use std::collections::BTreeSet; use std::fmt::Write as _; use std::fmt::{Debug, Display}; use std::fs; use std::io::{self, Write}; use std::path::{Path, PathBuf}; use super::graphviz::write_mir_fn_graphviz; use crate::transform::MirSource; use either::Either; use rustc_data_structures::fx::FxHashMap; use rustc_hir::def_id::{DefId, LOCAL_CRATE}; use rustc_index::vec::Idx; use rustc_middle::mir::interpret::{ read_target_uint, AllocId, Allocation, ConstValue, GlobalAlloc, Pointer, }; use rustc_middle::mir::visit::Visitor; use rustc_middle::mir::*; use rustc_middle::ty::{self, TyCtxt, TypeFoldable, TypeVisitor}; use rustc_target::abi::Size; const INDENT: &str = " "; /// Alignment for lining up comments following MIR statements pub(crate) const ALIGN: usize = 40; /// An indication of where we are in the control flow graph. Used for printing /// extra information in `dump_mir` pub enum PassWhere { /// We have not started dumping the control flow graph, but we are about to. BeforeCFG, /// We just finished dumping the control flow graph. This is right before EOF AfterCFG, /// We are about to start dumping the given basic block. BeforeBlock(BasicBlock), /// We are just about to dump the given statement or terminator. BeforeLocation(Location), /// We just dumped the given statement or terminator. AfterLocation(Location), /// We just dumped the terminator for a block but not the closing `}`. AfterTerminator(BasicBlock), } /// If the session is properly configured, dumps a human-readable /// representation of the mir into: /// /// ```text /// rustc.node... /// ``` /// /// Output from this function is controlled by passing `-Z dump-mir=`, /// where `` takes the following forms: /// /// - `all` -- dump MIR for all fns, all passes, all everything /// - a filter defined by a set of substrings combined with `&` and `|` /// (`&` has higher precedence). At least one of the `|`-separated groups /// must match; an `|`-separated group matches if all of its `&`-separated /// substrings are matched. /// /// Example: /// /// - `nll` == match if `nll` appears in the name /// - `foo & nll` == match if `foo` and `nll` both appear in the name /// - `foo & nll | typeck` == match if `foo` and `nll` both appear in the name /// or `typeck` appears in the name. /// - `foo & nll | bar & typeck` == match if `foo` and `nll` both appear in the name /// or `typeck` and `bar` both appear in the name. pub fn dump_mir<'tcx, F>( tcx: TyCtxt<'tcx>, pass_num: Option<&dyn Display>, pass_name: &str, disambiguator: &dyn Display, source: MirSource<'tcx>, body: &Body<'tcx>, extra_data: F, ) where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { if !dump_enabled(tcx, pass_name, source.def_id()) { return; } dump_matched_mir_node(tcx, pass_num, pass_name, disambiguator, source, body, extra_data); } pub fn dump_enabled<'tcx>(tcx: TyCtxt<'tcx>, pass_name: &str, def_id: DefId) -> bool { let filters = match tcx.sess.opts.debugging_opts.dump_mir { None => return false, Some(ref filters) => filters, }; let node_path = ty::print::with_forced_impl_filename_line(|| { // see notes on #41697 below tcx.def_path_str(def_id) }); filters.split('|').any(|or_filter| { or_filter.split('&').all(|and_filter| { and_filter == "all" || pass_name.contains(and_filter) || node_path.contains(and_filter) }) }) } // #41697 -- we use `with_forced_impl_filename_line()` because // `def_path_str()` would otherwise trigger `type_of`, and this can // run while we are already attempting to evaluate `type_of`. fn dump_matched_mir_node<'tcx, F>( tcx: TyCtxt<'tcx>, pass_num: Option<&dyn Display>, pass_name: &str, disambiguator: &dyn Display, source: MirSource<'tcx>, body: &Body<'tcx>, mut extra_data: F, ) where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { let _: io::Result<()> = try { let mut file = create_dump_file(tcx, "mir", pass_num, pass_name, disambiguator, source)?; let def_path = ty::print::with_forced_impl_filename_line(|| { // see notes on #41697 above tcx.def_path_str(source.def_id()) }); write!(file, "// MIR for `{}", def_path)?; match source.promoted { None => write!(file, "`")?, Some(promoted) => write!(file, "::{:?}`", promoted)?, } writeln!(file, " {} {}", disambiguator, pass_name)?; if let Some(ref layout) = body.generator_layout { writeln!(file, "/* generator_layout = {:#?} */", layout)?; } writeln!(file)?; extra_data(PassWhere::BeforeCFG, &mut file)?; write_user_type_annotations(tcx, body, &mut file)?; write_mir_fn(tcx, source, body, &mut extra_data, &mut file)?; extra_data(PassWhere::AfterCFG, &mut file)?; }; if tcx.sess.opts.debugging_opts.dump_mir_graphviz { let _: io::Result<()> = try { let mut file = create_dump_file(tcx, "dot", pass_num, pass_name, disambiguator, source)?; write_mir_fn_graphviz(tcx, source.def_id(), body, false, &mut file)?; }; } } /// Returns the path to the filename where we should dump a given MIR. /// Also used by other bits of code (e.g., NLL inference) that dump /// graphviz data or other things. fn dump_path( tcx: TyCtxt<'_>, extension: &str, pass_num: Option<&dyn Display>, pass_name: &str, disambiguator: &dyn Display, source: MirSource<'tcx>, ) -> PathBuf { let promotion_id = match source.promoted { Some(id) => format!("-{:?}", id), None => String::new(), }; let pass_num = if tcx.sess.opts.debugging_opts.dump_mir_exclude_pass_number { String::new() } else { match pass_num { None => ".-------".to_string(), Some(pass_num) => format!(".{}", pass_num), } }; let mut file_path = PathBuf::new(); file_path.push(Path::new(&tcx.sess.opts.debugging_opts.dump_mir_dir)); let crate_name = tcx.crate_name(source.def_id().krate); let item_name = tcx.def_path(source.def_id()).to_filename_friendly_no_crate(); // All drop shims have the same DefId, so we have to add the type // to get unique file names. let shim_disambiguator = match source.instance { ty::InstanceDef::DropGlue(_, Some(ty)) => { // Unfortunately, pretty-printed typed are not very filename-friendly. // We dome some filtering. let mut s = ".".to_owned(); s.extend(ty.to_string().chars().filter_map(|c| match c { ' ' => None, ':' | '<' | '>' => Some('_'), c => Some(c), })); s } _ => String::new(), }; let file_name = format!( "{}.{}{}{}{}.{}.{}.{}", crate_name, item_name, shim_disambiguator, promotion_id, pass_num, pass_name, disambiguator, extension, ); file_path.push(&file_name); file_path } /// Attempts to open a file where we should dump a given MIR or other /// bit of MIR-related data. Used by `mir-dump`, but also by other /// bits of code (e.g., NLL inference) that dump graphviz data or /// other things, and hence takes the extension as an argument. pub(crate) fn create_dump_file( tcx: TyCtxt<'_>, extension: &str, pass_num: Option<&dyn Display>, pass_name: &str, disambiguator: &dyn Display, source: MirSource<'tcx>, ) -> io::Result> { let file_path = dump_path(tcx, extension, pass_num, pass_name, disambiguator, source); if let Some(parent) = file_path.parent() { fs::create_dir_all(parent)?; } Ok(io::BufWriter::new(fs::File::create(&file_path)?)) } /// Write out a human-readable textual representation for the given MIR. pub fn write_mir_pretty<'tcx>( tcx: TyCtxt<'tcx>, single: Option, w: &mut dyn Write, ) -> io::Result<()> { writeln!(w, "// WARNING: This output format is intended for human consumers only")?; writeln!(w, "// and is subject to change without notice. Knock yourself out.")?; let mut first = true; for def_id in dump_mir_def_ids(tcx, single) { let body = &tcx.optimized_mir(def_id); if first { first = false; } else { // Put empty lines between all items writeln!(w)?; } write_mir_fn(tcx, MirSource::item(def_id), body, &mut |_, _| Ok(()), w)?; for (i, body) in tcx.promoted_mir(def_id).iter_enumerated() { writeln!(w)?; let src = MirSource { instance: ty::InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)), promoted: Some(i), }; write_mir_fn(tcx, src, body, &mut |_, _| Ok(()), w)?; } } Ok(()) } /// Write out a human-readable textual representation for the given function. pub fn write_mir_fn<'tcx, F>( tcx: TyCtxt<'tcx>, src: MirSource<'tcx>, body: &Body<'tcx>, extra_data: &mut F, w: &mut dyn Write, ) -> io::Result<()> where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { write_mir_intro(tcx, src, body, w)?; for block in body.basic_blocks().indices() { extra_data(PassWhere::BeforeBlock(block), w)?; write_basic_block(tcx, block, body, extra_data, w)?; if block.index() + 1 != body.basic_blocks().len() { writeln!(w)?; } } writeln!(w, "}}")?; write_allocations(tcx, body, w)?; Ok(()) } /// Write out a human-readable textual representation for the given basic block. pub fn write_basic_block<'tcx, F>( tcx: TyCtxt<'tcx>, block: BasicBlock, body: &Body<'tcx>, extra_data: &mut F, w: &mut dyn Write, ) -> io::Result<()> where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { let data = &body[block]; // Basic block label at the top. let cleanup_text = if data.is_cleanup { " (cleanup)" } else { "" }; writeln!(w, "{}{:?}{}: {{", INDENT, block, cleanup_text)?; // List of statements in the middle. let mut current_location = Location { block, statement_index: 0 }; for statement in &data.statements { extra_data(PassWhere::BeforeLocation(current_location), w)?; let indented_body = format!("{0}{0}{1:?};", INDENT, statement); writeln!( w, "{:A$} // {}{}", indented_body, if tcx.sess.verbose() { format!("{:?}: ", current_location) } else { String::new() }, comment(tcx, statement.source_info), A = ALIGN, )?; write_extra(tcx, w, |visitor| { visitor.visit_statement(statement, current_location); })?; extra_data(PassWhere::AfterLocation(current_location), w)?; current_location.statement_index += 1; } // Terminator at the bottom. extra_data(PassWhere::BeforeLocation(current_location), w)?; let indented_terminator = format!("{0}{0}{1:?};", INDENT, data.terminator().kind); writeln!( w, "{:A$} // {}{}", indented_terminator, if tcx.sess.verbose() { format!("{:?}: ", current_location) } else { String::new() }, comment(tcx, data.terminator().source_info), A = ALIGN, )?; write_extra(tcx, w, |visitor| { visitor.visit_terminator(data.terminator(), current_location); })?; extra_data(PassWhere::AfterLocation(current_location), w)?; extra_data(PassWhere::AfterTerminator(block), w)?; writeln!(w, "{}}}", INDENT) } /// After we print the main statement, we sometimes dump extra /// information. There's often a lot of little things "nuzzled up" in /// a statement. fn write_extra<'tcx, F>(tcx: TyCtxt<'tcx>, write: &mut dyn Write, mut visit_op: F) -> io::Result<()> where F: FnMut(&mut ExtraComments<'tcx>), { let mut extra_comments = ExtraComments { tcx, comments: vec![] }; visit_op(&mut extra_comments); for comment in extra_comments.comments { writeln!(write, "{:A$} // {}", "", comment, A = ALIGN)?; } Ok(()) } struct ExtraComments<'tcx> { tcx: TyCtxt<'tcx>, comments: Vec, } impl ExtraComments<'tcx> { fn push(&mut self, lines: &str) { for line in lines.split('\n') { self.comments.push(line.to_string()); } } } impl Visitor<'tcx> for ExtraComments<'tcx> { fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) { self.super_constant(constant, location); let Constant { span, user_ty, literal } = constant; self.push("mir::Constant"); self.push(&format!("+ span: {}", self.tcx.sess.source_map().span_to_string(*span))); if let Some(user_ty) = user_ty { self.push(&format!("+ user_ty: {:?}", user_ty)); } self.push(&format!("+ literal: {:?}", literal)); } fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, _: Location) { self.super_const(constant); let ty::Const { ty, val, .. } = constant; self.push("ty::Const"); self.push(&format!("+ ty: {:?}", ty)); self.push(&format!("+ val: {:?}", val)); } fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) { self.super_rvalue(rvalue, location); if let Rvalue::Aggregate(kind, _) = rvalue { match **kind { AggregateKind::Closure(def_id, substs) => { self.push("closure"); self.push(&format!("+ def_id: {:?}", def_id)); self.push(&format!("+ substs: {:#?}", substs)); } AggregateKind::Generator(def_id, substs, movability) => { self.push("generator"); self.push(&format!("+ def_id: {:?}", def_id)); self.push(&format!("+ substs: {:#?}", substs)); self.push(&format!("+ movability: {:?}", movability)); } AggregateKind::Adt(_, _, _, Some(user_ty), _) => { self.push("adt"); self.push(&format!("+ user_ty: {:?}", user_ty)); } _ => {} } } } } fn comment(tcx: TyCtxt<'_>, SourceInfo { span, scope }: SourceInfo) -> String { format!("scope {} at {}", scope.index(), tcx.sess.source_map().span_to_string(span)) } /// Prints local variables in a scope tree. fn write_scope_tree( tcx: TyCtxt<'_>, body: &Body<'_>, scope_tree: &FxHashMap>, w: &mut dyn Write, parent: SourceScope, depth: usize, ) -> io::Result<()> { let indent = depth * INDENT.len(); // Local variable debuginfo. for var_debug_info in &body.var_debug_info { if var_debug_info.source_info.scope != parent { // Not declared in this scope. continue; } let indented_debug_info = format!( "{0:1$}debug {2} => {3:?};", INDENT, indent, var_debug_info.name, var_debug_info.place, ); writeln!( w, "{0:1$} // in {2}", indented_debug_info, ALIGN, comment(tcx, var_debug_info.source_info), )?; } // Local variable types. for (local, local_decl) in body.local_decls.iter_enumerated() { if (1..body.arg_count + 1).contains(&local.index()) { // Skip over argument locals, they're printed in the signature. continue; } if local_decl.source_info.scope != parent { // Not declared in this scope. continue; } let mut_str = if local_decl.mutability == Mutability::Mut { "mut " } else { "" }; let mut indented_decl = format!("{0:1$}let {2}{3:?}: {4:?}", INDENT, indent, mut_str, local, local_decl.ty); if let Some(user_ty) = &local_decl.user_ty { for user_ty in user_ty.projections() { write!(indented_decl, " as {:?}", user_ty).unwrap(); } } indented_decl.push_str(";"); let local_name = if local == RETURN_PLACE { " return place".to_string() } else { String::new() }; writeln!( w, "{0:1$} //{2} in {3}", indented_decl, ALIGN, local_name, comment(tcx, local_decl.source_info), )?; } let children = match scope_tree.get(&parent) { Some(children) => children, None => return Ok(()), }; for &child in children { assert_eq!(body.source_scopes[child].parent_scope, Some(parent)); writeln!(w, "{0:1$}scope {2} {{", "", indent, child.index())?; write_scope_tree(tcx, body, scope_tree, w, child, depth + 1)?; writeln!(w, "{0:1$}}}", "", depth * INDENT.len())?; } Ok(()) } /// Write out a human-readable textual representation of the MIR's `fn` type and the types of its /// local variables (both user-defined bindings and compiler temporaries). pub fn write_mir_intro<'tcx>( tcx: TyCtxt<'tcx>, src: MirSource<'tcx>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { write_mir_sig(tcx, src, body, w)?; writeln!(w, "{{")?; // construct a scope tree and write it out let mut scope_tree: FxHashMap> = Default::default(); for (index, scope_data) in body.source_scopes.iter().enumerate() { if let Some(parent) = scope_data.parent_scope { scope_tree.entry(parent).or_default().push(SourceScope::new(index)); } else { // Only the argument scope has no parent, because it's the root. assert_eq!(index, OUTERMOST_SOURCE_SCOPE.index()); } } write_scope_tree(tcx, body, &scope_tree, w, OUTERMOST_SOURCE_SCOPE, 1)?; // Add an empty line before the first block is printed. writeln!(w)?; Ok(()) } /// Find all `AllocId`s mentioned (recursively) in the MIR body and print their corresponding /// allocations. pub fn write_allocations<'tcx>( tcx: TyCtxt<'tcx>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { fn alloc_ids_from_alloc(alloc: &Allocation) -> impl DoubleEndedIterator + '_ { alloc.relocations().values().map(|(_, id)| *id) } fn alloc_ids_from_const(val: ConstValue<'_>) -> impl Iterator + '_ { match val { ConstValue::Scalar(interpret::Scalar::Ptr(ptr)) => { Either::Left(Either::Left(std::iter::once(ptr.alloc_id))) } ConstValue::Scalar(interpret::Scalar::Raw { .. }) => { Either::Left(Either::Right(std::iter::empty())) } ConstValue::ByRef { alloc, .. } | ConstValue::Slice { data: alloc, .. } => { Either::Right(alloc_ids_from_alloc(alloc)) } } } struct CollectAllocIds(BTreeSet); impl<'tcx> TypeVisitor<'tcx> for CollectAllocIds { fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool { if let ty::ConstKind::Value(val) = c.val { self.0.extend(alloc_ids_from_const(val)); } c.super_visit_with(self) } } let mut visitor = CollectAllocIds(Default::default()); body.visit_with(&mut visitor); // `seen` contains all seen allocations, including the ones we have *not* printed yet. // The protocol is to first `insert` into `seen`, and only if that returns `true` // then push to `todo`. let mut seen = visitor.0; let mut todo: Vec<_> = seen.iter().copied().collect(); while let Some(id) = todo.pop() { let mut write_allocation_track_relocs = |w: &mut dyn Write, alloc: &Allocation| -> io::Result<()> { // `.rev()` because we are popping them from the back of the `todo` vector. for id in alloc_ids_from_alloc(alloc).rev() { if seen.insert(id) { todo.push(id); } } write_allocation(tcx, alloc, w) }; write!(w, "\n{}", id)?; match tcx.get_global_alloc(id) { // This can't really happen unless there are bugs, but it doesn't cost us anything to // gracefully handle it and allow buggy rustc to be debugged via allocation printing. None => write!(w, " (deallocated)")?, Some(GlobalAlloc::Function(inst)) => write!(w, " (fn: {})", inst)?, Some(GlobalAlloc::Static(did)) if !tcx.is_foreign_item(did) => { match tcx.const_eval_poly(did) { Ok(ConstValue::ByRef { alloc, .. }) => { write!(w, " (static: {}, ", tcx.def_path_str(did))?; write_allocation_track_relocs(w, alloc)?; } Ok(_) => { span_bug!(tcx.def_span(did), " static item without `ByRef` initializer") } Err(_) => write!( w, " (static: {}, error during initializer evaluation)", tcx.def_path_str(did) )?, } } Some(GlobalAlloc::Static(did)) => { write!(w, " (extern static: {})", tcx.def_path_str(did))? } Some(GlobalAlloc::Memory(alloc)) => { write!(w, " (")?; write_allocation_track_relocs(w, alloc)? } } writeln!(w)?; } Ok(()) } /// Dumps the size and metadata and content of an allocation to the given writer. /// The expectation is that the caller first prints other relevant metadata, so the exact /// format of this function is (*without* leading or trailing newline): /// ``` /// size: {}, align: {}) { /// /// } /// ``` /// /// The byte format is similar to how hex editors print bytes. Each line starts with the address of /// the start of the line, followed by all bytes in hex format (space separated). /// If the allocation is small enough to fit into a single line, no start address is given. /// After the hex dump, an ascii dump follows, replacing all unprintable characters (control /// characters or characters whose value is larger than 127) with a `.` /// This also prints relocations adequately. pub fn write_allocation( tcx: TyCtxt<'tcx>, alloc: &Allocation, w: &mut dyn Write, ) -> io::Result<()> { write!(w, "size: {}, align: {})", alloc.size.bytes(), alloc.align.bytes())?; if alloc.size == Size::ZERO { // We are done. return write!(w, " {{}}"); } // Write allocation bytes. writeln!(w, " {{")?; write_allocation_bytes(tcx, alloc, w, " ")?; write!(w, "}}")?; Ok(()) } fn write_allocation_endline(w: &mut dyn Write, ascii: &str) -> io::Result<()> { for _ in 0..(BYTES_PER_LINE - ascii.chars().count()) { write!(w, " ")?; } writeln!(w, " │ {}", ascii) } /// Number of bytes to print per allocation hex dump line. const BYTES_PER_LINE: usize = 16; /// Prints the line start address and returns the new line start address. fn write_allocation_newline( w: &mut dyn Write, mut line_start: Size, ascii: &str, pos_width: usize, prefix: &str, ) -> io::Result { write_allocation_endline(w, ascii)?; line_start += Size::from_bytes(BYTES_PER_LINE); write!(w, "{}0x{:02$x} │ ", prefix, line_start.bytes(), pos_width)?; Ok(line_start) } /// The `prefix` argument allows callers to add an arbitrary prefix before each line (even if there /// is only one line). Note that your prefix should contain a trailing space as the lines are /// printed directly after it. fn write_allocation_bytes( tcx: TyCtxt<'tcx>, alloc: &Allocation, w: &mut dyn Write, prefix: &str, ) -> io::Result<()> { let num_lines = alloc.size.bytes_usize().saturating_sub(BYTES_PER_LINE); // Number of chars needed to represent all line numbers. let pos_width = format!("{:x}", alloc.size.bytes()).len(); if num_lines > 0 { write!(w, "{}0x{:02$x} │ ", prefix, 0, pos_width)?; } else { write!(w, "{}", prefix)?; } let mut i = Size::ZERO; let mut line_start = Size::ZERO; let ptr_size = tcx.data_layout.pointer_size; let mut ascii = String::new(); let oversized_ptr = |target: &mut String, width| { if target.len() > width { write!(target, " ({} ptr bytes)", ptr_size.bytes()).unwrap(); } }; while i < alloc.size { // The line start already has a space. While we could remove that space from the line start // printing and unconditionally print a space here, that would cause the single-line case // to have a single space before it, which looks weird. if i != line_start { write!(w, " ")?; } if let Some(&(tag, target_id)) = alloc.relocations().get(&i) { // Memory with a relocation must be defined let j = i.bytes_usize(); let offset = alloc.inspect_with_undef_and_ptr_outside_interpreter(j..j + ptr_size.bytes_usize()); let offset = read_target_uint(tcx.data_layout.endian, offset).unwrap(); let offset = Size::from_bytes(offset); let relocation_width = |bytes| bytes * 3; let ptr = Pointer::new_with_tag(target_id, offset, tag); let mut target = format!("{:?}", ptr); if target.len() > relocation_width(ptr_size.bytes_usize() - 1) { // This is too long, try to save some space. target = format!("{:#?}", ptr); } if ((i - line_start) + ptr_size).bytes_usize() > BYTES_PER_LINE { // This branch handles the situation where a relocation starts in the current line // but ends in the next one. let remainder = Size::from_bytes(BYTES_PER_LINE) - (i - line_start); let overflow = ptr_size - remainder; let remainder_width = relocation_width(remainder.bytes_usize()) - 2; let overflow_width = relocation_width(overflow.bytes_usize() - 1) + 1; ascii.push('╾'); for _ in 0..remainder.bytes() - 1 { ascii.push('─'); } if overflow_width > remainder_width && overflow_width >= target.len() { // The case where the relocation fits into the part in the next line write!(w, "╾{0:─^1$}", "", remainder_width)?; line_start = write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?; ascii.clear(); write!(w, "{0:─^1$}╼", target, overflow_width)?; } else { oversized_ptr(&mut target, remainder_width); write!(w, "╾{0:─^1$}", target, remainder_width)?; line_start = write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?; write!(w, "{0:─^1$}╼", "", overflow_width)?; ascii.clear(); } for _ in 0..overflow.bytes() - 1 { ascii.push('─'); } ascii.push('╼'); i += ptr_size; continue; } else { // This branch handles a relocation that starts and ends in the current line. let relocation_width = relocation_width(ptr_size.bytes_usize() - 1); oversized_ptr(&mut target, relocation_width); ascii.push('╾'); write!(w, "╾{0:─^1$}╼", target, relocation_width)?; for _ in 0..ptr_size.bytes() - 2 { ascii.push('─'); } ascii.push('╼'); i += ptr_size; } } else if alloc.init_mask().is_range_initialized(i, i + Size::from_bytes(1)).is_ok() { let j = i.bytes_usize(); // Checked definedness (and thus range) and relocations. This access also doesn't // influence interpreter execution but is only for debugging. let c = alloc.inspect_with_undef_and_ptr_outside_interpreter(j..j + 1)[0]; write!(w, "{:02x}", c)?; if c.is_ascii_control() || c >= 0x80 { ascii.push('.'); } else { ascii.push(char::from(c)); } i += Size::from_bytes(1); } else { write!(w, "__")?; ascii.push('░'); i += Size::from_bytes(1); } // Print a new line header if the next line still has some bytes to print. if i == line_start + Size::from_bytes(BYTES_PER_LINE) && i != alloc.size { line_start = write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?; ascii.clear(); } } write_allocation_endline(w, &ascii)?; Ok(()) } fn write_mir_sig( tcx: TyCtxt<'_>, src: MirSource<'tcx>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { use rustc_hir::def::DefKind; trace!("write_mir_sig: {:?}", src.instance); let kind = tcx.def_kind(src.def_id()); let is_function = match kind { DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(..) => true, _ => tcx.is_closure(src.def_id()), }; match (kind, src.promoted) { (_, Some(i)) => write!(w, "{:?} in ", i)?, (DefKind::Const | DefKind::AssocConst, _) => write!(w, "const ")?, (DefKind::Static, _) => { write!(w, "static {}", if tcx.is_mutable_static(src.def_id()) { "mut " } else { "" })? } (_, _) if is_function => write!(w, "fn ")?, (DefKind::AnonConst, _) => {} // things like anon const, not an item _ => bug!("Unexpected def kind {:?}", kind), } ty::print::with_forced_impl_filename_line(|| { // see notes on #41697 elsewhere write!(w, "{}", tcx.def_path_str(src.def_id())) })?; if src.promoted.is_none() && is_function { write!(w, "(")?; // fn argument types. for (i, arg) in body.args_iter().enumerate() { if i != 0 { write!(w, ", ")?; } write!(w, "{:?}: {}", Place::from(arg), body.local_decls[arg].ty)?; } write!(w, ") -> {}", body.return_ty())?; } else { assert_eq!(body.arg_count, 0); write!(w, ": {} =", body.return_ty())?; } if let Some(yield_ty) = body.yield_ty { writeln!(w)?; writeln!(w, "yields {}", yield_ty)?; } write!(w, " ")?; // Next thing that gets printed is the opening { Ok(()) } fn write_user_type_annotations( tcx: TyCtxt<'_>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { if !body.user_type_annotations.is_empty() { writeln!(w, "| User Type Annotations")?; } for (index, annotation) in body.user_type_annotations.iter_enumerated() { writeln!( w, "| {:?}: {:?} at {}", index.index(), annotation.user_ty, tcx.sess.source_map().span_to_string(annotation.span) )?; } if !body.user_type_annotations.is_empty() { writeln!(w, "|")?; } Ok(()) } pub fn dump_mir_def_ids(tcx: TyCtxt<'_>, single: Option) -> Vec { if let Some(i) = single { vec![i] } else { tcx.mir_keys(LOCAL_CRATE).iter().map(|def_id| def_id.to_def_id()).collect() } }