stabilize `#![feature(min_const_generics)]` in 1.51 *A new Kind* *A Sort long Prophesized* *Once Fragile, now Eternal* blocked on #79073. # Stabilization report This is the stabilization report for `#![feature(min_const_generics)]` (tracking issue #74878), a subset of `#![feature(const_generics)]` (tracking issue #44580), based on rust-lang/rfcs#2000. The [version target](https://forge.rust-lang.org/#current-release-versions) is ~~1.50 (2020-12-31 => beta, 2021-02-11 => stable)~~ 1.51 (2021-02-111 => beta, 2021-03-25 => stable). This report is a collaborative effort of `@varkor,` `@shepmaster` and `@lcnr.` ## Summary It is currently possible to parameterize functions, type aliases, types, traits and implementations by types and lifetimes. With `#![feature(min_const_generics)]`, it becomes possible, in addition, to parameterize these by constants. This is done using the syntax `const IDENT: Type` in the parameter listing. Unlike full const generics, `min_const_generics` is limited to parameterization by integers, and constants of type `char` or `bool`. We already use `#![feature(min_const_generics)]` on stable to implement many common traits for arrays. See [the documentation](https://doc.rust-lang.org/nightly/std/primitive.array.html) for specific examples. Generic const arguments, for now, are not permitted to involve computations depending on generic parameters. This means that const parameters may only be instantiated using either: 1. const expressions that do not depend on any generic parameters, e.g. `{ foo() + 1 }`, where `foo` is a `const fn` 1. standalone const parameters, e.g. `{N}` ### Example ```rust #![feature(min_const_generics)] trait Foo<const N: usize> { fn method<const M: usize>(&mut self, arr: [[u8; M]; N]); } struct Bar<T, const N: usize> { inner: [T; N], } impl<const N: usize> Foo<N> for Bar<u8, N> { fn method<const M: usize>(&mut self, arr: [[u8; M]; N]) { for (elem, s) in self.inner.iter_mut().zip(arr.iter()) { for &x in s { *elem &= x; } } } } fn function<const N: u16>() -> u16 { // Const parameters can be used freely inside of functions. (N + 1) / 2 * N } fn main() { let mut bar = Bar { inner: [0xff; 3] }; // This infers the value of `M` from the type of the function argument. bar.method([[0b11_00, 0b01_00], [0b00_11, 0b00_01], [0b11_00, 0b00_11]]); assert_eq!(bar.inner, [0b01_00, 0b00_01, 0b00_00]); // You can also explicitly specify the value of `N`. assert_eq!(function::<17>(), 153); } ``` ## Motivation Rust has the built-in array type, which is parametric over a constant. Without const generics, this type can be quite cumbersome to use as it is not possible to generically implement a trait for arrays of different lengths. For example, this meant that, for a long time, the standard library only contained trait implementations for arrays up to a length of 32. This restriction has since been lifted through the use of const generics. Const parameters allow users to naturally specify variants of a generic type which are more naturally parameterized by values, rather than by types. For example, using const generics, many of the uses of the crate [typenum](https://crates.io/crates/typenum) may now be replaced with const parameters, improving compilation time as well as code readability and diagnostics. The subset described by `min_const_generics` is self-contained, but extensive enough to help with the most frequent issues: implementing traits for arrays and using arbitrarily-sized arrays inside of other types. Furthermore, it extends naturally to full `const_generics` once the remaining design and implementation questions have been resolved. ## In-depth feature description ### Declaring const parameters *Const parameters* are allowed in all places where types and lifetimes are supported. They use the syntax `const IDENT: Type`. Currently, const parameters must be declared after lifetime and type parameters. Their scope is equal to the scope of other generic parameters. They live in the value namespace. `Type` must be one of `u8`, `u16`, `u32`, `u64`, `u128`, `usize`, `i8`, `i16`, `i32`, `i64`, `i128`, `isize`, `char` and `bool`. This restriction is implemented in two places: 1. during name resolution, where we forbid generic parameters 1. during well-formedness checking, where we only allow the types listed above The updated syntax of parameter listings is: ``` GenericParams: (OuterAttr* LifetimeParam),* (OuterAttr* TypeParam),* (OuterAttr* ConstParam),* OuterAttr: '#[' ... ']' LifetimeParam: ... TypeParam: ... ConstParam: 'const' IDENT ':' Type ``` Unlike type and lifetime parameters, const parameters of types can be used without being mentioned inside of a parameterized type because const parameters do not have issues concerning variance. This means that the following types are allowed: ```rust struct Foo<const N: usize>; enum Bar<const M: usize> { A, B } ``` ### Const arguments Const parameters are instantiated using *const arguments*. Any concrete const expression or const parameter as a standalone argument can be used. When applying an expression as const parameter, most expressions must be contained within a block, with two exceptions: 1. literals and single-segment path expressions 1. array lengths This syntactic restriction is necessary to avoid ambiguity, or requiring infinite lookahead when parsing an expression as a generic argument. In the cases where a generic argument could be resolved as either a type or const argument, we always interpret it as a type. This causes the following test to fail: ```rust type N = u32; struct Foo<const N: usize>; fn foo<const N: usize>() -> Foo<N> { todo!() } // ERR ``` To circumvent this, the user may wrap the const parameter with braces, at which point it is unambiguously accepted. ```rust type N = u32; struct Foo<const N: usize>; fn bar<const N: usize>() -> Foo<{ N }> { todo!() } // ok ``` Operations depending on generic parameters are **not** allowed, which is enforced during well-formedness checking. Allowing generic unevaluated constants would require a way to check if they would always evaluate successfully to prevent errors that are not caught at declaration time. This ability forms part of `#![feature(const_evaluatable_checked)]`, which is not yet being stabilised. Since we are not yet stabilizing `#![feature(lazy_normalization_consts)]`, we must not supply the parent generics to anonymous constants except for repeat expressions. Doing so can cause cycle errors for arrays used in `where`-bounds. Not supplying the parent generics can however lead to ICEs occurring before well-formedness checking when trying to use a generic parameter. See #56445 for details. Since we expect cases like this to occur more frequently once `min_const_generics` is stabilized, we have chosen to forbid generic parameters in anonymous constants during name resolution. While this changes the ICE in the situation above to an ordinary error, this is theoretically a breaking change, as early-bound lifetimes were previously permitted in repeat expressions but now are disallowed, causing the following snippet to break: ```rust fn late_bound<'a>() { let _ = [0; { let _: &'a (); // ICE ==> ERR 3 }]; } fn early_bound<'a>() where &'a (): Sized { let _ = [0; { let _: &'a (); // ok ==> ERR 3 }]; } ``` ### Using const parameters Const parameters can be used almost everywhere ordinary constants are allowed, except that they may not be used in the construction of consts, statics, functions, or types inside a function body and are subject to the generic argument restrictions mentioned above. Expressions containing const parameters are eligible for promotion: ```rust fn test<const N: usize>() -> &'static usize { &(3 + N) } ``` ### Symbol mangling See the [Rust symbol name mangling RFC](https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html) for an overview. Generic const parameters take the form `K[type][value]` when the value is known, or `Kp` where the value is not known, where: - `[type]` is any integral type, `bool`, or `char`. - `[value]` is the unsigned hex value for integers, preceded by `n` when negative; is `0` or `1` for `bool`; is the hex value for `char`. ### Exhaustiveness checking We do not check the exhaustiveness of impls, meaning that the following example does **not** compile: ```rust struct Foo<const B: bool>; trait Bar {} impl Bar for Foo<true> {} impl Bar for Foo<false> {} fn needs_bar(_: impl Bar) {} fn generic<const B: bool>() { let v = Foo::<B>; needs_bar(v); } ``` ### Type inference The value of const parameters can be inferred during typeck. One interesting case is the length of generic arrays, which can also be inferred from patterns (implemented in #70562). Practical usage of this can be seen in #76825. ### Equality of constants `#![feature(min_const_generics)]` only permits generic parameters to be used as standalone generic arguments. We compare two parameters to be equal if they are literally the same generic parameter. ### Associated constants Associated constants can use const parameters without restriction, see https://github.com/rust-lang/rust/pull/79135#issuecomment-748299774 for more details. ## Future work As this is a limited subset of rust-lang/rfcs#2000, there are quite a few extensions we will be looking into next. ### Lazy normalization of constants Stabilizing `#![feature(lazy_normalization_consts)]` (tracking issue #72219) will remove some special cases that are currently necessary for `min_const_generics`, and unblocks operations on const parameters. ### Relaxing ordering requirements between const and type parameters We currently restrict the order of generic parameters so that types must come before consts. We could relax this, as is currently done with `const_generics`. Without this it is not possible to use both type defaults and const parameters at the same time. Unrestricting the order will require us to improve some diagnostics that expect there to be a strict order between type and const parameters. ### Allowing more parameter types We would like to support const parameters of more types, especially`&str` and user-defined types. Both are blocked on [valtrees]. There are also open questions regarding the design of `structural_match` concerning the latter. Supporting generic const parameter types such as `struct Foo<T, const N: T>` will be a lot harder and is unlikely to be implemented in the near future. ### Default values of const parameters We do not yet support default values for const parameters. There is work in progress to enable this on nightly (see https://github.com/rust-lang/rust/pull/75384). ### Generic const operations With `#![feature(min_const_generics)]`, only concrete const expressions and parameters as standalone arguments are allowed in types and repeat expressions. However, supporting generic const operations, such as `N + 1` or `std::mem::size_of::<T>()` is highly desirable. This feature is in early development under `#![feature(const_evaluatable_checked)]`. ## Implementation history Many people have contributed to the design and implementation of const generics over the last three years. See https://github.com/rust-lang/rust/issues/44580#issuecomment-728913127 for a summary. Once again thank you to everybody who helped out here! [valtrees]: https://github.com/rust-lang/rust/issues/72396 --- r? `@varkor`
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Note: this README is for users rather than contributors. If you wish to contribute to the compiler, you should read the Getting Started section of the rustc-dev-guide instead.
Quick Start
Read "Installation" from The Book.
Installing from Source
The Rust build system uses a Python script called x.py
to build the compiler,
which manages the bootstrapping process. More information about it can be found
by running ./x.py --help
or reading the rustc dev guide.
Building on a Unix-like system
-
Make sure you have installed the dependencies:
g++
5.1 or later orclang++
3.5 or laterpython
3 or 2.7- GNU
make
3.81 or later cmake
3.4.3 or laterninja
curl
git
ssl
which comes inlibssl-dev
oropenssl-devel
pkg-config
if you are compiling on Linux and targeting Linux
-
Clone the source with
git
:git clone https://github.com/rust-lang/rust.git cd rust
-
Configure the build settings:
The Rust build system uses a file named
config.toml
in the root of the source tree to determine various configuration settings for the build. Copy the defaultconfig.toml.example
toconfig.toml
to get started.cp config.toml.example config.toml
If you plan to use
x.py install
to create an installation, it is recommended that you set theprefix
value in the[install]
section to a directory.Create install directory if you are not installing in default directory
-
Build and install:
./x.py build && ./x.py install
When complete,
./x.py install
will place several programs into$PREFIX/bin
:rustc
, the Rust compiler, andrustdoc
, the API-documentation tool. This install does not include Cargo, Rust's package manager. To build and install Cargo, you may run./x.py install cargo
or set thebuild.extended
key inconfig.toml
totrue
to build and install all tools.
Building on Windows
There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.
MinGW
MSYS2 can be used to easily build Rust on Windows:
-
Grab the latest MSYS2 installer and go through the installer.
-
Run
mingw32_shell.bat
ormingw64_shell.bat
from wherever you installed MSYS2 (i.e.C:\msys64
), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to runmsys2_shell.cmd -mingw32
ormsys2_shell.cmd -mingw64
from the command line instead) -
From this terminal, install the required tools:
# Update package mirrors (may be needed if you have a fresh install of MSYS2) pacman -Sy pacman-mirrors # Install build tools needed for Rust. If you're building a 32-bit compiler, # then replace "x86_64" below with "i686". If you've already got git, python, # or CMake installed and in PATH you can remove them from this list. Note # that it is important that you do **not** use the 'python2', 'cmake' and 'ninja' # packages from the 'msys2' subsystem. The build has historically been known # to fail with these packages. pacman -S git \ make \ diffutils \ tar \ mingw-w64-x86_64-python \ mingw-w64-x86_64-cmake \ mingw-w64-x86_64-gcc \ mingw-w64-x86_64-ninja
-
Navigate to Rust's source code (or clone it), then build it:
./x.py build && ./x.py install
MSVC
MSVC builds of Rust additionally require an installation of Visual Studio 2017
(or later) so rustc
can use its linker. The simplest way is to get the
Visual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.
(If you're installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn't get included under “Individual components”.)
With these dependencies installed, you can build the compiler in a cmd.exe
shell with:
python x.py build
Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed and the build system doesn't understand, you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.
CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
python x.py build
Specifying an ABI
Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:
- GNU ABI (using GCC)
i686-pc-windows-gnu
x86_64-pc-windows-gnu
- The MSVC ABI
i686-pc-windows-msvc
x86_64-pc-windows-msvc
The build triple can be specified by either specifying --build=<triple>
when
invoking x.py
commands, or by copying the config.toml
file (as described
in Installing From Source), and modifying the
build
option under the [build]
section.
Configure and Make
While it's not the recommended build system, this project also provides a
configure script and makefile (the latter of which just invokes x.py
).
./configure
make && sudo make install
When using the configure script, the generated config.mk
file may override the
config.toml
file. To go back to the config.toml
file, delete the generated
config.mk
file.
Building Documentation
If you’d like to build the documentation, it’s almost the same:
./x.py doc
The generated documentation will appear under doc
in the build
directory for
the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc
, the directory will be
build\x86_64-pc-windows-msvc\doc
.
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
Platform / Architecture | x86 | x86_64 |
---|---|---|
Windows (7, 8, 10, ...) | ✓ | ✓ |
Linux (kernel 2.6.32, glibc 2.11 or later) | ✓ | ✓ |
macOS (10.7 Lion or later) | (*) | ✓ |
(*): Apple dropped support for running 32-bit binaries starting from macOS 10.15 and iOS 11. Due to this decision from Apple, the targets are no longer useful to our users. Please read our blog post for more info.
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
Getting Help
The Rust community congregates in a few places:
- Stack Overflow - Direct questions about using the language.
- users.rust-lang.org - General discussion and broader questions.
- /r/rust - News and general discussion.
Contributing
If you are interested in contributing to the Rust project, please take a look at the Getting Started guide in the rustc-dev-guide.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust programming language is an open source, community project governed by a core team. It is also sponsored by the Mozilla Foundation (“Mozilla”), which owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.