//! Computations on places -- field projections, going from mir::Place, and writing //! into a place. //! All high-level functions to write to memory work on places as destinations. use std::convert::TryFrom; use std::hash::Hash; use rustc::mir; use rustc::mir::interpret::truncate; use rustc::ty::{self, Ty}; use rustc::ty::layout::{ self, Size, Align, LayoutOf, TyLayout, HasDataLayout, VariantIdx, PrimitiveExt }; use rustc::ty::TypeFoldable; use rustc_macros::HashStable; use super::{ GlobalId, AllocId, Allocation, Scalar, InterpResult, Pointer, PointerArithmetic, InterpCx, Machine, AllocMap, AllocationExtra, RawConst, Immediate, ImmTy, ScalarMaybeUndef, Operand, OpTy, MemoryKind, LocalValue, }; #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)] pub struct MemPlace { /// A place may have an integral pointer for ZSTs, and since it might /// be turned back into a reference before ever being dereferenced. /// However, it may never be undef. pub ptr: Scalar, pub align: Align, /// Metadata for unsized places. Interpretation is up to the type. /// Must not be present for sized types, but can be missing for unsized types /// (e.g., `extern type`). pub meta: Option>, } #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)] pub enum Place { /// A place referring to a value allocated in the `Memory` system. Ptr(MemPlace), /// To support alloc-free locals, we are able to write directly to a local. /// (Without that optimization, we'd just always be a `MemPlace`.) Local { frame: usize, local: mir::Local, }, } #[derive(Copy, Clone, Debug)] pub struct PlaceTy<'tcx, Tag=()> { place: Place, // Keep this private, it helps enforce invariants pub layout: TyLayout<'tcx>, } impl<'tcx, Tag> ::std::ops::Deref for PlaceTy<'tcx, Tag> { type Target = Place; #[inline(always)] fn deref(&self) -> &Place { &self.place } } /// A MemPlace with its layout. Constructing it is only possible in this module. #[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)] pub struct MPlaceTy<'tcx, Tag=()> { mplace: MemPlace, pub layout: TyLayout<'tcx>, } impl<'tcx, Tag> ::std::ops::Deref for MPlaceTy<'tcx, Tag> { type Target = MemPlace; #[inline(always)] fn deref(&self) -> &MemPlace { &self.mplace } } impl<'tcx, Tag> From> for PlaceTy<'tcx, Tag> { #[inline(always)] fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self { PlaceTy { place: Place::Ptr(mplace.mplace), layout: mplace.layout } } } impl MemPlace { /// Replace ptr tag, maintain vtable tag (if any) #[inline] pub fn replace_tag(self, new_tag: Tag) -> Self { MemPlace { ptr: self.ptr.erase_tag().with_tag(new_tag), align: self.align, meta: self.meta, } } #[inline] pub fn erase_tag(self) -> MemPlace { MemPlace { ptr: self.ptr.erase_tag(), align: self.align, meta: self.meta.map(Scalar::erase_tag), } } #[inline(always)] pub fn from_scalar_ptr(ptr: Scalar, align: Align) -> Self { MemPlace { ptr, align, meta: None, } } /// Produces a Place that will error if attempted to be read from or written to #[inline(always)] pub fn null(cx: &impl HasDataLayout) -> Self { Self::from_scalar_ptr(Scalar::ptr_null(cx), Align::from_bytes(1).unwrap()) } #[inline(always)] pub fn from_ptr(ptr: Pointer, align: Align) -> Self { Self::from_scalar_ptr(ptr.into(), align) } /// Turn a mplace into a (thin or fat) pointer, as a reference, pointing to the same space. /// This is the inverse of `ref_to_mplace`. #[inline(always)] pub fn to_ref(self) -> Immediate { match self.meta { None => Immediate::Scalar(self.ptr.into()), Some(meta) => Immediate::ScalarPair(self.ptr.into(), meta.into()), } } pub fn offset( self, offset: Size, meta: Option>, cx: &impl HasDataLayout, ) -> InterpResult<'tcx, Self> { Ok(MemPlace { ptr: self.ptr.ptr_offset(offset, cx)?, align: self.align.restrict_for_offset(offset), meta, }) } } impl<'tcx, Tag> MPlaceTy<'tcx, Tag> { /// Produces a MemPlace that works for ZST but nothing else #[inline] pub fn dangling(layout: TyLayout<'tcx>, cx: &impl HasDataLayout) -> Self { MPlaceTy { mplace: MemPlace::from_scalar_ptr( Scalar::from_uint(layout.align.abi.bytes(), cx.pointer_size()), layout.align.abi ), layout } } /// Replace ptr tag, maintain vtable tag (if any) #[inline] pub fn replace_tag(self, new_tag: Tag) -> Self { MPlaceTy { mplace: self.mplace.replace_tag(new_tag), layout: self.layout, } } #[inline] pub fn offset( self, offset: Size, meta: Option>, layout: TyLayout<'tcx>, cx: &impl HasDataLayout, ) -> InterpResult<'tcx, Self> { Ok(MPlaceTy { mplace: self.mplace.offset(offset, meta, cx)?, layout, }) } #[inline] fn from_aligned_ptr(ptr: Pointer, layout: TyLayout<'tcx>) -> Self { MPlaceTy { mplace: MemPlace::from_ptr(ptr, layout.align.abi), layout } } #[inline] pub(super) fn len(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> { if self.layout.is_unsized() { // We need to consult `meta` metadata match self.layout.ty.kind { ty::Slice(..) | ty::Str => return self.mplace.meta.unwrap().to_machine_usize(cx), _ => bug!("len not supported on unsized type {:?}", self.layout.ty), } } else { // Go through the layout. There are lots of types that support a length, // e.g., SIMD types. match self.layout.fields { layout::FieldPlacement::Array { count, .. } => Ok(count), _ => bug!("len not supported on sized type {:?}", self.layout.ty), } } } #[inline] pub(super) fn vtable(self) -> Scalar { match self.layout.ty.kind { ty::Dynamic(..) => self.mplace.meta.unwrap(), _ => bug!("vtable not supported on type {:?}", self.layout.ty), } } } // These are defined here because they produce a place. impl<'tcx, Tag: ::std::fmt::Debug + Copy> OpTy<'tcx, Tag> { #[inline(always)] pub fn try_as_mplace(self) -> Result, ImmTy<'tcx, Tag>> { match *self { Operand::Indirect(mplace) => Ok(MPlaceTy { mplace, layout: self.layout }), Operand::Immediate(imm) => Err(ImmTy { imm, layout: self.layout }), } } #[inline(always)] pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> { self.try_as_mplace().unwrap() } } impl Place { /// Produces a Place that will error if attempted to be read from or written to #[inline(always)] pub fn null(cx: &impl HasDataLayout) -> Self { Place::Ptr(MemPlace::null(cx)) } #[inline(always)] pub fn from_scalar_ptr(ptr: Scalar, align: Align) -> Self { Place::Ptr(MemPlace::from_scalar_ptr(ptr, align)) } #[inline(always)] pub fn from_ptr(ptr: Pointer, align: Align) -> Self { Place::Ptr(MemPlace::from_ptr(ptr, align)) } #[inline] pub fn assert_mem_place(self) -> MemPlace { match self { Place::Ptr(mplace) => mplace, _ => bug!("assert_mem_place: expected Place::Ptr, got {:?}", self), } } } impl<'tcx, Tag: ::std::fmt::Debug> PlaceTy<'tcx, Tag> { #[inline] pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> { MPlaceTy { mplace: self.place.assert_mem_place(), layout: self.layout } } } // separating the pointer tag for `impl Trait`, see https://github.com/rust-lang/rust/issues/54385 impl<'mir, 'tcx, Tag, M> InterpCx<'mir, 'tcx, M> where // FIXME: Working around https://github.com/rust-lang/rust/issues/54385 Tag: ::std::fmt::Debug + Copy + Eq + Hash + 'static, M: Machine<'mir, 'tcx, PointerTag = Tag>, // FIXME: Working around https://github.com/rust-lang/rust/issues/24159 M::MemoryMap: AllocMap, Allocation)>, M::AllocExtra: AllocationExtra, { /// Take a value, which represents a (thin or fat) reference, and make it a place. /// Alignment is just based on the type. This is the inverse of `MemPlace::to_ref()`. /// /// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not /// want to ever use the place for memory access! /// Generally prefer `deref_operand`. pub fn ref_to_mplace( &self, val: ImmTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { let pointee_type = val.layout.ty.builtin_deref(true) .expect("`ref_to_mplace` called on non-ptr type") .ty; let layout = self.layout_of(pointee_type)?; let (ptr, meta) = match *val { Immediate::Scalar(ptr) => (ptr.not_undef()?, None), Immediate::ScalarPair(ptr, meta) => (ptr.not_undef()?, Some(meta.not_undef()?)), }; let mplace = MemPlace { ptr, // We could use the run-time alignment here. For now, we do not, because // the point of tracking the alignment here is to make sure that the *static* // alignment information emitted with the loads is correct. The run-time // alignment can only be more restrictive. align: layout.align.abi, meta, }; Ok(MPlaceTy { mplace, layout }) } /// Take an operand, representing a pointer, and dereference it to a place -- that /// will always be a MemPlace. Lives in `place.rs` because it creates a place. pub fn deref_operand( &self, src: OpTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { let val = self.read_immediate(src)?; trace!("deref to {} on {:?}", val.layout.ty, *val); let place = self.ref_to_mplace(val)?; self.mplace_access_checked(place) } /// Check if the given place is good for memory access with the given /// size, falling back to the layout's size if `None` (in the latter case, /// this must be a statically sized type). /// /// On success, returns `None` for zero-sized accesses (where nothing else is /// left to do) and a `Pointer` to use for the actual access otherwise. #[inline] pub fn check_mplace_access( &self, place: MPlaceTy<'tcx, M::PointerTag>, size: Option, ) -> InterpResult<'tcx, Option>> { let size = size.unwrap_or_else(|| { assert!(!place.layout.is_unsized()); assert!(place.meta.is_none()); place.layout.size }); self.memory.check_ptr_access(place.ptr, size, place.align) } /// Return the "access-checked" version of this `MPlace`, where for non-ZST /// this is definitely a `Pointer`. pub fn mplace_access_checked( &self, mut place: MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { let (size, align) = self.size_and_align_of_mplace(place)? .unwrap_or((place.layout.size, place.layout.align.abi)); assert!(place.mplace.align <= align, "dynamic alignment less strict than static one?"); place.mplace.align = align; // maximally strict checking // When dereferencing a pointer, it must be non-NULL, aligned, and live. if let Some(ptr) = self.check_mplace_access(place, Some(size))? { place.mplace.ptr = ptr.into(); } Ok(place) } /// Force `place.ptr` to a `Pointer`. /// Can be helpful to avoid lots of `force_ptr` calls later, if this place is used a lot. pub fn force_mplace_ptr( &self, mut place: MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { place.mplace.ptr = self.force_ptr(place.mplace.ptr)?.into(); Ok(place) } /// Offset a pointer to project to a field. Unlike `place_field`, this is always /// possible without allocating, so it can take `&self`. Also return the field's layout. /// This supports both struct and array fields. #[inline(always)] pub fn mplace_field( &self, base: MPlaceTy<'tcx, M::PointerTag>, field: u64, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { // Not using the layout method because we want to compute on u64 let offset = match base.layout.fields { layout::FieldPlacement::Arbitrary { ref offsets, .. } => offsets[usize::try_from(field).unwrap()], layout::FieldPlacement::Array { stride, .. } => { let len = base.len(self)?; if field >= len { // This can be violated because the index (field) can be a runtime value // provided by the user. debug!("tried to access element {} of array/slice with length {}", field, len); throw_panic!(BoundsCheck { len, index: field }); } stride * field } layout::FieldPlacement::Union(count) => { assert!(field < count as u64, "Tried to access field {} of union {:#?} with {} fields", field, base.layout, count); // Offset is always 0 Size::from_bytes(0) } }; // the only way conversion can fail if is this is an array (otherwise we already panicked // above). In that case, all fields are equal. let field_layout = base.layout.field(self, usize::try_from(field).unwrap_or(0))?; // Offset may need adjustment for unsized fields. let (meta, offset) = if field_layout.is_unsized() { // Re-use parent metadata to determine dynamic field layout. // With custom DSTS, this *will* execute user-defined code, but the same // happens at run-time so that's okay. let align = match self.size_and_align_of(base.meta, field_layout)? { Some((_, align)) => align, None if offset == Size::ZERO => // An extern type at offset 0, we fall back to its static alignment. // FIXME: Once we have made decisions for how to handle size and alignment // of `extern type`, this should be adapted. It is just a temporary hack // to get some code to work that probably ought to work. field_layout.align.abi, None => bug!("Cannot compute offset for extern type field at non-0 offset"), }; (base.meta, offset.align_to(align)) } else { // base.meta could be present; we might be accessing a sized field of an unsized // struct. (None, offset) }; // We do not look at `base.layout.align` nor `field_layout.align`, unlike // codegen -- mostly to see if we can get away with that base.offset(offset, meta, field_layout, self) } // Iterates over all fields of an array. Much more efficient than doing the // same by repeatedly calling `mplace_array`. pub fn mplace_array_fields( &self, base: MPlaceTy<'tcx, Tag>, ) -> InterpResult<'tcx, impl Iterator>> + 'tcx> { let len = base.len(self)?; // also asserts that we have a type where this makes sense let stride = match base.layout.fields { layout::FieldPlacement::Array { stride, .. } => stride, _ => bug!("mplace_array_fields: expected an array layout"), }; let layout = base.layout.field(self, 0)?; let dl = &self.tcx.data_layout; Ok((0..len).map(move |i| base.offset(i * stride, None, layout, dl))) } pub fn mplace_subslice( &self, base: MPlaceTy<'tcx, M::PointerTag>, from: u64, to: u64, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { let len = base.len(self)?; // also asserts that we have a type where this makes sense assert!(from <= len - to); // Not using layout method because that works with usize, and does not work with slices // (that have count 0 in their layout). let from_offset = match base.layout.fields { layout::FieldPlacement::Array { stride, .. } => stride * from, _ => bug!("Unexpected layout of index access: {:#?}", base.layout), }; // Compute meta and new layout let inner_len = len - to - from; let (meta, ty) = match base.layout.ty.kind { // It is not nice to match on the type, but that seems to be the only way to // implement this. ty::Array(inner, _) => (None, self.tcx.mk_array(inner, inner_len)), ty::Slice(..) => { let len = Scalar::from_uint(inner_len, self.pointer_size()); (Some(len), base.layout.ty) } _ => bug!("cannot subslice non-array type: `{:?}`", base.layout.ty), }; let layout = self.layout_of(ty)?; base.offset(from_offset, meta, layout, self) } pub fn mplace_downcast( &self, base: MPlaceTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { // Downcasts only change the layout assert!(base.meta.is_none()); Ok(MPlaceTy { layout: base.layout.for_variant(self, variant), ..base }) } /// Project into an mplace pub fn mplace_projection( &self, base: MPlaceTy<'tcx, M::PointerTag>, proj_elem: &mir::PlaceElem<'tcx>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { use rustc::mir::ProjectionElem::*; Ok(match *proj_elem { Field(field, _) => self.mplace_field(base, field.index() as u64)?, Downcast(_, variant) => self.mplace_downcast(base, variant)?, Deref => self.deref_operand(base.into())?, Index(local) => { let layout = self.layout_of(self.tcx.types.usize)?; let n = self.access_local(self.frame(), local, Some(layout))?; let n = self.read_scalar(n)?; let n = self.force_bits(n.not_undef()?, self.tcx.data_layout.pointer_size)?; self.mplace_field(base, u64::try_from(n).unwrap())? } ConstantIndex { offset, min_length, from_end, } => { let n = base.len(self)?; assert!(n >= min_length as u64); let index = if from_end { n - u64::from(offset) } else { u64::from(offset) }; self.mplace_field(base, index)? } Subslice { from, to } => self.mplace_subslice(base, u64::from(from), u64::from(to))?, }) } /// Gets the place of a field inside the place, and also the field's type. /// Just a convenience function, but used quite a bit. /// This is the only projection that might have a side-effect: We cannot project /// into the field of a local `ScalarPair`, we have to first allocate it. pub fn place_field( &mut self, base: PlaceTy<'tcx, M::PointerTag>, field: u64, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { // FIXME: We could try to be smarter and avoid allocation for fields that span the // entire place. let mplace = self.force_allocation(base)?; Ok(self.mplace_field(mplace, field)?.into()) } pub fn place_downcast( &self, base: PlaceTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { // Downcast just changes the layout Ok(match base.place { Place::Ptr(mplace) => self.mplace_downcast(MPlaceTy { mplace, layout: base.layout }, variant)?.into(), Place::Local { .. } => { let layout = base.layout.for_variant(self, variant); PlaceTy { layout, ..base } } }) } /// Projects into a place. pub fn place_projection( &mut self, base: PlaceTy<'tcx, M::PointerTag>, proj_elem: &mir::ProjectionElem>, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { use rustc::mir::ProjectionElem::*; Ok(match *proj_elem { Field(field, _) => self.place_field(base, field.index() as u64)?, Downcast(_, variant) => self.place_downcast(base, variant)?, Deref => self.deref_operand(self.place_to_op(base)?)?.into(), // For the other variants, we have to force an allocation. // This matches `operand_projection`. Subslice { .. } | ConstantIndex { .. } | Index(_) => { let mplace = self.force_allocation(base)?; self.mplace_projection(mplace, proj_elem)?.into() } }) } /// Evaluate statics and promoteds to an `MPlace`. Used to share some code between /// `eval_place` and `eval_place_to_op`. pub(super) fn eval_static_to_mplace( &self, place_static: &mir::Static<'tcx> ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { use rustc::mir::StaticKind; Ok(match place_static.kind { StaticKind::Promoted(promoted, promoted_substs) => { let substs = self.subst_from_frame_and_normalize_erasing_regions(promoted_substs); let instance = ty::Instance::new(place_static.def_id, substs); // Even after getting `substs` from the frame, this instance may still be // polymorphic because `ConstProp` will try to promote polymorphic MIR. if instance.needs_subst() { throw_inval!(TooGeneric); } self.const_eval_raw(GlobalId { instance, promoted: Some(promoted), })? } StaticKind::Static => { let ty = place_static.ty; assert!(!ty.needs_subst()); let layout = self.layout_of(ty)?; let instance = ty::Instance::mono(*self.tcx, place_static.def_id); let cid = GlobalId { instance, promoted: None }; // Just create a lazy reference, so we can support recursive statics. // tcx takes care of assigning every static one and only one unique AllocId. // When the data here is ever actually used, memory will notice, // and it knows how to deal with alloc_id that are present in the // global table but not in its local memory: It calls back into tcx through // a query, triggering the CTFE machinery to actually turn this lazy reference // into a bunch of bytes. IOW, statics are evaluated with CTFE even when // this InterpCx uses another Machine (e.g., in miri). This is what we // want! This way, computing statics works consistently between codegen // and miri: They use the same query to eventually obtain a `ty::Const` // and use that for further computation. // // Notice that statics have *two* AllocIds: the lazy one, and the resolved // one. Here we make sure that the interpreted program never sees the // resolved ID. Also see the doc comment of `Memory::get_static_alloc`. let alloc_id = self.tcx.alloc_map.lock().create_static_alloc(cid.instance.def_id()); let ptr = self.tag_static_base_pointer(Pointer::from(alloc_id)); MPlaceTy::from_aligned_ptr(ptr, layout) } }) } /// Computes a place. You should only use this if you intend to write into this /// place; for reading, a more efficient alternative is `eval_place_for_read`. pub fn eval_place( &mut self, place: &mir::Place<'tcx>, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { use rustc::mir::PlaceBase; let mut place_ty = match &place.base { PlaceBase::Local(mir::RETURN_PLACE) => match self.frame().return_place { Some(return_place) => { // We use our layout to verify our assumption; caller will validate // their layout on return. PlaceTy { place: *return_place, layout: self.layout_of( self.subst_from_frame_and_normalize_erasing_regions( self.frame().body.return_ty() ) )?, } } None => throw_unsup!(InvalidNullPointerUsage), }, PlaceBase::Local(local) => PlaceTy { // This works even for dead/uninitialized locals; we check further when writing place: Place::Local { frame: self.cur_frame(), local: *local, }, layout: self.layout_of_local(self.frame(), *local, None)?, }, PlaceBase::Static(place_static) => self.eval_static_to_mplace(&place_static)?.into(), }; for elem in place.projection.iter() { place_ty = self.place_projection(place_ty, elem)? } self.dump_place(place_ty.place); Ok(place_ty) } /// Write a scalar to a place pub fn write_scalar( &mut self, val: impl Into>, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { self.write_immediate(Immediate::Scalar(val.into()), dest) } /// Write an immediate to a place #[inline(always)] pub fn write_immediate( &mut self, src: Immediate, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { self.write_immediate_no_validate(src, dest)?; if M::enforce_validity(self) { // Data got changed, better make sure it matches the type! self.validate_operand(self.place_to_op(dest)?, vec![], None)?; } Ok(()) } /// Write an `Immediate` to memory. #[inline(always)] pub fn write_immediate_to_mplace( &mut self, src: Immediate, dest: MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { self.write_immediate_to_mplace_no_validate(src, dest)?; if M::enforce_validity(self) { // Data got changed, better make sure it matches the type! self.validate_operand(dest.into(), vec![], None)?; } Ok(()) } /// Write an immediate to a place. /// If you use this you are responsible for validating that things got copied at the /// right type. fn write_immediate_no_validate( &mut self, src: Immediate, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { if cfg!(debug_assertions) { // This is a very common path, avoid some checks in release mode assert!(!dest.layout.is_unsized(), "Cannot write unsized data"); match src { Immediate::Scalar(ScalarMaybeUndef::Scalar(Scalar::Ptr(_))) => assert_eq!(self.pointer_size(), dest.layout.size, "Size mismatch when writing pointer"), Immediate::Scalar(ScalarMaybeUndef::Scalar(Scalar::Raw { size, .. })) => assert_eq!(Size::from_bytes(size.into()), dest.layout.size, "Size mismatch when writing bits"), Immediate::Scalar(ScalarMaybeUndef::Undef) => {}, // undef can have any size Immediate::ScalarPair(_, _) => { // FIXME: Can we check anything here? } } } trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty); // See if we can avoid an allocation. This is the counterpart to `try_read_immediate`, // but not factored as a separate function. let mplace = match dest.place { Place::Local { frame, local } => { match self.stack[frame].locals[local].access_mut()? { Ok(local) => { // Local can be updated in-place. *local = LocalValue::Live(Operand::Immediate(src)); return Ok(()); } Err(mplace) => { // The local is in memory, go on below. mplace } } }, Place::Ptr(mplace) => mplace, // already referring to memory }; let dest = MPlaceTy { mplace, layout: dest.layout }; // This is already in memory, write there. self.write_immediate_to_mplace_no_validate(src, dest) } /// Write an immediate to memory. /// If you use this you are responsible for validating that things got copied at the /// right type. fn write_immediate_to_mplace_no_validate( &mut self, value: Immediate, dest: MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { // Note that it is really important that the type here is the right one, and matches the // type things are read at. In case `src_val` is a `ScalarPair`, we don't do any magic here // to handle padding properly, which is only correct if we never look at this data with the // wrong type. let ptr = match self.check_mplace_access(dest, None) .expect("places should be checked on creation") { Some(ptr) => ptr, None => return Ok(()), // zero-sized access }; let tcx = &*self.tcx; // FIXME: We should check that there are dest.layout.size many bytes available in // memory. The code below is not sufficient, with enough padding it might not // cover all the bytes! match value { Immediate::Scalar(scalar) => { match dest.layout.abi { layout::Abi::Scalar(_) => {}, // fine _ => bug!("write_immediate_to_mplace: invalid Scalar layout: {:#?}", dest.layout) } self.memory.get_raw_mut(ptr.alloc_id)?.write_scalar( tcx, ptr, scalar, dest.layout.size ) } Immediate::ScalarPair(a_val, b_val) => { // We checked `ptr_align` above, so all fields will have the alignment they need. // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`, // which `ptr.offset(b_offset)` cannot possibly fail to satisfy. let (a, b) = match dest.layout.abi { layout::Abi::ScalarPair(ref a, ref b) => (&a.value, &b.value), _ => bug!("write_immediate_to_mplace: invalid ScalarPair layout: {:#?}", dest.layout) }; let (a_size, b_size) = (a.size(self), b.size(self)); let b_offset = a_size.align_to(b.align(self).abi); let b_ptr = ptr.offset(b_offset, self)?; // It is tempting to verify `b_offset` against `layout.fields.offset(1)`, // but that does not work: We could be a newtype around a pair, then the // fields do not match the `ScalarPair` components. self.memory .get_raw_mut(ptr.alloc_id)? .write_scalar(tcx, ptr, a_val, a_size)?; self.memory .get_raw_mut(b_ptr.alloc_id)? .write_scalar(tcx, b_ptr, b_val, b_size) } } } /// Copies the data from an operand to a place. This does not support transmuting! /// Use `copy_op_transmute` if the layouts could disagree. #[inline(always)] pub fn copy_op( &mut self, src: OpTy<'tcx, M::PointerTag>, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { self.copy_op_no_validate(src, dest)?; if M::enforce_validity(self) { // Data got changed, better make sure it matches the type! self.validate_operand(self.place_to_op(dest)?, vec![], None)?; } Ok(()) } /// Copies the data from an operand to a place. This does not support transmuting! /// Use `copy_op_transmute` if the layouts could disagree. /// Also, if you use this you are responsible for validating that things get copied at the /// right type. fn copy_op_no_validate( &mut self, src: OpTy<'tcx, M::PointerTag>, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { // We do NOT compare the types for equality, because well-typed code can // actually "transmute" `&mut T` to `&T` in an assignment without a cast. assert!(src.layout.details == dest.layout.details, "Layout mismatch when copying!\nsrc: {:#?}\ndest: {:#?}", src, dest); // Let us see if the layout is simple so we take a shortcut, avoid force_allocation. let src = match self.try_read_immediate(src)? { Ok(src_val) => { assert!(!src.layout.is_unsized(), "cannot have unsized immediates"); // Yay, we got a value that we can write directly. // FIXME: Add a check to make sure that if `src` is indirect, // it does not overlap with `dest`. return self.write_immediate_no_validate(*src_val, dest); } Err(mplace) => mplace, }; // Slow path, this does not fit into an immediate. Just memcpy. trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty); // This interprets `src.meta` with the `dest` local's layout, if an unsized local // is being initialized! let (dest, size) = self.force_allocation_maybe_sized(dest, src.meta)?; let size = size.unwrap_or_else(|| { assert!(!dest.layout.is_unsized(), "Cannot copy into already initialized unsized place"); dest.layout.size }); assert_eq!(src.meta, dest.meta, "Can only copy between equally-sized instances"); let src = self.check_mplace_access(src, Some(size)) .expect("places should be checked on creation"); let dest = self.check_mplace_access(dest, Some(size)) .expect("places should be checked on creation"); let (src_ptr, dest_ptr) = match (src, dest) { (Some(src_ptr), Some(dest_ptr)) => (src_ptr, dest_ptr), (None, None) => return Ok(()), // zero-sized copy _ => bug!("The pointers should both be Some or both None"), }; self.memory.copy( src_ptr, dest_ptr, size, /*nonoverlapping*/ true, ) } /// Copies the data from an operand to a place. The layouts may disagree, but they must /// have the same size. pub fn copy_op_transmute( &mut self, src: OpTy<'tcx, M::PointerTag>, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { if src.layout.details == dest.layout.details { // Fast path: Just use normal `copy_op` return self.copy_op(src, dest); } // We still require the sizes to match. assert!(src.layout.size == dest.layout.size, "Size mismatch when transmuting!\nsrc: {:#?}\ndest: {:#?}", src, dest); // Unsized copies rely on interpreting `src.meta` with `dest.layout`, we want // to avoid that here. assert!(!src.layout.is_unsized() && !dest.layout.is_unsized(), "Cannot transmute unsized data"); // The hard case is `ScalarPair`. `src` is already read from memory in this case, // using `src.layout` to figure out which bytes to use for the 1st and 2nd field. // We have to write them to `dest` at the offsets they were *read at*, which is // not necessarily the same as the offsets in `dest.layout`! // Hence we do the copy with the source layout on both sides. We also make sure to write // into memory, because if `dest` is a local we would not even have a way to write // at the `src` offsets; the fact that we came from a different layout would // just be lost. let dest = self.force_allocation(dest)?; self.copy_op_no_validate( src, PlaceTy::from(MPlaceTy { mplace: *dest, layout: src.layout }), )?; if M::enforce_validity(self) { // Data got changed, better make sure it matches the type! self.validate_operand(dest.into(), vec![], None)?; } Ok(()) } /// Ensures that a place is in memory, and returns where it is. /// If the place currently refers to a local that doesn't yet have a matching allocation, /// create such an allocation. /// This is essentially `force_to_memplace`. /// /// This supports unsized types and returns the computed size to avoid some /// redundant computation when copying; use `force_allocation` for a simpler, sized-only /// version. pub fn force_allocation_maybe_sized( &mut self, place: PlaceTy<'tcx, M::PointerTag>, meta: Option>, ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option)> { let (mplace, size) = match place.place { Place::Local { frame, local } => { match self.stack[frame].locals[local].access_mut()? { Ok(local_val) => { // We need to make an allocation. // FIXME: Consider not doing anything for a ZST, and just returning // a fake pointer? Are we even called for ZST? // We cannot hold on to the reference `local_val` while allocating, // but we can hold on to the value in there. let old_val = if let LocalValue::Live(Operand::Immediate(value)) = *local_val { Some(value) } else { None }; // We need the layout of the local. We can NOT use the layout we got, // that might e.g., be an inner field of a struct with `Scalar` layout, // that has different alignment than the outer field. // We also need to support unsized types, and hence cannot use `allocate`. let local_layout = self.layout_of_local(&self.stack[frame], local, None)?; let (size, align) = self.size_and_align_of(meta, local_layout)? .expect("Cannot allocate for non-dyn-sized type"); let ptr = self.memory.allocate(size, align, MemoryKind::Stack); let mplace = MemPlace { ptr: ptr.into(), align, meta }; if let Some(value) = old_val { // Preserve old value. // We don't have to validate as we can assume the local // was already valid for its type. let mplace = MPlaceTy { mplace, layout: local_layout }; self.write_immediate_to_mplace_no_validate(value, mplace)?; } // Now we can call `access_mut` again, asserting it goes well, // and actually overwrite things. *self.stack[frame].locals[local].access_mut().unwrap().unwrap() = LocalValue::Live(Operand::Indirect(mplace)); (mplace, Some(size)) } Err(mplace) => (mplace, None), // this already was an indirect local } } Place::Ptr(mplace) => (mplace, None) }; // Return with the original layout, so that the caller can go on Ok((MPlaceTy { mplace, layout: place.layout }, size)) } #[inline(always)] pub fn force_allocation( &mut self, place: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { Ok(self.force_allocation_maybe_sized(place, None)?.0) } pub fn allocate( &mut self, layout: TyLayout<'tcx>, kind: MemoryKind, ) -> MPlaceTy<'tcx, M::PointerTag> { let ptr = self.memory.allocate(layout.size, layout.align.abi, kind); MPlaceTy::from_aligned_ptr(ptr, layout) } pub fn write_discriminant_index( &mut self, variant_index: VariantIdx, dest: PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx> { let variant_scalar = Scalar::from_u32(variant_index.as_u32()).into(); match dest.layout.variants { layout::Variants::Single { index } => { if index != variant_index { throw_ub!(InvalidDiscriminant(variant_scalar)); } } layout::Variants::Multiple { discr_kind: layout::DiscriminantKind::Tag, discr: ref discr_layout, discr_index, .. } => { if !dest.layout.ty.variant_range(*self.tcx).unwrap().contains(&variant_index) { throw_ub!(InvalidDiscriminant(variant_scalar)); } let discr_val = dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val; // raw discriminants for enums are isize or bigger during // their computation, but the in-memory tag is the smallest possible // representation let size = discr_layout.value.size(self); let discr_val = truncate(discr_val, size); let discr_dest = self.place_field(dest, discr_index as u64)?; self.write_scalar(Scalar::from_uint(discr_val, size), discr_dest)?; } layout::Variants::Multiple { discr_kind: layout::DiscriminantKind::Niche { dataful_variant, ref niche_variants, niche_start, }, discr: ref discr_layout, discr_index, .. } => { if !variant_index.as_usize() < dest.layout.ty.ty_adt_def().unwrap().variants.len() { throw_ub!(InvalidDiscriminant(variant_scalar)); } if variant_index != dataful_variant { let variants_start = niche_variants.start().as_u32(); let variant_index_relative = variant_index.as_u32() .checked_sub(variants_start) .expect("overflow computing relative variant idx"); // We need to use machine arithmetic when taking into account `niche_start`: // discr_val = variant_index_relative + niche_start_val let discr_layout = self.layout_of(discr_layout.value.to_int_ty(*self.tcx))?; let niche_start_val = ImmTy::from_uint(niche_start, discr_layout); let variant_index_relative_val = ImmTy::from_uint(variant_index_relative, discr_layout); let discr_val = self.binary_op( mir::BinOp::Add, variant_index_relative_val, niche_start_val, )?; // Write result. let niche_dest = self.place_field(dest, discr_index as u64)?; self.write_immediate(*discr_val, niche_dest)?; } } } Ok(()) } pub fn raw_const_to_mplace( &self, raw: RawConst<'tcx>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { // This must be an allocation in `tcx` assert!(self.tcx.alloc_map.lock().get(raw.alloc_id).is_some()); let ptr = self.tag_static_base_pointer(Pointer::from(raw.alloc_id)); let layout = self.layout_of(raw.ty)?; Ok(MPlaceTy::from_aligned_ptr(ptr, layout)) } /// Turn a place with a `dyn Trait` type into a place with the actual dynamic type. /// Also return some more information so drop doesn't have to run the same code twice. pub(super) fn unpack_dyn_trait(&self, mplace: MPlaceTy<'tcx, M::PointerTag>) -> InterpResult<'tcx, (ty::Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)> { let vtable = mplace.vtable(); // also sanity checks the type let (instance, ty) = self.read_drop_type_from_vtable(vtable)?; let layout = self.layout_of(ty)?; // More sanity checks if cfg!(debug_assertions) { let (size, align) = self.read_size_and_align_from_vtable(vtable)?; assert_eq!(size, layout.size); // only ABI alignment is preserved assert_eq!(align, layout.align.abi); } let mplace = MPlaceTy { mplace: MemPlace { meta: None, ..*mplace }, layout }; Ok((instance, mplace)) } }