rust/src/librustc/ty/mod.rs

2590 lines
91 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::Variance::*;
pub use self::AssociatedItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::LvaluePreference::*;
pub use self::fold::TypeFoldable;
use hir::{map as hir_map, FreevarMap, TraitMap};
use hir::def::{Def, CtorKind, ExportMap};
use hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
use ich::StableHashingContext;
use middle::const_val::ConstVal;
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
use middle::privacy::AccessLevels;
use middle::resolve_lifetime::ObjectLifetimeDefault;
use mir::Mir;
use mir::GeneratorLayout;
use traits;
use ty;
use ty::subst::{Subst, Substs};
use ty::util::IntTypeExt;
use ty::walk::TypeWalker;
use util::common::ErrorReported;
use util::nodemap::{NodeSet, DefIdMap, FxHashMap, FxHashSet};
use serialize::{self, Encodable, Encoder};
use std::collections::BTreeMap;
use std::cmp;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use std::ops::Deref;
use std::rc::Rc;
use std::slice;
use std::vec::IntoIter;
use std::mem;
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
use syntax::attr;
use syntax::ext::hygiene::{Mark, SyntaxContext};
use syntax::symbol::{Symbol, InternedString};
use syntax_pos::{DUMMY_SP, Span};
use rustc_const_math::ConstInt;
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
HashStable};
use rustc_data_structures::transitive_relation::TransitiveRelation;
use hir;
pub use self::sty::{Binder, DebruijnIndex};
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
pub use self::sty::{ClosureSubsts, GeneratorInterior, TypeAndMut};
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
pub use self::sty::RegionKind;
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid, SkolemizedRegionVid};
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
pub use self::sty::RegionKind::*;
pub use self::sty::TypeVariants::*;
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;
pub use self::context::{TyCtxt, GlobalArenas, tls, keep_local};
pub use self::context::{Lift, TypeckTables};
pub use self::instance::{Instance, InstanceDef};
pub use self::trait_def::TraitDef;
pub use self::maps::queries;
pub mod adjustment;
pub mod binding;
pub mod cast;
pub mod error;
pub mod fast_reject;
pub mod fold;
pub mod inhabitedness;
pub mod item_path;
pub mod layout;
pub mod _match;
pub mod maps;
pub mod outlives;
pub mod relate;
pub mod steal;
pub mod subst;
pub mod trait_def;
pub mod walk;
pub mod wf;
pub mod util;
mod context;
mod flags;
mod instance;
mod structural_impls;
mod sty;
// Data types
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
#[derive(Clone)]
pub struct CrateAnalysis {
pub access_levels: Rc<AccessLevels>,
pub reachable: Rc<NodeSet>,
pub name: String,
pub glob_map: Option<hir::GlobMap>,
}
#[derive(Clone)]
pub struct Resolutions {
pub freevars: FreevarMap,
pub trait_map: TraitMap,
pub maybe_unused_trait_imports: NodeSet,
pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
pub export_map: ExportMap,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AssociatedItemContainer {
TraitContainer(DefId),
ImplContainer(DefId),
}
impl AssociatedItemContainer {
pub fn id(&self) -> DefId {
match *self {
TraitContainer(id) => id,
ImplContainer(id) => id,
}
}
}
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
pub impl_def_id: DefId,
pub self_ty: Ty<'tcx>,
pub trait_ref: Option<TraitRef<'tcx>>,
pub predicates: Vec<Predicate<'tcx>>,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct AssociatedItem {
pub def_id: DefId,
pub name: Name,
pub kind: AssociatedKind,
pub vis: Visibility,
pub defaultness: hir::Defaultness,
pub container: AssociatedItemContainer,
/// Whether this is a method with an explicit self
/// as its first argument, allowing method calls.
pub method_has_self_argument: bool,
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub enum AssociatedKind {
Const,
Method,
Type
}
impl AssociatedItem {
pub fn def(&self) -> Def {
match self.kind {
AssociatedKind::Const => Def::AssociatedConst(self.def_id),
AssociatedKind::Method => Def::Method(self.def_id),
AssociatedKind::Type => Def::AssociatedTy(self.def_id),
}
}
/// Tests whether the associated item admits a non-trivial implementation
/// for !
pub fn relevant_for_never<'tcx>(&self) -> bool {
match self.kind {
AssociatedKind::Const => true,
AssociatedKind::Type => true,
// FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
AssociatedKind::Method => !self.method_has_self_argument,
}
}
pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
match self.kind {
ty::AssociatedKind::Method => {
// We skip the binder here because the binder would deanonymize all
// late-bound regions, and we don't want method signatures to show up
// `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
// regions just fine, showing `fn(&MyType)`.
format!("{}", tcx.fn_sig(self.def_id).skip_binder())
}
ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
ty::AssociatedKind::Const => {
format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
}
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
pub enum Visibility {
/// Visible everywhere (including in other crates).
Public,
/// Visible only in the given crate-local module.
Restricted(DefId),
/// Not visible anywhere in the local crate. This is the visibility of private external items.
Invisible,
}
pub trait DefIdTree: Copy {
fn parent(self, id: DefId) -> Option<DefId>;
fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
if descendant.krate != ancestor.krate {
return false;
}
while descendant != ancestor {
match self.parent(descendant) {
Some(parent) => descendant = parent,
None => return false,
}
}
true
}
}
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
fn parent(self, id: DefId) -> Option<DefId> {
self.def_key(id).parent.map(|index| DefId { index: index, ..id })
}
}
impl Visibility {
pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
match *visibility {
hir::Public => Visibility::Public,
hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
hir::Visibility::Restricted { ref path, .. } => match path.def {
// If there is no resolution, `resolve` will have already reported an error, so
// assume that the visibility is public to avoid reporting more privacy errors.
Def::Err => Visibility::Public,
def => Visibility::Restricted(def.def_id()),
},
hir::Inherited => {
Visibility::Restricted(tcx.hir.get_module_parent(id))
}
}
}
/// Returns true if an item with this visibility is accessible from the given block.
pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
let restriction = match self {
// Public items are visible everywhere.
Visibility::Public => return true,
// Private items from other crates are visible nowhere.
Visibility::Invisible => return false,
// Restricted items are visible in an arbitrary local module.
Visibility::Restricted(other) if other.krate != module.krate => return false,
Visibility::Restricted(module) => module,
};
tree.is_descendant_of(module, restriction)
}
/// Returns true if this visibility is at least as accessible as the given visibility
pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
let vis_restriction = match vis {
Visibility::Public => return self == Visibility::Public,
Visibility::Invisible => return true,
Visibility::Restricted(module) => module,
};
self.is_accessible_from(vis_restriction, tree)
}
}
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.variances_of()` to get the variance for a *particular*
/// item.
pub struct CrateVariancesMap {
/// This relation tracks the dependencies between the variance of
/// various items. In particular, if `a < b`, then the variance of
/// `a` depends on the sources of `b`.
pub dependencies: TransitiveRelation<DefId>,
/// For each item with generics, maps to a vector of the variance
/// of its generics. If an item has no generics, it will have no
/// entry.
pub variances: FxHashMap<DefId, Rc<Vec<ty::Variance>>>,
/// An empty vector, useful for cloning.
pub empty_variance: Rc<Vec<ty::Variance>>,
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
///
/// *mut Vec<i32>
///
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
///
/// fn(*const Vec<i32>, *mut Vec<i32)
///
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
pub fn xform(self, v: ty::Variance) -> ty::Variance {
match (self, v) {
// Figure 1, column 1.
(ty::Covariant, ty::Covariant) => ty::Covariant,
(ty::Covariant, ty::Contravariant) => ty::Contravariant,
(ty::Covariant, ty::Invariant) => ty::Invariant,
(ty::Covariant, ty::Bivariant) => ty::Bivariant,
// Figure 1, column 2.
(ty::Contravariant, ty::Covariant) => ty::Contravariant,
(ty::Contravariant, ty::Contravariant) => ty::Covariant,
(ty::Contravariant, ty::Invariant) => ty::Invariant,
(ty::Contravariant, ty::Bivariant) => ty::Bivariant,
// Figure 1, column 3.
(ty::Invariant, _) => ty::Invariant,
// Figure 1, column 4.
(ty::Bivariant, _) => ty::Bivariant,
}
}
}
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
pub cnum: CrateNum,
pub pos: usize,
}
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
bitflags! {
pub struct TypeFlags: u32 {
const HAS_PARAMS = 1 << 0;
const HAS_SELF = 1 << 1;
const HAS_TY_INFER = 1 << 2;
const HAS_RE_INFER = 1 << 3;
const HAS_RE_SKOL = 1 << 4;
const HAS_RE_EARLY_BOUND = 1 << 5;
const HAS_FREE_REGIONS = 1 << 6;
const HAS_TY_ERR = 1 << 7;
const HAS_PROJECTION = 1 << 8;
// FIXME: Rename this to the actual property since it's used for generators too
const HAS_TY_CLOSURE = 1 << 9;
// true if there are "names" of types and regions and so forth
// that are local to a particular fn
const HAS_LOCAL_NAMES = 1 << 10;
// Present if the type belongs in a local type context.
// Only set for TyInfer other than Fresh.
const KEEP_IN_LOCAL_TCX = 1 << 11;
// Is there a projection that does not involve a bound region?
// Currently we can't normalize projections w/ bound regions.
const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
const NEEDS_SUBST = TypeFlags::HAS_PARAMS.bits |
TypeFlags::HAS_SELF.bits |
TypeFlags::HAS_RE_EARLY_BOUND.bits;
// Flags representing the nominal content of a type,
// computed by FlagsComputation. If you add a new nominal
// flag, it should be added here too.
const NOMINAL_FLAGS = TypeFlags::HAS_PARAMS.bits |
TypeFlags::HAS_SELF.bits |
TypeFlags::HAS_TY_INFER.bits |
TypeFlags::HAS_RE_INFER.bits |
TypeFlags::HAS_RE_SKOL.bits |
TypeFlags::HAS_RE_EARLY_BOUND.bits |
TypeFlags::HAS_FREE_REGIONS.bits |
TypeFlags::HAS_TY_ERR.bits |
TypeFlags::HAS_PROJECTION.bits |
TypeFlags::HAS_TY_CLOSURE.bits |
TypeFlags::HAS_LOCAL_NAMES.bits |
TypeFlags::KEEP_IN_LOCAL_TCX.bits;
}
}
pub struct TyS<'tcx> {
pub sty: TypeVariants<'tcx>,
pub flags: TypeFlags,
// the maximal depth of any bound regions appearing in this type.
region_depth: u32,
}
impl<'tcx> PartialEq for TyS<'tcx> {
#[inline]
fn eq(&self, other: &TyS<'tcx>) -> bool {
// (self as *const _) == (other as *const _)
(self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
}
}
impl<'tcx> Eq for TyS<'tcx> {}
impl<'tcx> Hash for TyS<'tcx> {
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const TyS).hash(s)
}
}
impl<'tcx> TyS<'tcx> {
pub fn is_primitive_ty(&self) -> bool {
match self.sty {
TypeVariants::TyBool |
TypeVariants::TyChar |
TypeVariants::TyInt(_) |
TypeVariants::TyUint(_) |
TypeVariants::TyFloat(_) |
TypeVariants::TyInfer(InferTy::IntVar(_)) |
TypeVariants::TyInfer(InferTy::FloatVar(_)) |
TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
TypeVariants::TyRef(_, x) => x.ty.is_primitive_ty(),
_ => false,
}
}
pub fn is_suggestable(&self) -> bool {
match self.sty {
TypeVariants::TyAnon(..) |
TypeVariants::TyFnDef(..) |
TypeVariants::TyFnPtr(..) |
TypeVariants::TyDynamic(..) |
TypeVariants::TyClosure(..) |
TypeVariants::TyInfer(..) |
TypeVariants::TyProjection(..) => false,
_ => true,
}
}
}
impl<'a, 'gcx, 'tcx> HashStable<StableHashingContext<'a, 'gcx, 'tcx>> for ty::TyS<'gcx> {
fn hash_stable<W: StableHasherResult>(&self,
hcx: &mut StableHashingContext<'a, 'gcx, 'tcx>,
hasher: &mut StableHasher<W>) {
let ty::TyS {
ref sty,
// The other fields just provide fast access to information that is
// also contained in `sty`, so no need to hash them.
flags: _,
region_depth: _,
} = *self;
sty.hash_stable(hcx, hasher);
}
}
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
/// A wrapper for slices with the additional invariant
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);
impl<T> PartialEq for Slice<T> {
#[inline]
fn eq(&self, other: &Slice<T>) -> bool {
(&self.0 as *const [T]) == (&other.0 as *const [T])
}
}
impl<T> Eq for Slice<T> {}
impl<T> Hash for Slice<T> {
fn hash<H: Hasher>(&self, s: &mut H) {
(self.as_ptr(), self.len()).hash(s)
}
}
impl<T> Deref for Slice<T> {
type Target = [T];
fn deref(&self) -> &[T] {
&self.0
}
}
impl<'a, T> IntoIterator for &'a Slice<T> {
type Item = &'a T;
type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self[..].iter()
}
}
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}
impl<T> Slice<T> {
pub fn empty<'a>() -> &'a Slice<T> {
unsafe {
mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
}
}
}
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct UpvarId {
pub var_id: hir::HirId,
pub closure_expr_id: DefIndex,
}
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
pub enum BorrowKind {
/// Data must be immutable and is aliasable.
ImmBorrow,
/// Data must be immutable but not aliasable. This kind of borrow
/// cannot currently be expressed by the user and is used only in
/// implicit closure bindings. It is needed when the closure
/// is borrowing or mutating a mutable referent, e.g.:
///
/// let x: &mut isize = ...;
/// let y = || *x += 5;
///
/// If we were to try to translate this closure into a more explicit
/// form, we'd encounter an error with the code as written:
///
/// struct Env { x: & &mut isize }
/// let x: &mut isize = ...;
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// This is then illegal because you cannot mutate a `&mut` found
/// in an aliasable location. To solve, you'd have to translate with
/// an `&mut` borrow:
///
/// struct Env { x: & &mut isize }
/// let x: &mut isize = ...;
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// Now the assignment to `**env.x` is legal, but creating a
/// mutable pointer to `x` is not because `x` is not mutable. We
/// could fix this by declaring `x` as `let mut x`. This is ok in
/// user code, if awkward, but extra weird for closures, since the
/// borrow is hidden.
///
/// So we introduce a "unique imm" borrow -- the referent is
/// immutable, but not aliasable. This solves the problem. For
/// simplicity, we don't give users the way to express this
/// borrow, it's just used when translating closures.
UniqueImmBorrow,
/// Data is mutable and not aliasable.
MutBorrow
}
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
pub enum UpvarCapture<'tcx> {
/// Upvar is captured by value. This is always true when the
/// closure is labeled `move`, but can also be true in other cases
/// depending on inference.
ByValue,
/// Upvar is captured by reference.
ByRef(UpvarBorrow<'tcx>),
}
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
pub struct UpvarBorrow<'tcx> {
/// The kind of borrow: by-ref upvars have access to shared
/// immutable borrows, which are not part of the normal language
/// syntax.
pub kind: BorrowKind,
/// Region of the resulting reference.
pub region: ty::Region<'tcx>,
}
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
pub def: Def,
pub span: Span,
pub ty: Ty<'tcx>,
}
#[derive(Clone, Copy, PartialEq)]
pub enum IntVarValue {
IntType(ast::IntTy),
UintType(ast::UintTy),
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
pub name: Name,
pub def_id: DefId,
pub index: u32,
pub has_default: bool,
pub object_lifetime_default: ObjectLifetimeDefault,
/// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
/// on generic parameter `T`, asserts data behind the parameter
/// `T` won't be accessed during the parent type's `Drop` impl.
pub pure_wrt_drop: bool,
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
pub name: Name,
pub def_id: DefId,
pub index: u32,
/// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
/// on generic parameter `'a`, asserts data of lifetime `'a`
/// won't be accessed during the parent type's `Drop` impl.
pub pure_wrt_drop: bool,
}
impl RegionParameterDef {
pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
ty::EarlyBoundRegion {
def_id: self.def_id,
index: self.index,
name: self.name,
}
}
pub fn to_bound_region(&self) -> ty::BoundRegion {
self.to_early_bound_region_data().to_bound_region()
}
}
impl ty::EarlyBoundRegion {
pub fn to_bound_region(&self) -> ty::BoundRegion {
ty::BoundRegion::BrNamed(self.def_id, self.name)
}
}
/// Information about the formal type/lifetime parameters associated
/// with an item or method. Analogous to hir::Generics.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct Generics {
pub parent: Option<DefId>,
pub parent_regions: u32,
pub parent_types: u32,
pub regions: Vec<RegionParameterDef>,
pub types: Vec<TypeParameterDef>,
/// Reverse map to each `TypeParameterDef`'s `index` field, from
/// `def_id.index` (`def_id.krate` is the same as the item's).
pub type_param_to_index: BTreeMap<DefIndex, u32>,
pub has_self: bool,
pub has_late_bound_regions: Option<Span>,
}
impl Generics {
pub fn parent_count(&self) -> usize {
self.parent_regions as usize + self.parent_types as usize
}
pub fn own_count(&self) -> usize {
self.regions.len() + self.types.len()
}
pub fn count(&self) -> usize {
self.parent_count() + self.own_count()
}
pub fn region_param(&self, param: &EarlyBoundRegion) -> &RegionParameterDef {
assert_eq!(self.parent_count(), 0);
&self.regions[param.index as usize - self.has_self as usize]
}
pub fn type_param(&self, param: &ParamTy) -> &TypeParameterDef {
assert_eq!(self.parent_count(), 0);
&self.types[param.idx as usize - self.has_self as usize - self.regions.len()]
}
}
/// Bounds on generics.
#[derive(Clone, Default)]
pub struct GenericPredicates<'tcx> {
pub parent: Option<DefId>,
pub predicates: Vec<Predicate<'tcx>>,
}
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
-> InstantiatedPredicates<'tcx> {
let mut instantiated = InstantiatedPredicates::empty();
self.instantiate_into(tcx, &mut instantiated, substs);
instantiated
}
pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
-> InstantiatedPredicates<'tcx> {
InstantiatedPredicates {
predicates: self.predicates.subst(tcx, substs)
}
}
fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
instantiated: &mut InstantiatedPredicates<'tcx>,
substs: &Substs<'tcx>) {
if let Some(def_id) = self.parent {
tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
}
instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
}
pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
-> InstantiatedPredicates<'tcx> {
let mut instantiated = InstantiatedPredicates::empty();
self.instantiate_identity_into(tcx, &mut instantiated);
instantiated
}
fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
instantiated: &mut InstantiatedPredicates<'tcx>) {
if let Some(def_id) = self.parent {
tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
}
instantiated.predicates.extend(&self.predicates)
}
pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
poly_trait_ref: &ty::PolyTraitRef<'tcx>)
-> InstantiatedPredicates<'tcx>
{
assert_eq!(self.parent, None);
InstantiatedPredicates {
predicates: self.predicates.iter().map(|pred| {
pred.subst_supertrait(tcx, poly_trait_ref)
}).collect()
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum Predicate<'tcx> {
/// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
/// the `Self` type of the trait reference and `A`, `B`, and `C`
/// would be the type parameters.
Trait(PolyTraitPredicate<'tcx>),
/// where `T1 == T2`.
Equate(PolyEquatePredicate<'tcx>),
/// where 'a : 'b
RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
/// where T : 'a
TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
/// where <T as TraitRef>::Name == X, approximately.
/// See `ProjectionPredicate` struct for details.
Projection(PolyProjectionPredicate<'tcx>),
/// no syntax: T WF
WellFormed(Ty<'tcx>),
/// trait must be object-safe
ObjectSafe(DefId),
/// No direct syntax. May be thought of as `where T : FnFoo<...>`
/// for some substitutions `...` and T being a closure type.
/// Satisfied (or refuted) once we know the closure's kind.
ClosureKind(DefId, ClosureKind),
/// `T1 <: T2`
Subtype(PolySubtypePredicate<'tcx>),
/// Constant initializer must evaluate successfully.
ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
}
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
/// Performs a substitution suitable for going from a
/// poly-trait-ref to supertraits that must hold if that
/// poly-trait-ref holds. This is slightly different from a normal
/// substitution in terms of what happens with bound regions. See
/// lengthy comment below for details.
pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
trait_ref: &ty::PolyTraitRef<'tcx>)
-> ty::Predicate<'tcx>
{
// The interaction between HRTB and supertraits is not entirely
// obvious. Let me walk you (and myself) through an example.
//
// Let's start with an easy case. Consider two traits:
//
// trait Foo<'a> : Bar<'a,'a> { }
// trait Bar<'b,'c> { }
//
// Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
// we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
// knew that `Foo<'x>` (for any 'x) then we also know that
// `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
// normal substitution.
//
// In terms of why this is sound, the idea is that whenever there
// is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
// holds. So if there is an impl of `T:Foo<'a>` that applies to
// all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
// `'a`.
//
// Another example to be careful of is this:
//
// trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
// trait Bar1<'b,'c> { }
//
// Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
// The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
// reason is similar to the previous example: any impl of
// `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`. So
// basically we would want to collapse the bound lifetimes from
// the input (`trait_ref`) and the supertraits.
//
// To achieve this in practice is fairly straightforward. Let's
// consider the more complicated scenario:
//
// - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
// has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
// where both `'x` and `'b` would have a DB index of 1.
// The substitution from the input trait-ref is therefore going to be
// `'a => 'x` (where `'x` has a DB index of 1).
// - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
// early-bound parameter and `'b' is a late-bound parameter with a
// DB index of 1.
// - If we replace `'a` with `'x` from the input, it too will have
// a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
// just as we wanted.
//
// There is only one catch. If we just apply the substitution `'a
// => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
// adjust the DB index because we substituting into a binder (it
// tries to be so smart...) resulting in `for<'x> for<'b>
// Bar1<'x,'b>` (we have no syntax for this, so use your
// imagination). Basically the 'x will have DB index of 2 and 'b
// will have DB index of 1. Not quite what we want. So we apply
// the substitution to the *contents* of the trait reference,
// rather than the trait reference itself (put another way, the
// substitution code expects equal binding levels in the values
// from the substitution and the value being substituted into, and
// this trick achieves that).
let substs = &trait_ref.0.substs;
match *self {
Predicate::Trait(ty::Binder(ref data)) =>
Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
Predicate::Equate(ty::Binder(ref data)) =>
Predicate::Equate(ty::Binder(data.subst(tcx, substs))),
Predicate::Subtype(ty::Binder(ref data)) =>
Predicate::Subtype(ty::Binder(data.subst(tcx, substs))),
Predicate::RegionOutlives(ty::Binder(ref data)) =>
Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
Predicate::TypeOutlives(ty::Binder(ref data)) =>
Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
Predicate::Projection(ty::Binder(ref data)) =>
Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
Predicate::WellFormed(data) =>
Predicate::WellFormed(data.subst(tcx, substs)),
Predicate::ObjectSafe(trait_def_id) =>
Predicate::ObjectSafe(trait_def_id),
Predicate::ClosureKind(closure_def_id, kind) =>
Predicate::ClosureKind(closure_def_id, kind),
Predicate::ConstEvaluatable(def_id, const_substs) =>
Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct TraitPredicate<'tcx> {
pub trait_ref: TraitRef<'tcx>
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;
impl<'tcx> TraitPredicate<'tcx> {
pub fn def_id(&self) -> DefId {
self.trait_ref.def_id
}
pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
self.trait_ref.input_types()
}
pub fn self_ty(&self) -> Ty<'tcx> {
self.trait_ref.self_ty()
}
}
impl<'tcx> PolyTraitPredicate<'tcx> {
pub fn def_id(&self) -> DefId {
// ok to skip binder since trait def-id does not care about regions
self.0.def_id()
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct EquatePredicate<'tcx>(pub Ty<'tcx>, pub Ty<'tcx>); // `0 == 1`
pub type PolyEquatePredicate<'tcx> = ty::Binder<EquatePredicate<'tcx>>;
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
pub type PolyRegionOutlivesPredicate<'tcx> = PolyOutlivesPredicate<ty::Region<'tcx>,
ty::Region<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct SubtypePredicate<'tcx> {
pub a_is_expected: bool,
pub a: Ty<'tcx>,
pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of Form
/// #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct ProjectionPredicate<'tcx> {
pub projection_ty: ProjectionTy<'tcx>,
pub ty: Ty<'tcx>,
}
pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;
impl<'tcx> PolyProjectionPredicate<'tcx> {
pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
// Note: unlike with TraitRef::to_poly_trait_ref(),
// self.0.trait_ref is permitted to have escaping regions.
// This is because here `self` has a `Binder` and so does our
// return value, so we are preserving the number of binding
// levels.
ty::Binder(self.0.projection_ty.trait_ref(tcx))
}
pub fn ty(&self) -> Binder<Ty<'tcx>> {
Binder(self.skip_binder().ty) // preserves binding levels
}
}
pub trait ToPolyTraitRef<'tcx> {
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
assert!(!self.has_escaping_regions());
ty::Binder(self.clone())
}
}
impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
}
}
pub trait ToPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx>;
}
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
// we're about to add a binder, so let's check that we don't
// accidentally capture anything, or else that might be some
// weird debruijn accounting.
assert!(!self.has_escaping_regions());
ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
trait_ref: self.clone()
}))
}
}
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
ty::Predicate::Trait(self.to_poly_trait_predicate())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyEquatePredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::Equate(self.clone())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::RegionOutlives(self.clone())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::TypeOutlives(self.clone())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::Projection(self.clone())
}
}
impl<'tcx> Predicate<'tcx> {
/// Iterates over the types in this predicate. Note that in all
/// cases this is skipping over a binder, so late-bound regions
/// with depth 0 are bound by the predicate.
pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
let vec: Vec<_> = match *self {
ty::Predicate::Trait(ref data) => {
data.skip_binder().input_types().collect()
}
ty::Predicate::Equate(ty::Binder(ref data)) => {
vec![data.0, data.1]
}
ty::Predicate::Subtype(ty::Binder(SubtypePredicate { a, b, a_is_expected: _ })) => {
vec![a, b]
}
ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
vec![data.0]
}
ty::Predicate::RegionOutlives(..) => {
vec![]
}
ty::Predicate::Projection(ref data) => {
data.0.projection_ty.substs.types().chain(Some(data.0.ty)).collect()
}
ty::Predicate::WellFormed(data) => {
vec![data]
}
ty::Predicate::ObjectSafe(_trait_def_id) => {
vec![]
}
ty::Predicate::ClosureKind(_closure_def_id, _kind) => {
vec![]
}
ty::Predicate::ConstEvaluatable(_, substs) => {
substs.types().collect()
}
};
// The only reason to collect into a vector here is that I was
// too lazy to make the full (somewhat complicated) iterator
// type that would be needed here. But I wanted this fn to
// return an iterator conceptually, rather than a `Vec`, so as
// to be closer to `Ty::walk`.
vec.into_iter()
}
pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
match *self {
Predicate::Trait(ref t) => {
Some(t.to_poly_trait_ref())
}
Predicate::Projection(..) |
Predicate::Equate(..) |
Predicate::Subtype(..) |
Predicate::RegionOutlives(..) |
Predicate::WellFormed(..) |
Predicate::ObjectSafe(..) |
Predicate::ClosureKind(..) |
Predicate::TypeOutlives(..) |
Predicate::ConstEvaluatable(..) => {
None
}
}
}
}
/// Represents the bounds declared on a particular set of type
/// parameters. Should eventually be generalized into a flag list of
/// where clauses. You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
/// struct Foo<T,U:Bar<T>> { ... }
///
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone)]
pub struct InstantiatedPredicates<'tcx> {
pub predicates: Vec<Predicate<'tcx>>,
}
impl<'tcx> InstantiatedPredicates<'tcx> {
pub fn empty() -> InstantiatedPredicates<'tcx> {
InstantiatedPredicates { predicates: vec![] }
}
pub fn is_empty(&self) -> bool {
self.predicates.is_empty()
}
}
/// When type checking, we use the `ParamEnv` to track
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnv<'tcx> {
/// Obligations that the caller must satisfy. This is basically
/// the set of bounds on the in-scope type parameters, translated
/// into Obligations, and elaborated and normalized.
pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
/// Typically, this is `Reveal::UserFacing`, but during trans we
/// want `Reveal::All` -- note that this is always paired with an
/// empty environment. To get that, use `ParamEnv::reveal()`.
pub reveal: traits::Reveal,
}
impl<'tcx> ParamEnv<'tcx> {
/// Creates a suitable environment in which to perform trait
/// queries on the given value. This will either be `self` *or*
/// the empty environment, depending on whether `value` references
/// type parameters that are in scope. (If it doesn't, then any
/// judgements should be completely independent of the context,
/// and hence we can safely use the empty environment so as to
/// enable more sharing across functions.)
///
/// NB: This is a mildly dubious thing to do, in that a function
/// (or other environment) might have wacky where-clauses like
/// `where Box<u32>: Copy`, which are clearly never
/// satisfiable. The code will at present ignore these,
/// effectively, when type-checking the body of said
/// function. This preserves existing behavior in any
/// case. --nmatsakis
pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
assert!(!value.needs_infer());
if value.has_param_types() || value.has_self_ty() {
ParamEnvAnd {
param_env: self,
value,
}
} else {
ParamEnvAnd {
param_env: ParamEnv::empty(self.reveal),
value,
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnvAnd<'tcx, T> {
pub param_env: ParamEnv<'tcx>,
pub value: T,
}
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
(self.param_env, self.value)
}
}
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
/// The def-id of the destructor method
pub did: DefId,
}
bitflags! {
pub struct AdtFlags: u32 {
const NO_ADT_FLAGS = 0;
const IS_ENUM = 1 << 0;
const IS_PHANTOM_DATA = 1 << 1;
const IS_FUNDAMENTAL = 1 << 2;
const IS_UNION = 1 << 3;
const IS_BOX = 1 << 4;
}
}
#[derive(Debug)]
pub struct VariantDef {
/// The variant's DefId. If this is a tuple-like struct,
/// this is the DefId of the struct's ctor.
pub did: DefId,
pub name: Name, // struct's name if this is a struct
pub discr: VariantDiscr,
pub fields: Vec<FieldDef>,
pub ctor_kind: CtorKind,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
/// Explicit value for this variant, i.e. `X = 123`.
/// The `DefId` corresponds to the embedded constant.
Explicit(DefId),
/// The previous variant's discriminant plus one.
/// For efficiency reasons, the distance from the
/// last `Explicit` discriminant is being stored,
/// or `0` for the first variant, if it has none.
Relative(usize),
}
#[derive(Debug)]
pub struct FieldDef {
pub did: DefId,
pub name: Name,
pub vis: Visibility,
}
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
pub struct AdtDef {
pub did: DefId,
pub variants: Vec<VariantDef>,
flags: AdtFlags,
pub repr: ReprOptions,
}
impl PartialEq for AdtDef {
// AdtDef are always interned and this is part of TyS equality
#[inline]
fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}
impl Eq for AdtDef {}
impl Hash for AdtDef {
#[inline]
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const AdtDef).hash(s)
}
}
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
self.did.encode(s)
}
}
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
impl<'a, 'gcx, 'tcx> HashStable<StableHashingContext<'a, 'gcx, 'tcx>> for AdtDef {
fn hash_stable<W: StableHasherResult>(&self,
hcx: &mut StableHashingContext<'a, 'gcx, 'tcx>,
hasher: &mut StableHasher<W>) {
let ty::AdtDef {
did,
ref variants,
ref flags,
ref repr,
} = *self;
did.hash_stable(hcx, hasher);
variants.hash_stable(hcx, hasher);
flags.hash_stable(hcx, hasher);
repr.hash_stable(hcx, hasher);
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum AdtKind { Struct, Union, Enum }
bitflags! {
#[derive(RustcEncodable, RustcDecodable, Default)]
pub struct ReprFlags: u8 {
const IS_C = 1 << 0;
const IS_PACKED = 1 << 1;
const IS_SIMD = 1 << 2;
// Internal only for now. If true, don't reorder fields.
const IS_LINEAR = 1 << 3;
// Any of these flags being set prevent field reordering optimisation.
const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
ReprFlags::IS_PACKED.bits |
ReprFlags::IS_SIMD.bits |
ReprFlags::IS_LINEAR.bits;
}
}
impl_stable_hash_for!(struct ReprFlags {
bits
});
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
pub int: Option<attr::IntType>,
pub align: u32,
pub flags: ReprFlags,
}
impl_stable_hash_for!(struct ReprOptions {
align,
int,
flags
});
impl ReprOptions {
pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
let mut flags = ReprFlags::empty();
let mut size = None;
let mut max_align = 0;
for attr in tcx.get_attrs(did).iter() {
for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
flags.insert(match r {
attr::ReprExtern => ReprFlags::IS_C,
attr::ReprPacked => ReprFlags::IS_PACKED,
attr::ReprSimd => ReprFlags::IS_SIMD,
attr::ReprInt(i) => {
size = Some(i);
ReprFlags::empty()
},
attr::ReprAlign(align) => {
max_align = cmp::max(align, max_align);
ReprFlags::empty()
},
});
}
}
// FIXME(eddyb) This is deprecated and should be removed.
if tcx.has_attr(did, "simd") {
flags.insert(ReprFlags::IS_SIMD);
}
// This is here instead of layout because the choice must make it into metadata.
if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
flags.insert(ReprFlags::IS_LINEAR);
}
ReprOptions { int: size, align: max_align, flags: flags }
}
#[inline]
pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
#[inline]
pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
#[inline]
pub fn packed(&self) -> bool { self.flags.contains(ReprFlags::IS_PACKED) }
#[inline]
pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }
pub fn discr_type(&self) -> attr::IntType {
self.int.unwrap_or(attr::SignedInt(ast::IntTy::Is))
}
/// Returns true if this `#[repr()]` should inhabit "smart enum
/// layout" optimizations, such as representing `Foo<&T>` as a
/// single pointer.
pub fn inhibit_enum_layout_opt(&self) -> bool {
self.c() || self.int.is_some()
}
}
impl<'a, 'gcx, 'tcx> AdtDef {
fn new(tcx: TyCtxt,
did: DefId,
kind: AdtKind,
variants: Vec<VariantDef>,
repr: ReprOptions) -> Self {
let mut flags = AdtFlags::NO_ADT_FLAGS;
let attrs = tcx.get_attrs(did);
if attr::contains_name(&attrs, "fundamental") {
flags = flags | AdtFlags::IS_FUNDAMENTAL;
}
if Some(did) == tcx.lang_items().phantom_data() {
flags = flags | AdtFlags::IS_PHANTOM_DATA;
}
if Some(did) == tcx.lang_items().owned_box() {
flags = flags | AdtFlags::IS_BOX;
}
match kind {
AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
AdtKind::Struct => {}
}
AdtDef {
did,
variants,
flags,
repr,
}
}
#[inline]
pub fn is_struct(&self) -> bool {
!self.is_union() && !self.is_enum()
}
#[inline]
pub fn is_union(&self) -> bool {
self.flags.intersects(AdtFlags::IS_UNION)
}
#[inline]
pub fn is_enum(&self) -> bool {
self.flags.intersects(AdtFlags::IS_ENUM)
}
/// Returns the kind of the ADT - Struct or Enum.
#[inline]
pub fn adt_kind(&self) -> AdtKind {
if self.is_enum() {
AdtKind::Enum
} else if self.is_union() {
AdtKind::Union
} else {
AdtKind::Struct
}
}
pub fn descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "enum",
}
}
pub fn variant_descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "variant",
}
}
/// Returns whether this type is #[fundamental] for the purposes
/// of coherence checking.
#[inline]
pub fn is_fundamental(&self) -> bool {
self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
}
/// Returns true if this is PhantomData<T>.
#[inline]
pub fn is_phantom_data(&self) -> bool {
self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
}
/// Returns true if this is Box<T>.
#[inline]
pub fn is_box(&self) -> bool {
self.flags.intersects(AdtFlags::IS_BOX)
}
/// Returns whether this type has a destructor.
pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
self.destructor(tcx).is_some()
}
/// Asserts this is a struct and returns the struct's unique
/// variant.
pub fn struct_variant(&self) -> &VariantDef {
assert!(!self.is_enum());
&self.variants[0]
}
#[inline]
pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
tcx.predicates_of(self.did)
}
/// Returns an iterator over all fields contained
/// by this ADT.
#[inline]
pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
self.variants.iter().flat_map(|v| v.fields.iter())
}
#[inline]
pub fn is_univariant(&self) -> bool {
self.variants.len() == 1
}
pub fn is_payloadfree(&self) -> bool {
!self.variants.is_empty() &&
self.variants.iter().all(|v| v.fields.is_empty())
}
pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
self.variants
.iter()
.find(|v| v.did == vid)
.expect("variant_with_id: unknown variant")
}
pub fn variant_index_with_id(&self, vid: DefId) -> usize {
self.variants
.iter()
.position(|v| v.did == vid)
.expect("variant_index_with_id: unknown variant")
}
pub fn variant_of_def(&self, def: Def) -> &VariantDef {
match def {
Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.struct_variant(),
_ => bug!("unexpected def {:?} in variant_of_def", def)
}
}
#[inline]
pub fn discriminants(&'a self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
-> impl Iterator<Item=ConstInt> + 'a {
let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
let repr_type = self.repr.discr_type();
let initial = repr_type.initial_discriminant(tcx.global_tcx());
let mut prev_discr = None::<ConstInt>;
self.variants.iter().map(move |v| {
let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr());
if let VariantDiscr::Explicit(expr_did) = v.discr {
let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
match tcx.const_eval(param_env.and((expr_did, substs))) {
Ok(&ty::Const { val: ConstVal::Integral(v), .. }) => {
discr = v;
}
err => {
if !expr_did.is_local() {
span_bug!(tcx.def_span(expr_did),
"variant discriminant evaluation succeeded \
in its crate but failed locally: {:?}", err);
}
}
}
}
prev_discr = Some(discr);
discr
})
}
/// Compute the discriminant value used by a specific variant.
/// Unlike `discriminants`, this is (amortized) constant-time,
/// only doing at most one query for evaluating an explicit
/// discriminant (the last one before the requested variant),
/// assuming there are no constant-evaluation errors there.
pub fn discriminant_for_variant(&self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
variant_index: usize)
-> ConstInt {
let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
let repr_type = self.repr.discr_type();
let mut explicit_value = repr_type.initial_discriminant(tcx.global_tcx());
let mut explicit_index = variant_index;
loop {
match self.variants[explicit_index].discr {
ty::VariantDiscr::Relative(0) => break,
ty::VariantDiscr::Relative(distance) => {
explicit_index -= distance;
}
ty::VariantDiscr::Explicit(expr_did) => {
let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
match tcx.const_eval(param_env.and((expr_did, substs))) {
Ok(&ty::Const { val: ConstVal::Integral(v), .. }) => {
explicit_value = v;
break;
}
err => {
if !expr_did.is_local() {
span_bug!(tcx.def_span(expr_did),
"variant discriminant evaluation succeeded \
in its crate but failed locally: {:?}", err);
}
if explicit_index == 0 {
break;
}
explicit_index -= 1;
}
}
}
}
}
let discr = explicit_value.to_u128_unchecked()
.wrapping_add((variant_index - explicit_index) as u128);
match repr_type {
attr::UnsignedInt(ty) => {
ConstInt::new_unsigned_truncating(discr, ty,
tcx.sess.target.usize_ty)
}
attr::SignedInt(ty) => {
ConstInt::new_signed_truncating(discr as i128, ty,
tcx.sess.target.isize_ty)
}
}
}
pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
tcx.adt_destructor(self.did)
}
/// Returns a list of types such that `Self: Sized` if and only
/// if that type is Sized, or `TyErr` if this type is recursive.
///
/// Oddly enough, checking that the sized-constraint is Sized is
/// actually more expressive than checking all members:
/// the Sized trait is inductive, so an associated type that references
/// Self would prevent its containing ADT from being Sized.
///
/// Due to normalization being eager, this applies even if
/// the associated type is behind a pointer, e.g. issue #31299.
pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
match queries::adt_sized_constraint::try_get(tcx, DUMMY_SP, self.did) {
Ok(tys) => tys,
Err(mut bug) => {
debug!("adt_sized_constraint: {:?} is recursive", self);
// This should be reported as an error by `check_representable`.
//
// Consider the type as Sized in the meanwhile to avoid
// further errors. Delay our `bug` diagnostic here to get
// emitted later as well in case we accidentally otherwise don't
// emit an error.
bug.delay_as_bug();
tcx.intern_type_list(&[tcx.types.err])
}
}
}
fn sized_constraint_for_ty(&self,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>)
-> Vec<Ty<'tcx>> {
let result = match ty.sty {
TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
vec![]
}
TyStr | TyDynamic(..) | TySlice(_) | TyError => {
// these are never sized - return the target type
vec![ty]
}
TyTuple(ref tys, _) => {
match tys.last() {
None => vec![],
Some(ty) => self.sized_constraint_for_ty(tcx, ty)
}
}
TyAdt(adt, substs) => {
// recursive case
let adt_tys = adt.sized_constraint(tcx);
debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
ty, adt_tys);
adt_tys.iter()
.map(|ty| ty.subst(tcx, substs))
.flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
.collect()
}
TyProjection(..) | TyAnon(..) => {
// must calculate explicitly.
// FIXME: consider special-casing always-Sized projections
vec![ty]
}
TyParam(..) => {
// perf hack: if there is a `T: Sized` bound, then
// we know that `T` is Sized and do not need to check
// it on the impl.
let sized_trait = match tcx.lang_items().sized_trait() {
Some(x) => x,
_ => return vec![ty]
};
let sized_predicate = Binder(TraitRef {
def_id: sized_trait,
substs: tcx.mk_substs_trait(ty, &[])
}).to_predicate();
let predicates = tcx.predicates_of(self.did).predicates;
if predicates.into_iter().any(|p| p == sized_predicate) {
vec![]
} else {
vec![ty]
}
}
TyInfer(..) => {
bug!("unexpected type `{:?}` in sized_constraint_for_ty",
ty)
}
};
debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
result
}
}
impl<'a, 'gcx, 'tcx> VariantDef {
#[inline]
pub fn find_field_named(&self, name: ast::Name) -> Option<&FieldDef> {
self.index_of_field_named(name).map(|index| &self.fields[index])
}
pub fn index_of_field_named(&self, name: ast::Name) -> Option<usize> {
if let Some(index) = self.fields.iter().position(|f| f.name == name) {
return Some(index);
}
let mut ident = name.to_ident();
while ident.ctxt != SyntaxContext::empty() {
ident.ctxt.remove_mark();
if let Some(field) = self.fields.iter().position(|f| f.name.to_ident() == ident) {
return Some(field);
}
}
None
}
#[inline]
pub fn field_named(&self, name: ast::Name) -> &FieldDef {
self.find_field_named(name).unwrap()
}
}
impl<'a, 'gcx, 'tcx> FieldDef {
pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
tcx.type_of(self.did).subst(tcx, subst)
}
}
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum ClosureKind {
// Warning: Ordering is significant here! The ordering is chosen
// because the trait Fn is a subtrait of FnMut and so in turn, and
// hence we order it so that Fn < FnMut < FnOnce.
Fn,
FnMut,
FnOnce,
}
impl<'a, 'tcx> ClosureKind {
pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
match *self {
ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
ClosureKind::FnMut => {
tcx.require_lang_item(FnMutTraitLangItem)
}
ClosureKind::FnOnce => {
tcx.require_lang_item(FnOnceTraitLangItem)
}
}
}
/// True if this a type that impls this closure kind
/// must also implement `other`.
pub fn extends(self, other: ty::ClosureKind) -> bool {
match (self, other) {
(ClosureKind::Fn, ClosureKind::Fn) => true,
(ClosureKind::Fn, ClosureKind::FnMut) => true,
(ClosureKind::Fn, ClosureKind::FnOnce) => true,
(ClosureKind::FnMut, ClosureKind::FnMut) => true,
(ClosureKind::FnMut, ClosureKind::FnOnce) => true,
(ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
_ => false,
}
}
}
impl<'tcx> TyS<'tcx> {
/// Iterator that walks `self` and any types reachable from
/// `self`, in depth-first order. Note that just walks the types
/// that appear in `self`, it does not descend into the fields of
/// structs or variants. For example:
///
/// ```notrust
/// isize => { isize }
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
/// [isize] => { [isize], isize }
/// ```
pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
TypeWalker::new(self)
}
/// Iterator that walks the immediate children of `self`. Hence
/// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
/// (but not `i32`, like `walk`).
pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
walk::walk_shallow(self)
}
/// Walks `ty` and any types appearing within `ty`, invoking the
/// callback `f` on each type. If the callback returns false, then the
/// children of the current type are ignored.
///
/// Note: prefer `ty.walk()` where possible.
pub fn maybe_walk<F>(&'tcx self, mut f: F)
where F : FnMut(Ty<'tcx>) -> bool
{
let mut walker = self.walk();
while let Some(ty) = walker.next() {
if !f(ty) {
walker.skip_current_subtree();
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LvaluePreference {
PreferMutLvalue,
NoPreference
}
impl LvaluePreference {
pub fn from_mutbl(m: hir::Mutability) -> Self {
match m {
hir::MutMutable => PreferMutLvalue,
hir::MutImmutable => NoPreference,
}
}
}
impl BorrowKind {
pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
match m {
hir::MutMutable => MutBorrow,
hir::MutImmutable => ImmBorrow,
}
}
/// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
/// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
/// mutability that is stronger than necessary so that it at least *would permit* the borrow in
/// question.
pub fn to_mutbl_lossy(self) -> hir::Mutability {
match self {
MutBorrow => hir::MutMutable,
ImmBorrow => hir::MutImmutable,
// We have no type corresponding to a unique imm borrow, so
// use `&mut`. It gives all the capabilities of an `&uniq`
// and hence is a safe "over approximation".
UniqueImmBorrow => hir::MutMutable,
}
}
pub fn to_user_str(&self) -> &'static str {
match *self {
MutBorrow => "mutable",
ImmBorrow => "immutable",
UniqueImmBorrow => "uniquely immutable",
}
}
}
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
Owned(Rc<[ast::Attribute]>),
Borrowed(&'gcx [ast::Attribute])
}
impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
type Target = [ast::Attribute];
fn deref(&self) -> &[ast::Attribute] {
match self {
&Attributes::Owned(ref data) => &data,
&Attributes::Borrowed(data) => data
}
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
self.typeck_tables_of(self.hir.body_owner_def_id(body))
}
/// Returns an iterator of the def-ids for all body-owners in this
/// crate. If you would prefer to iterate over the bodies
/// themselves, you can do `self.hir.krate().body_ids.iter()`.
pub fn body_owners(self) -> impl Iterator<Item = DefId> + 'a {
self.hir.krate()
.body_ids
.iter()
.map(move |&body_id| self.hir.body_owner_def_id(body_id))
}
pub fn expr_span(self, id: NodeId) -> Span {
match self.hir.find(id) {
Some(hir_map::NodeExpr(e)) => {
e.span
}
Some(f) => {
bug!("Node id {} is not an expr: {:?}", id, f);
}
None => {
bug!("Node id {} is not present in the node map", id);
}
}
}
pub fn expr_is_lval(self, expr: &hir::Expr) -> bool {
match expr.node {
hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
match path.def {
Def::Local(..) | Def::Upvar(..) | Def::Static(..) | Def::Err => true,
_ => false,
}
}
hir::ExprType(ref e, _) => {
self.expr_is_lval(e)
}
hir::ExprUnary(hir::UnDeref, _) |
hir::ExprField(..) |
hir::ExprTupField(..) |
hir::ExprIndex(..) => {
true
}
// Partially qualified paths in expressions can only legally
// refer to associated items which are always rvalues.
hir::ExprPath(hir::QPath::TypeRelative(..)) |
hir::ExprCall(..) |
hir::ExprMethodCall(..) |
hir::ExprStruct(..) |
hir::ExprTup(..) |
hir::ExprIf(..) |
hir::ExprMatch(..) |
hir::ExprClosure(..) |
hir::ExprBlock(..) |
hir::ExprRepeat(..) |
hir::ExprArray(..) |
hir::ExprBreak(..) |
hir::ExprAgain(..) |
hir::ExprRet(..) |
hir::ExprWhile(..) |
hir::ExprLoop(..) |
hir::ExprAssign(..) |
hir::ExprInlineAsm(..) |
hir::ExprAssignOp(..) |
hir::ExprLit(_) |
hir::ExprUnary(..) |
hir::ExprBox(..) |
hir::ExprAddrOf(..) |
hir::ExprBinary(..) |
hir::ExprYield(..) |
hir::ExprCast(..) => {
false
}
}
}
pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
self.associated_items(id)
.filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
.collect()
}
pub fn trait_relevant_for_never(self, did: DefId) -> bool {
self.associated_items(did).any(|item| {
item.relevant_for_never()
})
}
pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
match self.hir.get(node_id) {
hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
_ => false,
}
} else {
match self.describe_def(def_id).expect("no def for def-id") {
Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
_ => false,
}
};
if is_associated_item {
Some(self.associated_item(def_id))
} else {
None
}
}
fn associated_item_from_trait_item_ref(self,
parent_def_id: DefId,
parent_vis: &hir::Visibility,
trait_item_ref: &hir::TraitItemRef)
-> AssociatedItem {
let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
let (kind, has_self) = match trait_item_ref.kind {
hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
hir::AssociatedItemKind::Method { has_self } => {
(ty::AssociatedKind::Method, has_self)
}
hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
};
AssociatedItem {
name: trait_item_ref.name,
kind,
// Visibility of trait items is inherited from their traits.
vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
defaultness: trait_item_ref.defaultness,
def_id,
container: TraitContainer(parent_def_id),
method_has_self_argument: has_self
}
}
fn associated_item_from_impl_item_ref(self,
parent_def_id: DefId,
impl_item_ref: &hir::ImplItemRef)
-> AssociatedItem {
let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
let (kind, has_self) = match impl_item_ref.kind {
hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
hir::AssociatedItemKind::Method { has_self } => {
(ty::AssociatedKind::Method, has_self)
}
hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
};
ty::AssociatedItem {
name: impl_item_ref.name,
kind,
// Visibility of trait impl items doesn't matter.
vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
defaultness: impl_item_ref.defaultness,
def_id,
container: ImplContainer(parent_def_id),
method_has_self_argument: has_self
}
}
#[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
pub fn associated_items(self, def_id: DefId)
-> impl Iterator<Item = ty::AssociatedItem> + 'a {
let def_ids = self.associated_item_def_ids(def_id);
(0..def_ids.len()).map(move |i| self.associated_item(def_ids[i]))
}
/// Returns true if the impls are the same polarity and are implementing
/// a trait which contains no items
pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
if !self.sess.features.borrow().overlapping_marker_traits {
return false;
}
let trait1_is_empty = self.impl_trait_ref(def_id1)
.map_or(false, |trait_ref| {
self.associated_item_def_ids(trait_ref.def_id).is_empty()
});
let trait2_is_empty = self.impl_trait_ref(def_id2)
.map_or(false, |trait_ref| {
self.associated_item_def_ids(trait_ref.def_id).is_empty()
});
self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
&& trait1_is_empty
&& trait2_is_empty
}
// Returns `ty::VariantDef` if `def` refers to a struct,
// or variant or their constructors, panics otherwise.
pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
match def {
Def::Variant(did) | Def::VariantCtor(did, ..) => {
let enum_did = self.parent_def_id(did).unwrap();
self.adt_def(enum_did).variant_with_id(did)
}
Def::Struct(did) | Def::Union(did) => {
self.adt_def(did).struct_variant()
}
Def::StructCtor(ctor_did, ..) => {
let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
self.adt_def(did).struct_variant()
}
_ => bug!("expect_variant_def used with unexpected def {:?}", def)
}
}
pub fn item_name(self, id: DefId) -> InternedString {
if let Some(id) = self.hir.as_local_node_id(id) {
self.hir.name(id).as_str()
} else if id.index == CRATE_DEF_INDEX {
self.original_crate_name(id.krate).as_str()
} else {
let def_key = self.def_key(id);
// The name of a StructCtor is that of its struct parent.
if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
self.item_name(DefId {
krate: id.krate,
index: def_key.parent.unwrap()
})
} else {
def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
bug!("item_name: no name for {:?}", self.def_path(id));
})
}
}
}
/// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
-> &'gcx Mir<'gcx>
{
match instance {
ty::InstanceDef::Item(did) => {
self.optimized_mir(did)
}
ty::InstanceDef::Intrinsic(..) |
ty::InstanceDef::FnPtrShim(..) |
ty::InstanceDef::Virtual(..) |
ty::InstanceDef::ClosureOnceShim { .. } |
ty::InstanceDef::DropGlue(..) |
ty::InstanceDef::CloneShim(..) => {
self.mir_shims(instance)
}
}
}
/// Given the DefId of an item, returns its MIR, borrowed immutably.
/// Returns None if there is no MIR for the DefId
pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
if self.is_mir_available(did) {
Some(self.optimized_mir(did))
} else {
None
}
}
/// Get the attributes of a definition.
pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
if let Some(id) = self.hir.as_local_node_id(did) {
Attributes::Borrowed(self.hir.attrs(id))
} else {
Attributes::Owned(self.item_attrs(did))
}
}
/// Determine whether an item is annotated with an attribute
pub fn has_attr(self, did: DefId, attr: &str) -> bool {
self.get_attrs(did).iter().any(|item| item.check_name(attr))
}
pub fn trait_has_default_impl(self, trait_def_id: DefId) -> bool {
self.trait_def(trait_def_id).has_default_impl
}
pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
}
/// Given the def_id of an impl, return the def_id of the trait it implements.
/// If it implements no trait, return `None`.
pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
self.impl_trait_ref(def_id).map(|tr| tr.def_id)
}
/// If the given def ID describes a method belonging to an impl, return the
/// ID of the impl that the method belongs to. Otherwise, return `None`.
pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
let item = if def_id.krate != LOCAL_CRATE {
if let Some(Def::Method(_)) = self.describe_def(def_id) {
Some(self.associated_item(def_id))
} else {
None
}
} else {
self.opt_associated_item(def_id)
};
match item {
Some(trait_item) => {
match trait_item.container {
TraitContainer(_) => None,
ImplContainer(def_id) => Some(def_id),
}
}
None => None
}
}
/// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
/// with the name of the crate containing the impl.
pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
if impl_did.is_local() {
let node_id = self.hir.as_local_node_id(impl_did).unwrap();
Ok(self.hir.span(node_id))
} else {
Err(self.crate_name(impl_did.krate))
}
}
pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
self.adjust_ident(name.to_ident(), scope, block)
}
pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
let expansion = match scope.krate {
LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
_ => Mark::root(),
};
let scope = match ident.ctxt.adjust(expansion) {
Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
None => self.hir.get_module_parent(block),
};
(ident, scope)
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
F: FnOnce(&[hir::Freevar]) -> T,
{
let def_id = self.hir.local_def_id(fid);
match self.freevars(def_id) {
None => f(&[]),
Some(d) => f(&d),
}
}
}
fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
-> AssociatedItem
{
let id = tcx.hir.as_local_node_id(def_id).unwrap();
let parent_id = tcx.hir.get_parent(id);
let parent_def_id = tcx.hir.local_def_id(parent_id);
let parent_item = tcx.hir.expect_item(parent_id);
match parent_item.node {
hir::ItemImpl(.., ref impl_item_refs) => {
if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
impl_item_ref);
debug_assert_eq!(assoc_item.def_id, def_id);
return assoc_item;
}
}
hir::ItemTrait(.., ref trait_item_refs) => {
if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
&parent_item.vis,
trait_item_ref);
debug_assert_eq!(assoc_item.def_id, def_id);
return assoc_item;
}
}
_ => { }
}
span_bug!(parent_item.span,
"unexpected parent of trait or impl item or item not found: {:?}",
parent_item.node)
}
/// Calculates the Sized-constraint.
///
/// In fact, there are only a few options for the types in the constraint:
/// - an obviously-unsized type
/// - a type parameter or projection whose Sizedness can't be known
/// - a tuple of type parameters or projections, if there are multiple
/// such.
/// - a TyError, if a type contained itself. The representability
/// check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> &'tcx [Ty<'tcx>] {
let def = tcx.adt_def(def_id);
let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
v.fields.last()
}).flat_map(|f| {
def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
}).collect::<Vec<_>>());
debug!("adt_sized_constraint: {:?} => {:?}", def, result);
result
}
/// Calculates the dtorck constraint for a type.
fn adt_dtorck_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> DtorckConstraint<'tcx> {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
debug!("dtorck_constraint: {:?}", def);
if def.is_phantom_data() {
let result = DtorckConstraint {
outlives: vec![],
dtorck_types: vec![
tcx.mk_param_from_def(&tcx.generics_of(def_id).types[0])
]
};
debug!("dtorck_constraint: {:?} => {:?}", def, result);
return result;
}
let mut result = def.all_fields()
.map(|field| tcx.type_of(field.did))
.map(|fty| tcx.dtorck_constraint_for_ty(span, fty, 0, fty))
.collect::<Result<DtorckConstraint, ErrorReported>>()
.unwrap_or(DtorckConstraint::empty());
result.outlives.extend(tcx.destructor_constraints(def));
result.dedup();
debug!("dtorck_constraint: {:?} => {:?}", def, result);
result
}
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> Rc<Vec<DefId>> {
let id = tcx.hir.as_local_node_id(def_id).unwrap();
let item = tcx.hir.expect_item(id);
let vec: Vec<_> = match item.node {
hir::ItemTrait(.., ref trait_item_refs) => {
trait_item_refs.iter()
.map(|trait_item_ref| trait_item_ref.id)
.map(|id| tcx.hir.local_def_id(id.node_id))
.collect()
}
hir::ItemImpl(.., ref impl_item_refs) => {
impl_item_refs.iter()
.map(|impl_item_ref| impl_item_ref.id)
.map(|id| tcx.hir.local_def_id(id.node_id))
.collect()
}
_ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
};
Rc::new(vec)
}
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
tcx.hir.span_if_local(def_id).unwrap()
}
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
tcx.opt_associated_item(def_id)
.and_then(|associated_item| {
match associated_item.container {
TraitContainer(def_id) => Some(def_id),
ImplContainer(_) => None
}
})
}
/// See `ParamEnv` struct def'n for details.
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> ParamEnv<'tcx> {
// Compute the bounds on Self and the type parameters.
let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
let predicates = bounds.predicates;
// Finally, we have to normalize the bounds in the environment, in
// case they contain any associated type projections. This process
// can yield errors if the put in illegal associated types, like
// `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
// report these errors right here; this doesn't actually feel
// right to me, because constructing the environment feels like a
// kind of a "idempotent" action, but I'm not sure where would be
// a better place. In practice, we construct environments for
// every fn once during type checking, and we'll abort if there
// are any errors at that point, so after type checking you can be
// sure that this will succeed without errors anyway.
let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
traits::Reveal::UserFacing);
let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
});
let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
crate_num: CrateNum) -> Symbol {
assert_eq!(crate_num, LOCAL_CRATE);
tcx.sess.local_crate_disambiguator()
}
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
crate_num: CrateNum) -> Symbol {
assert_eq!(crate_num, LOCAL_CRATE);
tcx.crate_name.clone()
}
pub fn provide(providers: &mut ty::maps::Providers) {
util::provide(providers);
context::provide(providers);
*providers = ty::maps::Providers {
associated_item,
associated_item_def_ids,
adt_sized_constraint,
adt_dtorck_constraint,
def_span,
param_env,
trait_of_item,
crate_disambiguator,
original_crate_name,
trait_impls_of: trait_def::trait_impls_of_provider,
..*providers
};
}
pub fn provide_extern(providers: &mut ty::maps::Providers) {
*providers = ty::maps::Providers {
adt_sized_constraint,
adt_dtorck_constraint,
trait_impls_of: trait_def::trait_impls_of_provider,
param_env,
..*providers
};
}
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
pub inherent_impls: DefIdMap<Rc<Vec<DefId>>>,
}
/// A set of constraints that need to be satisfied in order for
/// a type to be valid for destruction.
#[derive(Clone, Debug)]
pub struct DtorckConstraint<'tcx> {
/// Types that are required to be alive in order for this
/// type to be valid for destruction.
pub outlives: Vec<ty::subst::Kind<'tcx>>,
/// Types that could not be resolved: projections and params.
pub dtorck_types: Vec<Ty<'tcx>>,
}
impl<'tcx> FromIterator<DtorckConstraint<'tcx>> for DtorckConstraint<'tcx>
{
fn from_iter<I: IntoIterator<Item=DtorckConstraint<'tcx>>>(iter: I) -> Self {
let mut result = Self::empty();
for constraint in iter {
result.outlives.extend(constraint.outlives);
result.dtorck_types.extend(constraint.dtorck_types);
}
result
}
}
impl<'tcx> DtorckConstraint<'tcx> {
fn empty() -> DtorckConstraint<'tcx> {
DtorckConstraint {
outlives: vec![],
dtorck_types: vec![]
}
}
fn dedup<'a>(&mut self) {
let mut outlives = FxHashSet();
let mut dtorck_types = FxHashSet();
self.outlives.retain(|&val| outlives.replace(val).is_none());
self.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none());
}
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct SymbolName {
// FIXME: we don't rely on interning or equality here - better have
// this be a `&'tcx str`.
pub name: InternedString
}
impl Deref for SymbolName {
type Target = str;
fn deref(&self) -> &str { &self.name }
}
impl fmt::Display for SymbolName {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.name, fmt)
}
}