#![feature(plugin)] #![feature(const_fn)] #![plugin(clippy)] #![deny(clippy, clippy_pedantic)] #![allow(blacklisted_name, unused, print_stdout, non_ascii_literal, new_without_default, new_without_default_derive, missing_docs_in_private_items)] use std::collections::BTreeMap; use std::collections::HashMap; use std::collections::HashSet; use std::collections::VecDeque; use std::ops::Mul; use std::iter::FromIterator; struct T; impl T { fn add(self, other: T) -> T { self } fn drop(&mut self) { } fn sub(&self, other: T) -> &T { self } // no error, self is a ref fn div(self) -> T { self } // no error, different #arguments fn rem(self, other: T) { } // no error, wrong return type fn into_u32(self) -> u32 { 0 } // fine fn into_u16(&self) -> u16 { 0 } fn to_something(self) -> u32 { 0 } fn new(self) {} } struct Lt<'a> { foo: &'a u32, } impl<'a> Lt<'a> { // The lifetime is different, but that’s irrelevant, see #734 #[allow(needless_lifetimes)] pub fn new<'b>(s: &'b str) -> Lt<'b> { unimplemented!() } } struct Lt2<'a> { foo: &'a u32, } impl<'a> Lt2<'a> { // The lifetime is different, but that’s irrelevant, see #734 pub fn new(s: &str) -> Lt2 { unimplemented!() } } struct Lt3<'a> { foo: &'a u32, } impl<'a> Lt3<'a> { // The lifetime is different, but that’s irrelevant, see #734 pub fn new() -> Lt3<'static> { unimplemented!() } } #[derive(Clone,Copy)] struct U; impl U { fn new() -> Self { U } fn to_something(self) -> u32 { 0 } // ok because U is Copy } struct V { _dummy: T } impl V { fn new() -> Option> { None } } impl Mul for T { type Output = T; fn mul(self, other: T) -> T { self } // no error, obviously } /// Utility macro to test linting behavior in `option_methods()` /// The lints included in `option_methods()` should not lint if the call to map is partially /// within a macro macro_rules! opt_map { ($opt:expr, $map:expr) => {($opt).map($map)}; } /// Checks implementation of the following lints: /// * `OPTION_MAP_UNWRAP_OR` /// * `OPTION_MAP_UNWRAP_OR_ELSE` fn option_methods() { let opt = Some(1); // Check OPTION_MAP_UNWRAP_OR // single line case let _ = opt.map(|x| x + 1) .unwrap_or(0); // should lint even though this call is on a separate line // multi line cases let _ = opt.map(|x| { x + 1 } ).unwrap_or(0); let _ = opt.map(|x| x + 1) .unwrap_or({ 0 }); // macro case let _ = opt_map!(opt, |x| x + 1).unwrap_or(0); // should not lint // Check OPTION_MAP_UNWRAP_OR_ELSE // single line case let _ = opt.map(|x| x + 1) .unwrap_or_else(|| 0); // should lint even though this call is on a separate line // multi line cases let _ = opt.map(|x| { x + 1 } ).unwrap_or_else(|| 0); let _ = opt.map(|x| x + 1) .unwrap_or_else(|| 0 ); // macro case let _ = opt_map!(opt, |x| x + 1).unwrap_or_else(|| 0); // should not lint } /// Struct to generate false positives for things with .iter() #[derive(Copy, Clone)] struct HasIter; impl HasIter { fn iter(self) -> IteratorFalsePositives { IteratorFalsePositives { foo: 0 } } fn iter_mut(self) -> IteratorFalsePositives { IteratorFalsePositives { foo: 0 } } } /// Struct to generate false positive for Iterator-based lints #[derive(Copy, Clone)] struct IteratorFalsePositives { foo: u32, } impl IteratorFalsePositives { fn filter(self) -> IteratorFalsePositives { self } fn next(self) -> IteratorFalsePositives { self } fn find(self) -> Option { Some(self.foo) } fn position(self) -> Option { Some(self.foo) } fn rposition(self) -> Option { Some(self.foo) } fn nth(self, n: usize) -> Option { Some(self.foo) } fn skip(self, _: usize) -> IteratorFalsePositives { self } } #[derive(Copy, Clone)] struct HasChars; impl HasChars { fn chars(self) -> std::str::Chars<'static> { "HasChars".chars() } } /// Checks implementation of `FILTER_NEXT` lint fn filter_next() { let v = vec![3, 2, 1, 0, -1, -2, -3]; // check single-line case let _ = v.iter().filter(|&x| *x < 0).next(); // check multi-line case let _ = v.iter().filter(|&x| { *x < 0 } ).next(); // check that we don't lint if the caller is not an Iterator let foo = IteratorFalsePositives { foo: 0 }; let _ = foo.filter().next(); } /// Checks implementation of `SEARCH_IS_SOME` lint fn search_is_some() { let v = vec![3, 2, 1, 0, -1, -2, -3]; // check `find().is_some()`, single-line let _ = v.iter().find(|&x| *x < 0).is_some(); // check `find().is_some()`, multi-line let _ = v.iter().find(|&x| { *x < 0 } ).is_some(); // check `position().is_some()`, single-line let _ = v.iter().position(|&x| x < 0).is_some(); // check `position().is_some()`, multi-line let _ = v.iter().position(|&x| { x < 0 } ).is_some(); // check `rposition().is_some()`, single-line let _ = v.iter().rposition(|&x| x < 0).is_some(); // check `rposition().is_some()`, multi-line let _ = v.iter().rposition(|&x| { x < 0 } ).is_some(); // check that we don't lint if the caller is not an Iterator let foo = IteratorFalsePositives { foo: 0 }; let _ = foo.find().is_some(); let _ = foo.position().is_some(); let _ = foo.rposition().is_some(); } /// Checks implementation of the `OR_FUN_CALL` lint fn or_fun_call() { struct Foo; impl Foo { fn new() -> Foo { Foo } } enum Enum { A(i32), } const fn make_const(i: i32) -> i32 { i } fn make() -> T { unimplemented!(); } let with_enum = Some(Enum::A(1)); with_enum.unwrap_or(Enum::A(5)); let with_const_fn = Some(1); with_const_fn.unwrap_or(make_const(5)); let with_constructor = Some(vec![1]); with_constructor.unwrap_or(make()); let with_new = Some(vec![1]); with_new.unwrap_or(Vec::new()); let with_const_args = Some(vec![1]); with_const_args.unwrap_or(Vec::with_capacity(12)); let with_err : Result<_, ()> = Ok(vec![1]); with_err.unwrap_or(make()); let with_err_args : Result<_, ()> = Ok(vec![1]); with_err_args.unwrap_or(Vec::with_capacity(12)); let with_default_trait = Some(1); with_default_trait.unwrap_or(Default::default()); let with_default_type = Some(1); with_default_type.unwrap_or(u64::default()); let with_vec = Some(vec![1]); with_vec.unwrap_or(vec![]); // FIXME #944: ~|SUGGESTION with_vec.unwrap_or_else(|| vec![]); let without_default = Some(Foo); without_default.unwrap_or(Foo::new()); let mut map = HashMap::::new(); map.entry(42).or_insert(String::new()); let mut btree = BTreeMap::::new(); btree.entry(42).or_insert(String::new()); let stringy = Some(String::from("")); let _ = stringy.unwrap_or("".to_owned()); } /// Checks implementation of `ITER_NTH` lint fn iter_nth() { let mut some_vec = vec![0, 1, 2, 3]; let mut boxed_slice: Box<[u8]> = Box::new([0, 1, 2, 3]); let mut some_vec_deque: VecDeque<_> = some_vec.iter().cloned().collect(); { // Make sure we lint `.iter()` for relevant types let bad_vec = some_vec.iter().nth(3); let bad_slice = &some_vec[..].iter().nth(3); let bad_boxed_slice = boxed_slice.iter().nth(3); let bad_vec_deque = some_vec_deque.iter().nth(3); } { // Make sure we lint `.iter_mut()` for relevant types let bad_vec = some_vec.iter_mut().nth(3); } { let bad_slice = &some_vec[..].iter_mut().nth(3); } { let bad_vec_deque = some_vec_deque.iter_mut().nth(3); } // Make sure we don't lint for non-relevant types let false_positive = HasIter; let ok = false_positive.iter().nth(3); let ok_mut = false_positive.iter_mut().nth(3); } /// Checks implementation of `ITER_SKIP_NEXT` lint fn iter_skip_next() { let mut some_vec = vec![0, 1, 2, 3]; let _ = some_vec.iter().skip(42).next(); let _ = some_vec.iter().cycle().skip(42).next(); let _ = (1..10).skip(10).next(); let _ = &some_vec[..].iter().skip(3).next(); let foo = IteratorFalsePositives { foo : 0 }; let _ = foo.skip(42).next(); let _ = foo.filter().skip(42).next(); } struct GetFalsePositive { arr: [u32; 3], } impl GetFalsePositive { fn get(&self, pos: usize) -> Option<&u32> { self.arr.get(pos) } fn get_mut(&mut self, pos: usize) -> Option<&mut u32> { self.arr.get_mut(pos) } } /// Checks implementation of `GET_UNWRAP` lint fn get_unwrap() { let mut boxed_slice: Box<[u8]> = Box::new([0, 1, 2, 3]); let mut some_slice = &mut [0, 1, 2, 3]; let mut some_vec = vec![0, 1, 2, 3]; let mut some_vecdeque: VecDeque<_> = some_vec.iter().cloned().collect(); let mut some_hashmap: HashMap = HashMap::from_iter(vec![(1, 'a'), (2, 'b')]); let mut some_btreemap: BTreeMap = BTreeMap::from_iter(vec![(1, 'a'), (2, 'b')]); let mut false_positive = GetFalsePositive { arr: [0, 1, 2] }; { // Test `get().unwrap()` let _ = boxed_slice.get(1).unwrap(); let _ = some_slice.get(0).unwrap(); let _ = some_vec.get(0).unwrap(); let _ = some_vecdeque.get(0).unwrap(); let _ = some_hashmap.get(&1).unwrap(); let _ = some_btreemap.get(&1).unwrap(); let _ = false_positive.get(0).unwrap(); } { // Test `get_mut().unwrap()` *boxed_slice.get_mut(0).unwrap() = 1; *some_slice.get_mut(0).unwrap() = 1; *some_vec.get_mut(0).unwrap() = 1; *some_vecdeque.get_mut(0).unwrap() = 1; // Check false positives *some_hashmap.get_mut(&1).unwrap() = 'b'; *some_btreemap.get_mut(&1).unwrap() = 'b'; *false_positive.get_mut(0).unwrap() = 1; } } #[allow(similar_names)] fn main() { use std::io; let opt = Some(0); let _ = opt.unwrap(); let res: Result = Ok(0); let _ = res.unwrap(); res.ok().expect("disaster!"); // the following should not warn, since `expect` isn't implemented unless // the error type implements `Debug` let res2: Result = Ok(0); res2.ok().expect("oh noes!"); let res3: Result>= Ok(0); res3.ok().expect("whoof"); let res4: Result = Ok(0); res4.ok().expect("argh"); let res5: io::Result = Ok(0); res5.ok().expect("oops"); let res6: Result = Ok(0); res6.ok().expect("meh"); } struct MyError(()); // doesn't implement Debug #[derive(Debug)] struct MyErrorWithParam { x: T } #[allow(unnecessary_operation)] fn starts_with() { "".chars().next() == Some(' '); Some(' ') != "".chars().next(); } fn str_extend_chars() { let abc = "abc"; let def = String::from("def"); let mut s = String::new(); s.push_str(abc); s.extend(abc.chars()); s.push_str("abc"); s.extend("abc".chars()); s.push_str(&def); s.extend(def.chars()); s.extend(abc.chars().skip(1)); s.extend("abc".chars().skip(1)); s.extend(['a', 'b', 'c'].iter()); let f = HasChars; s.extend(f.chars()); } fn clone_on_copy() { 42.clone(); vec![1].clone(); // ok, not a Copy type Some(vec![1]).clone(); // ok, not a Copy type (&42).clone(); } fn clone_on_copy_generic(t: T) { t.clone(); Some(t).clone(); } fn clone_on_double_ref() { let x = vec![1]; let y = &&x; let z: &Vec<_> = y.clone(); println!("{:p} {:p}",*y, z); } fn single_char_pattern() { let x = "foo"; x.split("x"); x.split("xx"); x.split('x'); let y = "x"; x.split(y); // Not yet testing for multi-byte characters // Changing `r.len() == 1` to `r.chars().count() == 1` in `lint_single_char_pattern` // should have done this but produced an ICE // // We may not want to suggest changing these anyway // See: https://github.com/Manishearth/rust-clippy/issues/650#issuecomment-184328984 x.split("ß"); x.split("ℝ"); x.split("💣"); // Can't use this lint for unicode code points which don't fit in a char x.split("❤️"); x.contains("x"); x.starts_with("x"); x.ends_with("x"); x.find("x"); x.rfind("x"); x.rsplit("x"); x.split_terminator("x"); x.rsplit_terminator("x"); x.splitn(0, "x"); x.rsplitn(0, "x"); x.matches("x"); x.rmatches("x"); x.match_indices("x"); x.rmatch_indices("x"); x.trim_left_matches("x"); x.trim_right_matches("x"); let h = HashSet::::new(); h.contains("X"); // should not warn } #[allow(result_unwrap_used)] fn temporary_cstring() { use std::ffi::CString; CString::new("foo").unwrap().as_ptr(); } fn iter_clone_collect() { let v = [1,2,3,4,5]; let v2 : Vec = v.iter().cloned().collect(); let v3 : HashSet = v.iter().cloned().collect(); let v4 : VecDeque = v.iter().cloned().collect(); }