However, this is still not the best implementation as it does /// need to compare the components, even for interned values. /// It would be more efficient if `TypedArena` provided a way to /// determine whether the address is in the allocated range. /// /// `None` is returned if the value or one of the components is not part /// of the provided context. /// For `Ty`, `None` can be returned if either the type interner doesn't /// contain the `TyKind` key or if the address of the interned /// pointer differs. The latter case is possible if a primitive type, /// e.g., `()` or `u8`, was interned in a different context. pub trait Lift<'tcx>: fmt::Debug { type Lifted: fmt::Debug + 'tcx; fn lift_to_tcx(&self, tcx: TyCtxt<'tcx>) -> Option; } macro_rules! nop_lift { ($set:ident; $ty:ty => $lifted:ty) => { impl<'a, 'tcx> Lift<'tcx> for $ty { type Lifted = $lifted; fn lift_to_tcx(&self, tcx: TyCtxt<'tcx>) -> Option { if tcx.interners.$set.contains_pointer_to(&Interned(*self)) { Some(unsafe { mem::transmute(*self) }) } else { None } } } }; } macro_rules! nop_list_lift { ($set:ident; $ty:ty => $lifted:ty) => { impl<'a, 'tcx> Lift<'tcx> for &'a List<$ty> { type Lifted = &'tcx List<$lifted>; fn lift_to_tcx(&self, tcx: TyCtxt<'tcx>) -> Option { if self.is_empty() { return Some(List::empty()); } if tcx.interners.$set.contains_pointer_to(&Interned(*self)) { Some(unsafe { mem::transmute(*self) }) } else { None } } } }; } nop_lift! {type_; Ty<'a> => Ty<'tcx>} nop_lift! {region; Region<'a> => Region<'tcx>} nop_lift! {const_; &'a Const<'a> => &'tcx Const<'tcx>} nop_lift! {predicate; &'a PredicateInner<'a> => &'tcx PredicateInner<'tcx>} nop_list_lift! {type_list; Ty<'a> => Ty<'tcx>} nop_list_lift! {existential_predicates; ExistentialPredicate<'a> => ExistentialPredicate<'tcx>} nop_list_lift! {predicates; Predicate<'a> => Predicate<'tcx>} nop_list_lift! {canonical_var_infos; CanonicalVarInfo => CanonicalVarInfo} nop_list_lift! {projs; ProjectionKind => ProjectionKind} // This is the impl for `&'a InternalSubsts<'a>`. nop_list_lift! {substs; GenericArg<'a> => GenericArg<'tcx>} pub mod tls { use super::{ptr_eq, GlobalCtxt, TyCtxt}; use crate::dep_graph::{DepKind, TaskDeps}; use crate::ty::query; use rustc_data_structures::sync::{self, Lock}; use rustc_data_structures::thin_vec::ThinVec; use rustc_errors::Diagnostic; use std::mem; #[cfg(not(parallel_compiler))] use std::cell::Cell; #[cfg(parallel_compiler)] use rustc_rayon_core as rayon_core; /// This is the implicit state of rustc. It contains the current /// `TyCtxt` and query. It is updated when creating a local interner or /// executing a new query. Whenever there's a `TyCtxt` value available /// you should also have access to an `ImplicitCtxt` through the functions /// in this module. #[derive(Clone)] pub struct ImplicitCtxt<'a, 'tcx> { /// The current `TyCtxt`. pub tcx: TyCtxt<'tcx>, /// The current query job, if any. This is updated by `JobOwner::start` in /// `ty::query::plumbing` when executing a query. pub query: Option>, /// Where to store diagnostics for the current query job, if any. /// This is updated by `JobOwner::start` in `ty::query::plumbing` when executing a query. pub diagnostics: Option<&'a Lock>>, /// Used to prevent layout from recursing too deeply. pub layout_depth: usize, /// The current dep graph task. This is used to add dependencies to queries /// when executing them. pub task_deps: Option<&'a Lock>, } impl<'a, 'tcx> ImplicitCtxt<'a, 'tcx> { pub fn new(gcx: &'tcx GlobalCtxt<'tcx>) -> Self { let tcx = TyCtxt { gcx }; ImplicitCtxt { tcx, query: None, diagnostics: None, layout_depth: 0, task_deps: None } } } /// Sets Rayon's thread-local variable, which is preserved for Rayon jobs /// to `value` during the call to `f`. It is restored to its previous value after. /// This is used to set the pointer to the new `ImplicitCtxt`. #[cfg(parallel_compiler)] #[inline] fn set_tlv R, R>(value: usize, f: F) -> R { rayon_core::tlv::with(value, f) } /// Gets Rayon's thread-local variable, which is preserved for Rayon jobs. /// This is used to get the pointer to the current `ImplicitCtxt`. #[cfg(parallel_compiler)] #[inline] pub fn get_tlv() -> usize { rayon_core::tlv::get() } #[cfg(not(parallel_compiler))] thread_local! { /// A thread local variable that stores a pointer to the current `ImplicitCtxt`. static TLV: Cell = Cell::new(0); } /// Sets TLV to `value` during the call to `f`. /// It is restored to its previous value after. /// This is used to set the pointer to the new `ImplicitCtxt`. #[cfg(not(parallel_compiler))] #[inline] fn set_tlv R, R>(value: usize, f: F) -> R { let old = get_tlv(); let _reset = rustc_data_structures::OnDrop(move || TLV.with(|tlv| tlv.set(old))); TLV.with(|tlv| tlv.set(value)); f() } /// Gets the pointer to the current `ImplicitCtxt`. #[cfg(not(parallel_compiler))] #[inline] fn get_tlv() -> usize { TLV.with(|tlv| tlv.get()) } /// Sets `context` as the new current `ImplicitCtxt` for the duration of the function `f`. #[inline] pub fn enter_context<'a, 'tcx, F, R>(context: &ImplicitCtxt<'a, 'tcx>, f: F) -> R where F: FnOnce(&ImplicitCtxt<'a, 'tcx>) -> R, { set_tlv(context as *const _ as usize, || f(&context)) } /// Allows access to the current `ImplicitCtxt` in a closure if one is available. #[inline] pub fn with_context_opt(f: F) -> R where F: for<'a, 'tcx> FnOnce(Option<&ImplicitCtxt<'a, 'tcx>>) -> R, { let context = get_tlv(); if context == 0 { f(None) } else { // We could get a `ImplicitCtxt` pointer from another thread. // Ensure that `ImplicitCtxt` is `Sync`. sync::assert_sync::>(); unsafe { f(Some(&*(context as *const ImplicitCtxt<'_, '_>))) } } } /// Allows access to the current `ImplicitCtxt`. /// Panics if there is no `ImplicitCtxt` available. #[inline] pub fn with_context(f: F) -> R where F: for<'a, 'tcx> FnOnce(&ImplicitCtxt<'a, 'tcx>) -> R, { with_context_opt(|opt_context| f(opt_context.expect("no ImplicitCtxt stored in tls"))) } /// Allows access to the current `ImplicitCtxt` whose tcx field is the same as the tcx argument /// passed in. This means the closure is given an `ImplicitCtxt` with the same `'tcx` lifetime /// as the `TyCtxt` passed in. /// This will panic if you pass it a `TyCtxt` which is different from the current /// `ImplicitCtxt`'s `tcx` field. #[inline] pub fn with_related_context<'tcx, F, R>(tcx: TyCtxt<'tcx>, f: F) -> R where F: FnOnce(&ImplicitCtxt<'_, 'tcx>) -> R, { with_context(|context| unsafe { assert!(ptr_eq(context.tcx.gcx, tcx.gcx)); let context: &ImplicitCtxt<'_, '_> = mem::transmute(context); f(context) }) } /// Allows access to the `TyCtxt` in the current `ImplicitCtxt`. /// Panics if there is no `ImplicitCtxt` available. #[inline] pub fn with(f: F) -> R where F: for<'tcx> FnOnce(TyCtxt<'tcx>) -> R, { with_context(|context| f(context.tcx)) } /// Allows access to the `TyCtxt` in the current `ImplicitCtxt`. /// The closure is passed None if there is no `ImplicitCtxt` available. #[inline] pub fn with_opt(f: F) -> R where F: for<'tcx> FnOnce(Option>) -> R, { with_context_opt(|opt_context| f(opt_context.map(|context| context.tcx))) } } macro_rules! sty_debug_print { ($fmt: expr, $ctxt: expr, $($variant: ident),*) => {{ // Curious inner module to allow variant names to be used as // variable names. #[allow(non_snake_case)] mod inner { use crate::ty::{self, TyCtxt}; use crate::ty::context::Interned; #[derive(Copy, Clone)] struct DebugStat { total: usize, lt_infer: usize, ty_infer: usize, ct_infer: usize, all_infer: usize, } pub fn go(fmt: &mut std::fmt::Formatter<'_>, tcx: TyCtxt<'_>) -> std::fmt::Result { let mut total = DebugStat { total: 0, lt_infer: 0, ty_infer: 0, ct_infer: 0, all_infer: 0, }; $(let mut $variant = total;)* let shards = tcx.interners.type_.lock_shards(); let types = shards.iter().flat_map(|shard| shard.keys()); for &Interned(t) in types { let variant = match t.kind { ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::Never => continue, ty::Error(_) => /* unimportant */ continue, $(ty::$variant(..) => &mut $variant,)* }; let lt = t.flags.intersects(ty::TypeFlags::HAS_RE_INFER); let ty = t.flags.intersects(ty::TypeFlags::HAS_TY_INFER); let ct = t.flags.intersects(ty::TypeFlags::HAS_CT_INFER); variant.total += 1; total.total += 1; if lt { total.lt_infer += 1; variant.lt_infer += 1 } if ty { total.ty_infer += 1; variant.ty_infer += 1 } if ct { total.ct_infer += 1; variant.ct_infer += 1 } if lt && ty && ct { total.all_infer += 1; variant.all_infer += 1 } } writeln!(fmt, "Ty interner total ty lt ct all")?; $(writeln!(fmt, " {:18}: {uses:6} {usespc:4.1}%, \ {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%", stringify!($variant), uses = $variant.total, usespc = $variant.total as f64 * 100.0 / total.total as f64, ty = $variant.ty_infer as f64 * 100.0 / total.total as f64, lt = $variant.lt_infer as f64 * 100.0 / total.total as f64, ct = $variant.ct_infer as f64 * 100.0 / total.total as f64, all = $variant.all_infer as f64 * 100.0 / total.total as f64)?; )* writeln!(fmt, " total {uses:6} \ {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%", uses = total.total, ty = total.ty_infer as f64 * 100.0 / total.total as f64, lt = total.lt_infer as f64 * 100.0 / total.total as f64, ct = total.ct_infer as f64 * 100.0 / total.total as f64, all = total.all_infer as f64 * 100.0 / total.total as f64) } } inner::go($fmt, $ctxt) }} } impl<'tcx> TyCtxt<'tcx> { pub fn debug_stats(self) -> impl std::fmt::Debug + 'tcx { struct DebugStats<'tcx>(TyCtxt<'tcx>); impl std::fmt::Debug for DebugStats<'tcx> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { sty_debug_print!( fmt, self.0, Adt, Array, Slice, RawPtr, Ref, FnDef, FnPtr, Placeholder, Generator, GeneratorWitness, Dynamic, Closure, Tuple, Bound, Param, Infer, Projection, Opaque, Foreign )?; writeln!(fmt, "InternalSubsts interner: #{}", self.0.interners.substs.len())?; writeln!(fmt, "Region interner: #{}", self.0.interners.region.len())?; writeln!(fmt, "Stability interner: #{}", self.0.stability_interner.len())?; writeln!( fmt, "Const Stability interner: #{}", self.0.const_stability_interner.len() )?; writeln!(fmt, "Allocation interner: #{}", self.0.allocation_interner.len())?; writeln!(fmt, "Layout interner: #{}", self.0.layout_interner.len())?; Ok(()) } } DebugStats(self) } } /// An entry in an interner. struct Interned<'tcx, T: ?Sized>(&'tcx T); impl<'tcx, T: 'tcx + ?Sized> Clone for Interned<'tcx, T> { fn clone(&self) -> Self { Interned(self.0) } } impl<'tcx, T: 'tcx + ?Sized> Copy for Interned<'tcx, T> {} impl<'tcx, T: 'tcx + ?Sized> IntoPointer for Interned<'tcx, T> { fn into_pointer(&self) -> *const () { self.0 as *const _ as *const () } } // N.B., an `Interned` compares and hashes as a `TyKind`. impl<'tcx> PartialEq for Interned<'tcx, TyS<'tcx>> { fn eq(&self, other: &Interned<'tcx, TyS<'tcx>>) -> bool { self.0.kind == other.0.kind } } impl<'tcx> Eq for Interned<'tcx, TyS<'tcx>> {} impl<'tcx> Hash for Interned<'tcx, TyS<'tcx>> { fn hash(&self, s: &mut H) { self.0.kind.hash(s) } } #[allow(rustc::usage_of_ty_tykind)] impl<'tcx> Borrow> for Interned<'tcx, TyS<'tcx>> { fn borrow<'a>(&'a self) -> &'a TyKind<'tcx> { &self.0.kind } } // N.B., an `Interned` compares and hashes as a `PredicateKind`. impl<'tcx> PartialEq for Interned<'tcx, PredicateInner<'tcx>> { fn eq(&self, other: &Interned<'tcx, PredicateInner<'tcx>>) -> bool { self.0.kind == other.0.kind } } impl<'tcx> Eq for Interned<'tcx, PredicateInner<'tcx>> {} impl<'tcx> Hash for Interned<'tcx, PredicateInner<'tcx>> { fn hash(&self, s: &mut H) { self.0.kind.hash(s) } } impl<'tcx> Borrow> for Interned<'tcx, PredicateInner<'tcx>> { fn borrow<'a>(&'a self) -> &'a PredicateKind<'tcx> { &self.0.kind } } // N.B., an `Interned>` compares and hashes as its elements. impl<'tcx, T: PartialEq> PartialEq for Interned<'tcx, List> { fn eq(&self, other: &Interned<'tcx, List>) -> bool { self.0[..] == other.0[..] } } impl<'tcx, T: Eq> Eq for Interned<'tcx, List> {} impl<'tcx, T: Hash> Hash for Interned<'tcx, List> { fn hash(&self, s: &mut H) { self.0[..].hash(s) } } impl<'tcx, T> Borrow<[T]> for Interned<'tcx, List> { fn borrow<'a>(&'a self) -> &'a [T] { &self.0[..] } } impl<'tcx> Borrow for Interned<'tcx, RegionKind> { fn borrow(&self) -> &RegionKind { &self.0 } } impl<'tcx> Borrow> for Interned<'tcx, Const<'tcx>> { fn borrow<'a>(&'a self) -> &'a Const<'tcx> { &self.0 } } impl<'tcx> Borrow> for Interned<'tcx, PredicateKind<'tcx>> { fn borrow<'a>(&'a self) -> &'a PredicateKind<'tcx> { &self.0 } } macro_rules! direct_interners { ($($name:ident: $method:ident($ty:ty),)+) => { $(impl<'tcx> PartialEq for Interned<'tcx, $ty> { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl<'tcx> Eq for Interned<'tcx, $ty> {} impl<'tcx> Hash for Interned<'tcx, $ty> { fn hash(&self, s: &mut H) { self.0.hash(s) } } impl<'tcx> TyCtxt<'tcx> { pub fn $method(self, v: $ty) -> &'tcx $ty { self.interners.$name.intern_ref(&v, || { Interned(self.interners.arena.alloc(v)) }).0 } })+ } } direct_interners! { region: mk_region(RegionKind), const_: mk_const(Const<'tcx>), } macro_rules! slice_interners { ($($field:ident: $method:ident($ty:ty)),+) => ( $(impl<'tcx> TyCtxt<'tcx> { pub fn $method(self, v: &[$ty]) -> &'tcx List<$ty> { self.interners.$field.intern_ref(v, || { Interned(List::from_arena(&*self.arena, v)) }).0 } })+ ); } slice_interners!( type_list: _intern_type_list(Ty<'tcx>), substs: _intern_substs(GenericArg<'tcx>), canonical_var_infos: _intern_canonical_var_infos(CanonicalVarInfo), existential_predicates: _intern_existential_predicates(ExistentialPredicate<'tcx>), predicates: _intern_predicates(Predicate<'tcx>), projs: _intern_projs(ProjectionKind), place_elems: _intern_place_elems(PlaceElem<'tcx>), chalk_environment_clause_list: _intern_chalk_environment_clause_list(traits::ChalkEnvironmentClause<'tcx>) ); impl<'tcx> TyCtxt<'tcx> { /// Given a `fn` type, returns an equivalent `unsafe fn` type; /// that is, a `fn` type that is equivalent in every way for being /// unsafe. pub fn safe_to_unsafe_fn_ty(self, sig: PolyFnSig<'tcx>) -> Ty<'tcx> { assert_eq!(sig.unsafety(), hir::Unsafety::Normal); self.mk_fn_ptr(sig.map_bound(|sig| ty::FnSig { unsafety: hir::Unsafety::Unsafe, ..sig })) } /// Given a closure signature, returns an equivalent fn signature. Detuples /// and so forth -- so e.g., if we have a sig with `Fn<(u32, i32)>` then /// you would get a `fn(u32, i32)`. /// `unsafety` determines the unsafety of the fn signature. If you pass /// `hir::Unsafety::Unsafe` in the previous example, then you would get /// an `unsafe fn (u32, i32)`. /// It cannot convert a closure that requires unsafe. pub fn signature_unclosure( self, sig: PolyFnSig<'tcx>, unsafety: hir::Unsafety, ) -> PolyFnSig<'tcx> { sig.map_bound(|s| { let params_iter = match s.inputs()[0].kind { ty::Tuple(params) => params.into_iter().map(|k| k.expect_ty()), _ => bug!(), }; self.mk_fn_sig(params_iter, s.output(), s.c_variadic, unsafety, abi::Abi::Rust) }) } /// Same a `self.mk_region(kind)`, but avoids accessing the interners if /// `*r == kind`. #[inline] pub fn reuse_or_mk_region(self, r: Region<'tcx>, kind: RegionKind) -> Region<'tcx> { if *r == kind { r } else { self.mk_region(kind) } } #[allow(rustc::usage_of_ty_tykind)] #[inline] pub fn mk_ty(self, st: TyKind<'tcx>) -> Ty<'tcx> { self.interners.intern_ty(st) } #[inline] pub fn mk_predicate(self, kind: PredicateKind<'tcx>) -> Predicate<'tcx> { let inner = self.interners.intern_predicate(kind); Predicate { inner } } #[inline] pub fn reuse_or_mk_predicate( self, pred: Predicate<'tcx>, kind: PredicateKind<'tcx>, ) -> Predicate<'tcx> { if *pred.kind() != kind { self.mk_predicate(kind) } else { pred } } pub fn mk_mach_int(self, tm: ast::IntTy) -> Ty<'tcx> { match tm { ast::IntTy::Isize => self.types.isize, ast::IntTy::I8 => self.types.i8, ast::IntTy::I16 => self.types.i16, ast::IntTy::I32 => self.types.i32, ast::IntTy::I64 => self.types.i64, ast::IntTy::I128 => self.types.i128, } } pub fn mk_mach_uint(self, tm: ast::UintTy) -> Ty<'tcx> { match tm { ast::UintTy::Usize => self.types.usize, ast::UintTy::U8 => self.types.u8, ast::UintTy::U16 => self.types.u16, ast::UintTy::U32 => self.types.u32, ast::UintTy::U64 => self.types.u64, ast::UintTy::U128 => self.types.u128, } } pub fn mk_mach_float(self, tm: ast::FloatTy) -> Ty<'tcx> { match tm { ast::FloatTy::F32 => self.types.f32, ast::FloatTy::F64 => self.types.f64, } } #[inline] pub fn mk_static_str(self) -> Ty<'tcx> { self.mk_imm_ref(self.lifetimes.re_static, self.types.str_) } #[inline] pub fn mk_adt(self, def: &'tcx AdtDef, substs: SubstsRef<'tcx>) -> Ty<'tcx> { // Take a copy of substs so that we own the vectors inside. self.mk_ty(Adt(def, substs)) } #[inline] pub fn mk_foreign(self, def_id: DefId) -> Ty<'tcx> { self.mk_ty(Foreign(def_id)) } fn mk_generic_adt(self, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> { let adt_def = self.adt_def(wrapper_def_id); let substs = InternalSubsts::for_item(self, wrapper_def_id, |param, substs| match param.kind { GenericParamDefKind::Lifetime | GenericParamDefKind::Const => bug!(), GenericParamDefKind::Type { has_default, .. } => { if param.index == 0 { ty_param.into() } else { assert!(has_default); self.type_of(param.def_id).subst(self, substs).into() } } }); self.mk_ty(Adt(adt_def, substs)) } #[inline] pub fn mk_box(self, ty: Ty<'tcx>) -> Ty<'tcx> { let def_id = self.require_lang_item(lang_items::OwnedBoxLangItem, None); self.mk_generic_adt(def_id, ty) } #[inline] pub fn mk_lang_item(self, ty: Ty<'tcx>, item: lang_items::LangItem) -> Option> { let def_id = self.lang_items().require(item).ok()?; Some(self.mk_generic_adt(def_id, ty)) } #[inline] pub fn mk_diagnostic_item(self, ty: Ty<'tcx>, name: Symbol) -> Option> { let def_id = self.get_diagnostic_item(name)?; Some(self.mk_generic_adt(def_id, ty)) } #[inline] pub fn mk_maybe_uninit(self, ty: Ty<'tcx>) -> Ty<'tcx> { let def_id = self.require_lang_item(lang_items::MaybeUninitLangItem, None); self.mk_generic_adt(def_id, ty) } #[inline] pub fn mk_ptr(self, tm: TypeAndMut<'tcx>) -> Ty<'tcx> { self.mk_ty(RawPtr(tm)) } #[inline] pub fn mk_ref(self, r: Region<'tcx>, tm: TypeAndMut<'tcx>) -> Ty<'tcx> { self.mk_ty(Ref(r, tm.ty, tm.mutbl)) } #[inline] pub fn mk_mut_ref(self, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ref(r, TypeAndMut { ty, mutbl: hir::Mutability::Mut }) } #[inline] pub fn mk_imm_ref(self, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ref(r, TypeAndMut { ty, mutbl: hir::Mutability::Not }) } #[inline] pub fn mk_mut_ptr(self, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ptr(TypeAndMut { ty, mutbl: hir::Mutability::Mut }) } #[inline] pub fn mk_imm_ptr(self, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ptr(TypeAndMut { ty, mutbl: hir::Mutability::Not }) } #[inline] pub fn mk_nil_ptr(self) -> Ty<'tcx> { self.mk_imm_ptr(self.mk_unit()) } #[inline] pub fn mk_array(self, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> { self.mk_ty(Array(ty, ty::Const::from_usize(self, n))) } #[inline] pub fn mk_slice(self, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ty(Slice(ty)) } #[inline] pub fn intern_tup(self, ts: &[Ty<'tcx>]) -> Ty<'tcx> { let kinds: Vec<_> = ts.iter().map(|&t| GenericArg::from(t)).collect(); self.mk_ty(Tuple(self.intern_substs(&kinds))) } pub fn mk_tup], Ty<'tcx>>>(self, iter: I) -> I::Output { iter.intern_with(|ts| { let kinds: Vec<_> = ts.iter().map(|&t| GenericArg::from(t)).collect(); self.mk_ty(Tuple(self.intern_substs(&kinds))) }) } #[inline] pub fn mk_unit(self) -> Ty<'tcx> { self.types.unit } #[inline] pub fn mk_diverging_default(self) -> Ty<'tcx> { if self.features().never_type_fallback { self.types.never } else { self.types.unit } } #[inline] pub fn mk_fn_def(self, def_id: DefId, substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(FnDef(def_id, substs)) } #[inline] pub fn mk_fn_ptr(self, fty: PolyFnSig<'tcx>) -> Ty<'tcx> { self.mk_ty(FnPtr(fty)) } #[inline] pub fn mk_dynamic( self, obj: ty::Binder<&'tcx List>>, reg: ty::Region<'tcx>, ) -> Ty<'tcx> { self.mk_ty(Dynamic(obj, reg)) } #[inline] pub fn mk_projection(self, item_def_id: DefId, substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(Projection(ProjectionTy { item_def_id, substs })) } #[inline] pub fn mk_closure(self, closure_id: DefId, closure_substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(Closure(closure_id, closure_substs)) } #[inline] pub fn mk_generator( self, id: DefId, generator_substs: SubstsRef<'tcx>, movability: hir::Movability, ) -> Ty<'tcx> { self.mk_ty(Generator(id, generator_substs, movability)) } #[inline] pub fn mk_generator_witness(self, types: ty::Binder<&'tcx List>>) -> Ty<'tcx> { self.mk_ty(GeneratorWitness(types)) } #[inline] pub fn mk_ty_var(self, v: TyVid) -> Ty<'tcx> { self.mk_ty_infer(TyVar(v)) } #[inline] pub fn mk_const_var(self, v: ConstVid<'tcx>, ty: Ty<'tcx>) -> &'tcx Const<'tcx> { self.mk_const(ty::Const { val: ty::ConstKind::Infer(InferConst::Var(v)), ty }) } #[inline] pub fn mk_int_var(self, v: IntVid) -> Ty<'tcx> { self.mk_ty_infer(IntVar(v)) } #[inline] pub fn mk_float_var(self, v: FloatVid) -> Ty<'tcx> { self.mk_ty_infer(FloatVar(v)) } #[inline] pub fn mk_ty_infer(self, it: InferTy) -> Ty<'tcx> { self.mk_ty(Infer(it)) } #[inline] pub fn mk_const_infer(self, ic: InferConst<'tcx>, ty: Ty<'tcx>) -> &'tcx ty::Const<'tcx> { self.mk_const(ty::Const { val: ty::ConstKind::Infer(ic), ty }) } #[inline] pub fn mk_ty_param(self, index: u32, name: Symbol) -> Ty<'tcx> { self.mk_ty(Param(ParamTy { index, name })) } #[inline] pub fn mk_const_param(self, index: u32, name: Symbol, ty: Ty<'tcx>) -> &'tcx Const<'tcx> { self.mk_const(ty::Const { val: ty::ConstKind::Param(ParamConst { index, name }), ty }) } pub fn mk_param_from_def(self, param: &ty::GenericParamDef) -> GenericArg<'tcx> { match param.kind { GenericParamDefKind::Lifetime => { self.mk_region(ty::ReEarlyBound(param.to_early_bound_region_data())).into() } GenericParamDefKind::Type { .. } => self.mk_ty_param(param.index, param.name).into(), GenericParamDefKind::Const => { self.mk_const_param(param.index, param.name, self.type_of(param.def_id)).into() } } } #[inline] pub fn mk_opaque(self, def_id: DefId, substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(Opaque(def_id, substs)) } pub fn mk_place_field(self, place: Place<'tcx>, f: Field, ty: Ty<'tcx>) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Field(f, ty)) } pub fn mk_place_deref(self, place: Place<'tcx>) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Deref) } pub fn mk_place_downcast( self, place: Place<'tcx>, adt_def: &'tcx AdtDef, variant_index: VariantIdx, ) -> Place<'tcx> { self.mk_place_elem( place, PlaceElem::Downcast(Some(adt_def.variants[variant_index].ident.name), variant_index), ) } pub fn mk_place_downcast_unnamed( self, place: Place<'tcx>, variant_index: VariantIdx, ) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Downcast(None, variant_index)) } pub fn mk_place_index(self, place: Place<'tcx>, index: Local) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Index(index)) } /// This method copies `Place`'s projection, add an element and reintern it. Should not be used /// to build a full `Place` it's just a convenient way to grab a projection and modify it in /// flight. pub fn mk_place_elem(self, place: Place<'tcx>, elem: PlaceElem<'tcx>) -> Place<'tcx> { let mut projection = place.projection.to_vec(); projection.push(elem); Place { local: place.local, projection: self.intern_place_elems(&projection) } } pub fn intern_existential_predicates( self, eps: &[ExistentialPredicate<'tcx>], ) -> &'tcx List> { assert!(!eps.is_empty()); assert!(eps.windows(2).all(|w| w[0].stable_cmp(self, &w[1]) != Ordering::Greater)); self._intern_existential_predicates(eps) } pub fn intern_predicates(self, preds: &[Predicate<'tcx>]) -> &'tcx List> { // FIXME consider asking the input slice to be sorted to avoid // re-interning permutations, in which case that would be asserted // here. if preds.is_empty() { // The macro-generated method below asserts we don't intern an empty slice. List::empty() } else { self._intern_predicates(preds) } } pub fn intern_type_list(self, ts: &[Ty<'tcx>]) -> &'tcx List> { if ts.is_empty() { List::empty() } else { self._intern_type_list(ts) } } pub fn intern_substs(self, ts: &[GenericArg<'tcx>]) -> &'tcx List> { if ts.is_empty() { List::empty() } else { self._intern_substs(ts) } } pub fn intern_projs(self, ps: &[ProjectionKind]) -> &'tcx List { if ps.is_empty() { List::empty() } else { self._intern_projs(ps) } } pub fn intern_place_elems(self, ts: &[PlaceElem<'tcx>]) -> &'tcx List> { if ts.is_empty() { List::empty() } else { self._intern_place_elems(ts) } } pub fn intern_canonical_var_infos(self, ts: &[CanonicalVarInfo]) -> CanonicalVarInfos<'tcx> { if ts.is_empty() { List::empty() } else { self._intern_canonical_var_infos(ts) } } pub fn intern_chalk_environment_clause_list( self, ts: &[traits::ChalkEnvironmentClause<'tcx>], ) -> &'tcx List> { if ts.is_empty() { List::empty() } else { self._intern_chalk_environment_clause_list(ts) } } pub fn mk_fn_sig( self, inputs: I, output: I::Item, c_variadic: bool, unsafety: hir::Unsafety, abi: abi::Abi, ) -> , ty::FnSig<'tcx>>>::Output where I: Iterator, ty::FnSig<'tcx>>>, { inputs.chain(iter::once(output)).intern_with(|xs| ty::FnSig { inputs_and_output: self.intern_type_list(xs), c_variadic, unsafety, abi, }) } pub fn mk_existential_predicates< I: InternAs<[ExistentialPredicate<'tcx>], &'tcx List>>, >( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_existential_predicates(xs)) } pub fn mk_predicates], &'tcx List>>>( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_predicates(xs)) } pub fn mk_type_list], &'tcx List>>>(self, iter: I) -> I::Output { iter.intern_with(|xs| self.intern_type_list(xs)) } pub fn mk_substs], &'tcx List>>>( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_substs(xs)) } pub fn mk_place_elems], &'tcx List>>>( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_place_elems(xs)) } pub fn mk_substs_trait(self, self_ty: Ty<'tcx>, rest: &[GenericArg<'tcx>]) -> SubstsRef<'tcx> { self.mk_substs(iter::once(self_ty.into()).chain(rest.iter().cloned())) } pub fn mk_chalk_environment_clause_list< I: InternAs< [traits::ChalkEnvironmentClause<'tcx>], &'tcx List>, >, >( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_chalk_environment_clause_list(xs)) } /// Walks upwards from `id` to find a node which might change lint levels with attributes. /// It stops at `bound` and just returns it if reached. pub fn maybe_lint_level_root_bounded(self, mut id: HirId, bound: HirId) -> HirId { let hir = self.hir(); loop { if id == bound { return bound; } if hir.attrs(id).iter().any(|attr| Level::from_symbol(attr.name_or_empty()).is_some()) { return id; } let next = hir.get_parent_node(id); if next == id { bug!("lint traversal reached the root of the crate"); } id = next; } } pub fn lint_level_at_node( self, lint: &'static Lint, mut id: hir::HirId, ) -> (Level, LintSource) { let sets = self.lint_levels(LOCAL_CRATE); loop { if let Some(pair) = sets.level_and_source(lint, id, self.sess) { return pair; } let next = self.hir().get_parent_node(id); if next == id { bug!("lint traversal reached the root of the crate"); } id = next; } } pub fn struct_span_lint_hir( self, lint: &'static Lint, hir_id: HirId, span: impl Into, decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>), ) { let (level, src) = self.lint_level_at_node(lint, hir_id); struct_lint_level(self.sess, lint, level, src, Some(span.into()), decorate); } pub fn struct_lint_node( self, lint: &'static Lint, id: HirId, decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>), ) { let (level, src) = self.lint_level_at_node(lint, id); struct_lint_level(self.sess, lint, level, src, None, decorate); } pub fn in_scope_traits(self, id: HirId) -> Option<&'tcx StableVec> { self.in_scope_traits_map(id.owner).and_then(|map| map.get(&id.local_id)) } pub fn named_region(self, id: HirId) -> Option { self.named_region_map(id.owner).and_then(|map| map.get(&id.local_id).cloned()) } pub fn is_late_bound(self, id: HirId) -> bool { self.is_late_bound_map(id.owner).map(|set| set.contains(&id.local_id)).unwrap_or(false) } pub fn object_lifetime_defaults(self, id: HirId) -> Option<&'tcx [ObjectLifetimeDefault]> { self.object_lifetime_defaults_map(id.owner) .and_then(|map| map.get(&id.local_id).map(|v| &**v)) } } pub trait InternAs { type Output; fn intern_with(self, f: F) -> Self::Output where F: FnOnce(&T) -> R; } impl InternAs<[T], R> for I where E: InternIteratorElement, I: Iterator, { type Output = E::Output; fn intern_with(self, f: F) -> Self::Output where F: FnOnce(&[T]) -> R, { E::intern_with(self, f) } } pub trait InternIteratorElement: Sized { type Output; fn intern_with, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output; } impl InternIteratorElement for T { type Output = R; fn intern_with, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output { f(&iter.collect::>()) } } impl<'a, T, R> InternIteratorElement for &'a T where T: Clone + 'a, { type Output = R; fn intern_with, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output { f(&iter.cloned().collect::>()) } } impl InternIteratorElement for Result { type Output = Result; fn intern_with, F: FnOnce(&[T]) -> R>( mut iter: I, f: F, ) -> Self::Output { // This code is hot enough that it's worth specializing for the most // common length lists, to avoid the overhead of `SmallVec` creation. // The match arms are in order of frequency. The 1, 2, and 0 cases are // typically hit in ~95% of cases. We assume that if the upper and // lower bounds from `size_hint` agree they are correct. Ok(match iter.size_hint() { (1, Some(1)) => { let t0 = iter.next().unwrap()?; assert!(iter.next().is_none()); f(&[t0]) } (2, Some(2)) => { let t0 = iter.next().unwrap()?; let t1 = iter.next().unwrap()?; assert!(iter.next().is_none()); f(&[t0, t1]) } (0, Some(0)) => { assert!(iter.next().is_none()); f(&[]) } _ => f(&iter.collect::, _>>()?), }) } } // We are comparing types with different invariant lifetimes, so `ptr::eq` // won't work for us. fn ptr_eq(t: *const T, u: *const U) -> bool { t as *const () == u as *const () } pub fn provide(providers: &mut ty::query::Providers) { providers.in_scope_traits_map = |tcx, id| tcx.gcx.trait_map.get(&id); providers.module_exports = |tcx, id| tcx.gcx.export_map.get(&id).map(|v| &v[..]); providers.crate_name = |tcx, id| { assert_eq!(id, LOCAL_CRATE); tcx.crate_name }; providers.maybe_unused_trait_import = |tcx, id| tcx.maybe_unused_trait_imports.contains(&id); providers.maybe_unused_extern_crates = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); &tcx.maybe_unused_extern_crates[..] }; providers.names_imported_by_glob_use = |tcx, id| tcx.arena.alloc(tcx.glob_map.get(&id).cloned().unwrap_or_default()); providers.lookup_stability = |tcx, id| { let id = tcx.hir().local_def_id_to_hir_id(id.expect_local()); tcx.stability().local_stability(id) }; providers.lookup_const_stability = |tcx, id| { let id = tcx.hir().local_def_id_to_hir_id(id.expect_local()); tcx.stability().local_const_stability(id) }; providers.lookup_deprecation_entry = |tcx, id| { let id = tcx.hir().local_def_id_to_hir_id(id.expect_local()); tcx.stability().local_deprecation_entry(id) }; providers.extern_mod_stmt_cnum = |tcx, id| tcx.extern_crate_map.get(&id).cloned(); providers.all_crate_nums = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.arena.alloc_slice(&tcx.cstore.crates_untracked()) }; providers.output_filenames = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.output_filenames.clone() }; providers.features_query = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.sess.features_untracked() }; providers.is_panic_runtime = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.sess.contains_name(tcx.hir().krate_attrs(), sym::panic_runtime) }; providers.is_compiler_builtins = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.sess.contains_name(tcx.hir().krate_attrs(), sym::compiler_builtins) }; providers.has_panic_handler = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); // We want to check if the panic handler was defined in this crate tcx.lang_items().panic_impl().map_or(false, |did| did.is_local()) }; }