rust/src/librustc_trans/abi.rs

999 lines
34 KiB
Rust

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef, AttributePlace};
use base;
use builder::Builder;
use common::{instance_ty, ty_fn_sig, type_is_fat_ptr, C_usize};
use context::CrateContext;
use cabi_x86;
use cabi_x86_64;
use cabi_x86_win64;
use cabi_arm;
use cabi_aarch64;
use cabi_powerpc;
use cabi_powerpc64;
use cabi_s390x;
use cabi_mips;
use cabi_mips64;
use cabi_asmjs;
use cabi_msp430;
use cabi_sparc;
use cabi_sparc64;
use cabi_nvptx;
use cabi_nvptx64;
use cabi_hexagon;
use machine::llalign_of_min;
use type_::Type;
use type_of;
use rustc::hir;
use rustc::ty::{self, Ty};
use rustc::ty::layout::{self, Layout, LayoutTyper, TyLayout, Size};
use libc::c_uint;
use std::cmp;
use std::iter;
pub use syntax::abi::Abi;
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
#[derive(Clone, Copy, PartialEq, Debug)]
enum ArgKind {
/// Pass the argument directly using the normal converted
/// LLVM type or by coercing to another specified type
Direct,
/// Pass the argument indirectly via a hidden pointer
Indirect,
/// Ignore the argument (useful for empty struct)
Ignore,
}
// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
// of this module
pub use self::attr_impl::ArgAttribute;
#[allow(non_upper_case_globals)]
#[allow(unused)]
mod attr_impl {
// The subset of llvm::Attribute needed for arguments, packed into a bitfield.
bitflags! {
#[derive(Default)]
pub struct ArgAttribute: u16 {
const ByVal = 1 << 0;
const NoAlias = 1 << 1;
const NoCapture = 1 << 2;
const NonNull = 1 << 3;
const ReadOnly = 1 << 4;
const SExt = 1 << 5;
const StructRet = 1 << 6;
const ZExt = 1 << 7;
const InReg = 1 << 8;
}
}
}
macro_rules! for_each_kind {
($flags: ident, $f: ident, $($kind: ident),+) => ({
$(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+
})
}
impl ArgAttribute {
fn for_each_kind<F>(&self, mut f: F) where F: FnMut(llvm::Attribute) {
for_each_kind!(self, f,
ByVal, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg)
}
}
/// A compact representation of LLVM attributes (at least those relevant for this module)
/// that can be manipulated without interacting with LLVM's Attribute machinery.
#[derive(Copy, Clone, Debug, Default)]
pub struct ArgAttributes {
regular: ArgAttribute,
dereferenceable_bytes: u64,
}
impl ArgAttributes {
pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
self.regular = self.regular | attr;
self
}
pub fn set_dereferenceable(&mut self, bytes: u64) -> &mut Self {
self.dereferenceable_bytes = bytes;
self
}
pub fn apply_llfn(&self, idx: AttributePlace, llfn: ValueRef) {
unsafe {
self.regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn));
if self.dereferenceable_bytes != 0 {
llvm::LLVMRustAddDereferenceableAttr(llfn,
idx.as_uint(),
self.dereferenceable_bytes);
}
}
}
pub fn apply_callsite(&self, idx: AttributePlace, callsite: ValueRef) {
unsafe {
self.regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite));
if self.dereferenceable_bytes != 0 {
llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite,
idx.as_uint(),
self.dereferenceable_bytes);
}
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum RegKind {
Integer,
Float,
Vector
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Reg {
pub kind: RegKind,
pub size: Size,
}
macro_rules! reg_ctor {
($name:ident, $kind:ident, $bits:expr) => {
pub fn $name() -> Reg {
Reg {
kind: RegKind::$kind,
size: Size::from_bits($bits)
}
}
}
}
impl Reg {
reg_ctor!(i8, Integer, 8);
reg_ctor!(i16, Integer, 16);
reg_ctor!(i32, Integer, 32);
reg_ctor!(i64, Integer, 64);
reg_ctor!(f32, Float, 32);
reg_ctor!(f64, Float, 64);
}
impl Reg {
fn llvm_type(&self, ccx: &CrateContext) -> Type {
match self.kind {
RegKind::Integer => Type::ix(ccx, self.size.bits()),
RegKind::Float => {
match self.size.bits() {
32 => Type::f32(ccx),
64 => Type::f64(ccx),
_ => bug!("unsupported float: {:?}", self)
}
}
RegKind::Vector => {
Type::vector(&Type::i8(ccx), self.size.bytes())
}
}
}
}
/// An argument passed entirely registers with the
/// same kind (e.g. HFA / HVA on PPC64 and AArch64).
#[derive(Copy, Clone)]
pub struct Uniform {
pub unit: Reg,
/// The total size of the argument, which can be:
/// * equal to `unit.size` (one scalar/vector)
/// * a multiple of `unit.size` (an array of scalar/vectors)
/// * if `unit.kind` is `Integer`, the last element
/// can be shorter, i.e. `{ i64, i64, i32 }` for
/// 64-bit integers with a total size of 20 bytes
pub total: Size,
}
impl From<Reg> for Uniform {
fn from(unit: Reg) -> Uniform {
Uniform {
unit,
total: unit.size
}
}
}
impl Uniform {
fn llvm_type(&self, ccx: &CrateContext) -> Type {
let llunit = self.unit.llvm_type(ccx);
if self.total <= self.unit.size {
return llunit;
}
let count = self.total.bytes() / self.unit.size.bytes();
let rem_bytes = self.total.bytes() % self.unit.size.bytes();
if rem_bytes == 0 {
return Type::array(&llunit, count);
}
// Only integers can be really split further.
assert_eq!(self.unit.kind, RegKind::Integer);
let args: Vec<_> = (0..count).map(|_| llunit)
.chain(iter::once(Type::ix(ccx, rem_bytes * 8)))
.collect();
Type::struct_(ccx, &args, false)
}
}
pub trait LayoutExt<'tcx> {
fn is_aggregate(&self) -> bool;
fn homogeneous_aggregate<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Option<Reg>;
}
impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
fn is_aggregate(&self) -> bool {
match *self.layout {
Layout::Scalar { .. } |
Layout::RawNullablePointer { .. } |
Layout::CEnum { .. } |
Layout::Vector { .. } => false,
Layout::Array { .. } |
Layout::FatPointer { .. } |
Layout::Univariant { .. } |
Layout::UntaggedUnion { .. } |
Layout::General { .. } |
Layout::StructWrappedNullablePointer { .. } => true
}
}
fn homogeneous_aggregate<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Option<Reg> {
match *self.layout {
// The primitives for this algorithm.
Layout::Scalar { value, .. } |
Layout::RawNullablePointer { value, .. } => {
let kind = match value {
layout::Int(_) |
layout::Pointer => RegKind::Integer,
layout::F32 |
layout::F64 => RegKind::Float
};
Some(Reg {
kind,
size: self.size(ccx)
})
}
Layout::CEnum { .. } => {
Some(Reg {
kind: RegKind::Integer,
size: self.size(ccx)
})
}
Layout::Vector { .. } => {
Some(Reg {
kind: RegKind::Vector,
size: self.size(ccx)
})
}
Layout::Array { count, .. } => {
if count > 0 {
self.field(ccx, 0).homogeneous_aggregate(ccx)
} else {
None
}
}
Layout::Univariant { ref variant, .. } => {
let mut unaligned_offset = Size::from_bytes(0);
let mut result = None;
for i in 0..self.field_count() {
if unaligned_offset != variant.offsets[i] {
return None;
}
let field = self.field(ccx, i);
match (result, field.homogeneous_aggregate(ccx)) {
// The field itself must be a homogeneous aggregate.
(_, None) => return None,
// If this is the first field, record the unit.
(None, Some(unit)) => {
result = Some(unit);
}
// For all following fields, the unit must be the same.
(Some(prev_unit), Some(unit)) => {
if prev_unit != unit {
return None;
}
}
}
// Keep track of the offset (without padding).
let size = field.size(ccx);
match unaligned_offset.checked_add(size, ccx) {
Some(offset) => unaligned_offset = offset,
None => return None
}
}
// There needs to be no padding.
if unaligned_offset != self.size(ccx) {
None
} else {
result
}
}
Layout::UntaggedUnion { .. } => {
let mut max = Size::from_bytes(0);
let mut result = None;
for i in 0..self.field_count() {
let field = self.field(ccx, i);
match (result, field.homogeneous_aggregate(ccx)) {
// The field itself must be a homogeneous aggregate.
(_, None) => return None,
// If this is the first field, record the unit.
(None, Some(unit)) => {
result = Some(unit);
}
// For all following fields, the unit must be the same.
(Some(prev_unit), Some(unit)) => {
if prev_unit != unit {
return None;
}
}
}
// Keep track of the offset (without padding).
let size = field.size(ccx);
if size > max {
max = size;
}
}
// There needs to be no padding.
if max != self.size(ccx) {
None
} else {
result
}
}
// Rust-specific types, which we can ignore for C ABIs.
Layout::FatPointer { .. } |
Layout::General { .. } |
Layout::StructWrappedNullablePointer { .. } => None
}
}
}
pub enum CastTarget {
Uniform(Uniform),
Pair(Reg, Reg)
}
impl From<Reg> for CastTarget {
fn from(unit: Reg) -> CastTarget {
CastTarget::Uniform(Uniform::from(unit))
}
}
impl From<Uniform> for CastTarget {
fn from(uniform: Uniform) -> CastTarget {
CastTarget::Uniform(uniform)
}
}
impl CastTarget {
fn llvm_type(&self, ccx: &CrateContext) -> Type {
match *self {
CastTarget::Uniform(u) => u.llvm_type(ccx),
CastTarget::Pair(a, b) => {
Type::struct_(ccx, &[
a.llvm_type(ccx),
b.llvm_type(ccx)
], false)
}
}
}
}
/// Information about how a specific C type
/// should be passed to or returned from a function
///
/// This is borrowed from clang's ABIInfo.h
#[derive(Clone, Copy, Debug)]
pub struct ArgType<'tcx> {
kind: ArgKind,
pub layout: TyLayout<'tcx>,
/// Coerced LLVM Type
pub cast: Option<Type>,
/// Dummy argument, which is emitted before the real argument
pub pad: Option<Type>,
/// LLVM attributes of argument
pub attrs: ArgAttributes
}
impl<'a, 'tcx> ArgType<'tcx> {
fn new(layout: TyLayout<'tcx>) -> ArgType<'tcx> {
ArgType {
kind: ArgKind::Direct,
layout,
cast: None,
pad: None,
attrs: ArgAttributes::default()
}
}
pub fn make_indirect(&mut self, ccx: &CrateContext<'a, 'tcx>) {
assert_eq!(self.kind, ArgKind::Direct);
// Wipe old attributes, likely not valid through indirection.
self.attrs = ArgAttributes::default();
let llarg_sz = self.layout.size(ccx).bytes();
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
self.attrs.set(ArgAttribute::NoAlias)
.set(ArgAttribute::NoCapture)
.set_dereferenceable(llarg_sz);
self.kind = ArgKind::Indirect;
}
pub fn ignore(&mut self) {
assert_eq!(self.kind, ArgKind::Direct);
self.kind = ArgKind::Ignore;
}
pub fn extend_integer_width_to(&mut self, bits: u64) {
// Only integers have signedness
let (i, signed) = match *self.layout {
Layout::Scalar { value, .. } => {
match value {
layout::Int(i) => {
if self.layout.ty.is_integral() {
(i, self.layout.ty.is_signed())
} else {
return;
}
}
_ => return
}
}
// Rust enum types that map onto C enums also need to follow
// the target ABI zero-/sign-extension rules.
Layout::CEnum { discr, signed, .. } => (discr, signed),
_ => return
};
if i.size().bits() < bits {
self.attrs.set(if signed {
ArgAttribute::SExt
} else {
ArgAttribute::ZExt
});
}
}
pub fn cast_to<T: Into<CastTarget>>(&mut self, ccx: &CrateContext, target: T) {
self.cast = Some(target.into().llvm_type(ccx));
}
pub fn pad_with(&mut self, ccx: &CrateContext, reg: Reg) {
self.pad = Some(reg.llvm_type(ccx));
}
pub fn is_indirect(&self) -> bool {
self.kind == ArgKind::Indirect
}
pub fn is_ignore(&self) -> bool {
self.kind == ArgKind::Ignore
}
/// Get the LLVM type for an lvalue of the original Rust type of
/// this argument/return, i.e. the result of `type_of::type_of`.
pub fn memory_ty(&self, ccx: &CrateContext<'a, 'tcx>) -> Type {
type_of::type_of(ccx, self.layout.ty)
}
/// Store a direct/indirect value described by this ArgType into a
/// lvalue for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
pub fn store(&self, bcx: &Builder<'a, 'tcx>, mut val: ValueRef, dst: ValueRef) {
if self.is_ignore() {
return;
}
let ccx = bcx.ccx;
if self.is_indirect() {
let llsz = C_usize(ccx, self.layout.size(ccx).bytes());
let llalign = self.layout.align(ccx).abi();
base::call_memcpy(bcx, dst, val, llsz, llalign as u32);
} else if let Some(ty) = self.cast {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_dst = bcx.pointercast(dst, ty.ptr_to());
let llalign = self.layout.align(ccx).abi();
bcx.store(val, cast_dst, Some(llalign as u32));
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let llscratch = bcx.alloca(ty, "abi_cast", None);
base::Lifetime::Start.call(bcx, llscratch);
// ...where we first store the value...
bcx.store(val, llscratch, None);
// ...and then memcpy it to the intended destination.
base::call_memcpy(bcx,
bcx.pointercast(dst, Type::i8p(ccx)),
bcx.pointercast(llscratch, Type::i8p(ccx)),
C_usize(ccx, self.layout.size(ccx).bytes()),
cmp::min(self.layout.align(ccx).abi() as u32,
llalign_of_min(ccx, ty)));
base::Lifetime::End.call(bcx, llscratch);
}
} else {
if self.layout.ty == ccx.tcx().types.bool {
val = bcx.zext(val, Type::i8(ccx));
}
bcx.store(val, dst, None);
}
}
pub fn store_fn_arg(&self, bcx: &Builder<'a, 'tcx>, idx: &mut usize, dst: ValueRef) {
if self.pad.is_some() {
*idx += 1;
}
if self.is_ignore() {
return;
}
let val = llvm::get_param(bcx.llfn(), *idx as c_uint);
*idx += 1;
self.store(bcx, val, dst);
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Clone, Debug)]
pub struct FnType<'tcx> {
/// The LLVM types of each argument.
pub args: Vec<ArgType<'tcx>>,
/// LLVM return type.
pub ret: ArgType<'tcx>,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl<'a, 'tcx> FnType<'tcx> {
pub fn of_instance(ccx: &CrateContext<'a, 'tcx>, instance: &ty::Instance<'tcx>)
-> Self {
let fn_ty = instance_ty(ccx.shared(), &instance);
let sig = ty_fn_sig(ccx, fn_ty);
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);
Self::new(ccx, sig, &[])
}
pub fn new(ccx: &CrateContext<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args);
fn_ty.adjust_for_abi(ccx, sig);
fn_ty
}
pub fn new_vtable(ccx: &CrateContext<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args);
// Don't pass the vtable, it's not an argument of the virtual fn.
fn_ty.args[1].ignore();
fn_ty.adjust_for_abi(ccx, sig);
fn_ty
}
pub fn unadjusted(ccx: &CrateContext<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
debug!("FnType::unadjusted({:?}, {:?})", sig, extra_args);
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(sig.abi) {
RustIntrinsic | PlatformIntrinsic |
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => bug!("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
Thiscall => llvm::X86_ThisCall,
C => llvm::CCallConv,
Unadjusted => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
SysV64 => llvm::X86_64_SysV,
Aapcs => llvm::ArmAapcsCallConv,
PtxKernel => llvm::PtxKernel,
Msp430Interrupt => llvm::Msp430Intr,
X86Interrupt => llvm::X86_Intr,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
};
let mut inputs = sig.inputs();
let extra_args = if sig.abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match sig.inputs().last().unwrap().sty {
ty::TyTuple(ref tupled_arguments, _) => {
inputs = &sig.inputs()[0..sig.inputs().len() - 1];
tupled_arguments
}
_ => {
bug!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let target = &ccx.sess().target.target;
let win_x64_gnu = target.target_os == "windows"
&& target.arch == "x86_64"
&& target.target_env == "gnu";
let linux_s390x = target.target_os == "linux"
&& target.arch == "s390x"
&& target.target_env == "gnu";
let rust_abi = match sig.abi {
RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true,
_ => false
};
let arg_of = |ty: Ty<'tcx>, is_return: bool| {
let mut arg = ArgType::new(ccx.layout_of(ty));
if ty.is_bool() {
arg.attrs.set(ArgAttribute::ZExt);
} else {
if arg.layout.size(ccx).bytes() == 0 {
// For some forsaken reason, x86_64-pc-windows-gnu
// doesn't ignore zero-sized struct arguments.
// The same is true for s390x-unknown-linux-gnu.
if is_return || rust_abi ||
(!win_x64_gnu && !linux_s390x) {
arg.ignore();
}
}
}
arg
};
let ret_ty = sig.output();
let mut ret = arg_of(ret_ty, true);
if !type_is_fat_ptr(ccx, ret_ty) {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
if ret_ty.is_box() {
// `Box` pointer return values never alias because ownership
// is transferred
ret.attrs.set(ArgAttribute::NoAlias);
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::TyRef(_, ty::TypeAndMut { ty, .. }) => {
ret.attrs.set_dereferenceable(ccx.size_of(ty));
}
ty::TyAdt(def, _) if def.is_box() => {
ret.attrs.set_dereferenceable(ccx.size_of(ret_ty.boxed_ty()));
}
_ => {}
}
}
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
// Handle safe Rust thin and fat pointers.
let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty {
// `Box` pointer parameters never alias because ownership is transferred
ty::TyAdt(def, _) if def.is_box() => {
arg.attrs.set(ArgAttribute::NoAlias);
Some(ty.boxed_ty())
}
ty::TyRef(b, mt) => {
use rustc::ty::{BrAnon, ReLateBound};
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
// both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
// on memory dependencies rather than pointer equality
let is_freeze = ccx.shared().type_is_freeze(mt.ty);
if mt.mutbl != hir::MutMutable && is_freeze {
arg.attrs.set(ArgAttribute::NoAlias);
}
if mt.mutbl == hir::MutImmutable && is_freeze {
arg.attrs.set(ArgAttribute::ReadOnly);
}
// When a reference in an argument has no named lifetime, it's
// impossible for that reference to escape this function
// (returned or stored beyond the call by a closure).
if let ReLateBound(_, BrAnon(_)) = *b {
arg.attrs.set(ArgAttribute::NoCapture);
}
Some(mt.ty)
}
_ => None
};
for ty in inputs.iter().chain(extra_args.iter()) {
let mut arg = arg_of(ty, false);
if let ty::layout::FatPointer { .. } = *arg.layout {
let mut data = ArgType::new(arg.layout.field(ccx, 0));
let mut info = ArgType::new(arg.layout.field(ccx, 1));
if let Some(inner) = rust_ptr_attrs(ty, &mut data) {
data.attrs.set(ArgAttribute::NonNull);
if ccx.tcx().struct_tail(inner).is_trait() {
// vtables can be safely marked non-null, readonly
// and noalias.
info.attrs.set(ArgAttribute::NonNull);
info.attrs.set(ArgAttribute::ReadOnly);
info.attrs.set(ArgAttribute::NoAlias);
}
}
args.push(data);
args.push(info);
} else {
if let Some(inner) = rust_ptr_attrs(ty, &mut arg) {
arg.attrs.set_dereferenceable(ccx.size_of(inner));
}
args.push(arg);
}
}
FnType {
args,
ret,
variadic: sig.variadic,
cconv,
}
}
fn adjust_for_abi(&mut self,
ccx: &CrateContext<'a, 'tcx>,
sig: ty::FnSig<'tcx>) {
let abi = sig.abi;
if abi == Abi::Unadjusted { return }
if abi == Abi::Rust || abi == Abi::RustCall ||
abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
let fixup = |arg: &mut ArgType<'tcx>| {
if !arg.layout.is_aggregate() {
return;
}
let size = arg.layout.size(ccx);
if let Some(unit) = arg.layout.homogeneous_aggregate(ccx) {
// Replace newtypes with their inner-most type.
if unit.size == size {
// Needs a cast as we've unpacked a newtype.
arg.cast_to(ccx, unit);
return;
}
// Pairs of floats.
if unit.kind == RegKind::Float {
if unit.size.checked_mul(2, ccx) == Some(size) {
// FIXME(eddyb) This should be using Uniform instead of a pair,
// but the resulting [2 x float/double] breaks emscripten.
// See https://github.com/kripken/emscripten-fastcomp/issues/178.
arg.cast_to(ccx, CastTarget::Pair(unit, unit));
return;
}
}
}
if size > layout::Pointer.size(ccx) {
arg.make_indirect(ccx);
} else {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast_to(ccx, Reg {
kind: RegKind::Integer,
size
});
}
};
// Fat pointers are returned by-value.
if !self.ret.is_ignore() {
if !type_is_fat_ptr(ccx, sig.output()) {
fixup(&mut self.ret);
}
}
for arg in &mut self.args {
if arg.is_ignore() { continue; }
fixup(arg);
}
if self.ret.is_indirect() {
self.ret.attrs.set(ArgAttribute::StructRet);
}
return;
}
match &ccx.sess().target.target.arch[..] {
"x86" => {
let flavor = if abi == Abi::Fastcall {
cabi_x86::Flavor::Fastcall
} else {
cabi_x86::Flavor::General
};
cabi_x86::compute_abi_info(ccx, self, flavor);
},
"x86_64" => if abi == Abi::SysV64 {
cabi_x86_64::compute_abi_info(ccx, self);
} else if abi == Abi::Win64 || ccx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(ccx, self);
} else {
cabi_x86_64::compute_abi_info(ccx, self);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, self),
"arm" => cabi_arm::compute_abi_info(ccx, self),
"mips" => cabi_mips::compute_abi_info(ccx, self),
"mips64" => cabi_mips64::compute_abi_info(ccx, self),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self),
"s390x" => cabi_s390x::compute_abi_info(ccx, self),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, self),
"wasm32" => cabi_asmjs::compute_abi_info(ccx, self),
"msp430" => cabi_msp430::compute_abi_info(ccx, self),
"sparc" => cabi_sparc::compute_abi_info(ccx, self),
"sparc64" => cabi_sparc64::compute_abi_info(ccx, self),
"nvptx" => cabi_nvptx::compute_abi_info(ccx, self),
"nvptx64" => cabi_nvptx64::compute_abi_info(ccx, self),
"hexagon" => cabi_hexagon::compute_abi_info(ccx, self),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if self.ret.is_indirect() {
self.ret.attrs.set(ArgAttribute::StructRet);
}
}
pub fn llvm_type(&self, ccx: &CrateContext<'a, 'tcx>) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = if self.ret.is_ignore() {
Type::void(ccx)
} else if self.ret.is_indirect() {
llargument_tys.push(self.ret.memory_ty(ccx).ptr_to());
Type::void(ccx)
} else {
self.ret.cast.unwrap_or_else(|| {
type_of::immediate_type_of(ccx, self.ret.layout.ty)
})
};
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty);
}
let llarg_ty = if arg.is_indirect() {
arg.memory_ty(ccx).ptr_to()
} else {
arg.cast.unwrap_or_else(|| {
type_of::immediate_type_of(ccx, arg.layout.ty)
})
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn apply_attrs_llfn(&self, llfn: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
i += 1;
}
}
}
pub fn apply_attrs_callsite(&self, callsite: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
i += 1;
}
}
if self.cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, self.cconv);
}
}
}
pub fn align_up_to(off: u64, a: u64) -> u64 {
(off + a - 1) / a * a
}