rust/compiler/rustc_mir_build/src/build/expr/as_place.rs

765 lines
30 KiB
Rust

//! See docs in build/expr/mod.rs
use crate::build::expr::category::Category;
use crate::build::ForGuard::{OutsideGuard, RefWithinGuard};
use crate::build::{BlockAnd, BlockAndExtension, Builder};
use crate::thir::*;
use rustc_hir::def_id::DefId;
use rustc_hir::HirId;
use rustc_middle::hir::place::ProjectionKind as HirProjectionKind;
use rustc_middle::middle::region;
use rustc_middle::mir::AssertKind::BoundsCheck;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty, TyCtxt, Variance};
use rustc_span::Span;
use rustc_target::abi::VariantIdx;
use rustc_index::vec::Idx;
/// The "outermost" place that holds this value.
#[derive(Copy, Clone)]
crate enum PlaceBase {
/// Denotes the start of a `Place`.
Local(Local),
/// When building place for an expression within a closure, the place might start off a
/// captured path. When `capture_disjoint_fields` is enabled, we might not know the capture
/// index (within the desugared closure) of the captured path until most of the projections
/// are applied. We use `PlaceBase::Upvar` to keep track of the root variable off of which the
/// captured path starts, the closure the capture belongs to and the trait the closure
/// implements.
///
/// Once we have figured out the capture index, we can convert the place builder to start from
/// `PlaceBase::Local`.
///
/// Consider the following example
/// ```rust
/// let t = (10, (10, (10, 10)));
///
/// let c = || {
/// println!("{}", t.0.0.0);
/// };
/// ```
/// Here the THIR expression for `t.0.0.0` will be something like
///
/// ```
/// * Field(0)
/// * Field(0)
/// * Field(0)
/// * UpvarRef(t)
/// ```
///
/// When `capture_disjoint_fields` is enabled, `t.0.0.0` is captured and we won't be able to
/// figure out that it is captured until all the `Field` projections are applied.
Upvar {
/// HirId of the upvar
var_hir_id: HirId,
/// DefId of the closure
closure_def_id: DefId,
/// The trait closure implements, `Fn`, `FnMut`, `FnOnce`
closure_kind: ty::ClosureKind,
},
}
/// `PlaceBuilder` is used to create places during MIR construction. It allows you to "build up" a
/// place by pushing more and more projections onto the end, and then convert the final set into a
/// place using the `into_place` method.
///
/// This is used internally when building a place for an expression like `a.b.c`. The fields `b`
/// and `c` can be progressively pushed onto the place builder that is created when converting `a`.
#[derive(Clone)]
crate struct PlaceBuilder<'tcx> {
base: PlaceBase,
projection: Vec<PlaceElem<'tcx>>,
}
/// Given a list of MIR projections, convert them to list of HIR ProjectionKind.
/// The projections are truncated to represent a path that might be captured by a
/// closure/generator. This implies the vector returned from this function doesn't contain
/// ProjectionElems `Downcast`, `ConstantIndex`, `Index`, or `Subslice` because those will never be
/// part of a path that is captued by a closure. We stop applying projections once we see the first
/// projection that isn't captured by a closure.
fn convert_to_hir_projections_and_truncate_for_capture<'tcx>(
mir_projections: &[PlaceElem<'tcx>],
) -> Vec<HirProjectionKind> {
let mut hir_projections = Vec::new();
for mir_projection in mir_projections {
let hir_projection = match mir_projection {
ProjectionElem::Deref => HirProjectionKind::Deref,
ProjectionElem::Field(field, _) => {
// We will never encouter this for multivariant enums,
// read the comment for `Downcast`.
HirProjectionKind::Field(field.index() as u32, VariantIdx::new(0))
}
ProjectionElem::Downcast(..) => {
// This projections exist only for enums that have
// multiple variants. Since such enums that are captured
// completely, we can stop here.
break;
}
ProjectionElem::Index(..)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. } => {
// We don't capture array-access projections.
// We can stop here as arrays are captured completely.
break;
}
};
hir_projections.push(hir_projection);
}
hir_projections
}
/// Return true if the `proj_possible_ancestor` represents an ancestor path
/// to `proj_capture` or `proj_possible_ancestor` is same as `proj_capture`,
/// assuming they both start off of the same root variable.
///
/// **Note:** It's the caller's responsibility to ensure that both lists of projections
/// start off of the same root variable.
///
/// Eg: 1. `foo.x` which is represented using `projections=[Field(x)]` is an ancestor of
/// `foo.x.y` which is represented using `projections=[Field(x), Field(y)]`.
/// Note both `foo.x` and `foo.x.y` start off of the same root variable `foo`.
/// 2. Since we only look at the projections here function will return `bar.x` as an a valid
/// ancestor of `foo.x.y`. It's the caller's responsibility to ensure that both projections
/// list are being applied to the same root variable.
fn is_ancestor_or_same_capture(
proj_possible_ancestor: &Vec<HirProjectionKind>,
proj_capture: &[HirProjectionKind],
) -> bool {
// We want to make sure `is_ancestor_or_same_capture("x.0.0", "x.0")` to return false.
// Therefore we can't just check if all projections are same in the zipped iterator below.
if proj_possible_ancestor.len() > proj_capture.len() {
return false;
}
proj_possible_ancestor.iter().zip(proj_capture).all(|(a, b)| a == b)
}
/// Computes the index of a capture within the desugared closure provided the closure's
/// `closure_min_captures` and the capture's index of the capture in the
/// `ty::MinCaptureList` of the root variable `var_hir_id`.
fn compute_capture_idx<'tcx>(
closure_min_captures: &ty::RootVariableMinCaptureList<'tcx>,
var_hir_id: HirId,
root_var_idx: usize,
) -> usize {
let mut res = 0;
for (var_id, capture_list) in closure_min_captures {
if *var_id == var_hir_id {
res += root_var_idx;
break;
} else {
res += capture_list.len();
}
}
res
}
/// Given a closure, returns the index of a capture within the desugared closure struct and the
/// `ty::CapturedPlace` which is the ancestor of the Place represented using the `var_hir_id`
/// and `projection`.
///
/// Note there will be at most one ancestor for any given Place.
///
/// Returns None, when the ancestor is not found.
fn find_capture_matching_projections<'a, 'tcx>(
typeck_results: &'a ty::TypeckResults<'tcx>,
var_hir_id: HirId,
closure_def_id: DefId,
projections: &[PlaceElem<'tcx>],
) -> Option<(usize, &'a ty::CapturedPlace<'tcx>)> {
let closure_min_captures = typeck_results.closure_min_captures.get(&closure_def_id)?;
let root_variable_min_captures = closure_min_captures.get(&var_hir_id)?;
let hir_projections = convert_to_hir_projections_and_truncate_for_capture(projections);
// If an ancestor is found, `idx` is the index within the list of captured places
// for root variable `var_hir_id` and `capture` is the `ty::CapturedPlace` itself.
let (idx, capture) = root_variable_min_captures.iter().enumerate().find(|(_, capture)| {
let possible_ancestor_proj_kinds =
capture.place.projections.iter().map(|proj| proj.kind).collect();
is_ancestor_or_same_capture(&possible_ancestor_proj_kinds, &hir_projections)
})?;
// Convert index to be from the presepective of the entire closure_min_captures map
// instead of just the root variable capture list
Some((compute_capture_idx(closure_min_captures, var_hir_id, idx), capture))
}
/// Takes a PlaceBuilder and resolves the upvar (if any) within it, so that the
/// `PlaceBuilder` now starts from `PlaceBase::Local`.
///
/// Returns a Result with the error being the HirId of the Upvar that was not found.
fn to_upvars_resolved_place_builder<'a, 'tcx>(
from_builder: PlaceBuilder<'tcx>,
tcx: TyCtxt<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
) -> Result<PlaceBuilder<'tcx>, HirId> {
match from_builder.base {
PlaceBase::Local(_) => Ok(from_builder),
PlaceBase::Upvar { var_hir_id, closure_def_id, closure_kind } => {
// Captures are represented using fields inside a structure.
// This represents accessing self in the closure structure
let mut upvar_resolved_place_builder = PlaceBuilder::from(Local::new(1));
match closure_kind {
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
upvar_resolved_place_builder = upvar_resolved_place_builder.deref();
}
ty::ClosureKind::FnOnce => {}
}
let (capture_index, capture) = if let Some(capture_details) =
find_capture_matching_projections(
typeck_results,
var_hir_id,
closure_def_id,
&from_builder.projection,
) {
capture_details
} else {
if !tcx.features().capture_disjoint_fields {
bug!(
"No associated capture found for {:?}[{:#?}] even though \
capture_disjoint_fields isn't enabled",
var_hir_id,
from_builder.projection
)
} else {
// FIXME(project-rfc-2229#24): Handle this case properly
debug!(
"No associated capture found for {:?}[{:#?}]",
var_hir_id, from_builder.projection,
);
}
return Err(var_hir_id);
};
let closure_ty = typeck_results
.node_type(tcx.hir().local_def_id_to_hir_id(closure_def_id.expect_local()));
let substs = match closure_ty.kind() {
ty::Closure(_, substs) => ty::UpvarSubsts::Closure(substs),
ty::Generator(_, substs, _) => ty::UpvarSubsts::Generator(substs),
_ => bug!("Lowering capture for non-closure type {:?}", closure_ty),
};
// Access the capture by accessing the field within the Closure struct.
//
// We must have inferred the capture types since we are building MIR, therefore
// it's safe to call `tuple_element_ty` and we can unwrap here because
// we know that the capture exists and is the `capture_index`-th capture.
let var_ty = substs.tupled_upvars_ty().tuple_element_ty(capture_index).unwrap();
upvar_resolved_place_builder =
upvar_resolved_place_builder.field(Field::new(capture_index), var_ty);
// If the variable is captured via ByRef(Immutable/Mutable) Borrow,
// we need to deref it
upvar_resolved_place_builder = match capture.info.capture_kind {
ty::UpvarCapture::ByRef(_) => upvar_resolved_place_builder.deref(),
ty::UpvarCapture::ByValue(_) => upvar_resolved_place_builder,
};
let next_projection = capture.place.projections.len();
let mut curr_projections = from_builder.projection;
// We used some of the projections to build the capture itself,
// now we apply the remaining to the upvar resolved place.
upvar_resolved_place_builder
.projection
.extend(curr_projections.drain(next_projection..));
Ok(upvar_resolved_place_builder)
}
}
}
impl<'tcx> PlaceBuilder<'tcx> {
crate fn into_place<'a>(
self,
tcx: TyCtxt<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
) -> Place<'tcx> {
if let PlaceBase::Local(local) = self.base {
Place { local, projection: tcx.intern_place_elems(&self.projection) }
} else {
self.expect_upvars_resolved(tcx, typeck_results).into_place(tcx, typeck_results)
}
}
fn expect_upvars_resolved<'a>(
self,
tcx: TyCtxt<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
) -> PlaceBuilder<'tcx> {
to_upvars_resolved_place_builder(self, tcx, typeck_results).unwrap()
}
crate fn base(&self) -> PlaceBase {
self.base
}
crate fn field(self, f: Field, ty: Ty<'tcx>) -> Self {
self.project(PlaceElem::Field(f, ty))
}
fn deref(self) -> Self {
self.project(PlaceElem::Deref)
}
fn index(self, index: Local) -> Self {
self.project(PlaceElem::Index(index))
}
fn project(mut self, elem: PlaceElem<'tcx>) -> Self {
self.projection.push(elem);
self
}
}
impl<'tcx> From<Local> for PlaceBuilder<'tcx> {
fn from(local: Local) -> Self {
Self { base: PlaceBase::Local(local), projection: Vec::new() }
}
}
impl<'tcx> From<PlaceBase> for PlaceBuilder<'tcx> {
fn from(base: PlaceBase) -> Self {
Self { base, projection: Vec::new() }
}
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// Compile `expr`, yielding a place that we can move from etc.
///
/// WARNING: Any user code might:
/// * Invalidate any slice bounds checks performed.
/// * Change the address that this `Place` refers to.
/// * Modify the memory that this place refers to.
/// * Invalidate the memory that this place refers to, this will be caught
/// by borrow checking.
///
/// Extra care is needed if any user code is allowed to run between calling
/// this method and using it, as is the case for `match` and index
/// expressions.
crate fn as_place<M>(&mut self, mut block: BasicBlock, expr: M) -> BlockAnd<Place<'tcx>>
where
M: Mirror<'tcx, Output = Expr<'tcx>>,
{
let place_builder = unpack!(block = self.as_place_builder(block, expr));
block.and(place_builder.into_place(self.hir.tcx(), self.hir.typeck_results()))
}
/// This is used when constructing a compound `Place`, so that we can avoid creating
/// intermediate `Place` values until we know the full set of projections.
crate fn as_place_builder<M>(
&mut self,
block: BasicBlock,
expr: M,
) -> BlockAnd<PlaceBuilder<'tcx>>
where
M: Mirror<'tcx, Output = Expr<'tcx>>,
{
let expr = self.hir.mirror(expr);
self.expr_as_place(block, expr, Mutability::Mut, None)
}
/// Compile `expr`, yielding a place that we can move from etc.
/// Mutability note: The caller of this method promises only to read from the resulting
/// place. The place itself may or may not be mutable:
/// * If this expr is a place expr like a.b, then we will return that place.
/// * Otherwise, a temporary is created: in that event, it will be an immutable temporary.
crate fn as_read_only_place<M>(
&mut self,
mut block: BasicBlock,
expr: M,
) -> BlockAnd<Place<'tcx>>
where
M: Mirror<'tcx, Output = Expr<'tcx>>,
{
let place_builder = unpack!(block = self.as_read_only_place_builder(block, expr));
block.and(place_builder.into_place(self.hir.tcx(), self.hir.typeck_results()))
}
/// This is used when constructing a compound `Place`, so that we can avoid creating
/// intermediate `Place` values until we know the full set of projections.
/// Mutability note: The caller of this method promises only to read from the resulting
/// place. The place itself may or may not be mutable:
/// * If this expr is a place expr like a.b, then we will return that place.
/// * Otherwise, a temporary is created: in that event, it will be an immutable temporary.
fn as_read_only_place_builder<M>(
&mut self,
block: BasicBlock,
expr: M,
) -> BlockAnd<PlaceBuilder<'tcx>>
where
M: Mirror<'tcx, Output = Expr<'tcx>>,
{
let expr = self.hir.mirror(expr);
self.expr_as_place(block, expr, Mutability::Not, None)
}
fn expr_as_place(
&mut self,
mut block: BasicBlock,
expr: Expr<'tcx>,
mutability: Mutability,
fake_borrow_temps: Option<&mut Vec<Local>>,
) -> BlockAnd<PlaceBuilder<'tcx>> {
debug!("expr_as_place(block={:?}, expr={:?}, mutability={:?})", block, expr, mutability);
let this = self;
let expr_span = expr.span;
let source_info = this.source_info(expr_span);
match expr.kind {
ExprKind::Scope { region_scope, lint_level, value } => {
this.in_scope((region_scope, source_info), lint_level, |this| {
let value = this.hir.mirror(value);
this.expr_as_place(block, value, mutability, fake_borrow_temps)
})
}
ExprKind::Field { lhs, name } => {
let lhs = this.hir.mirror(lhs);
let place_builder =
unpack!(block = this.expr_as_place(block, lhs, mutability, fake_borrow_temps,));
block.and(place_builder.field(name, expr.ty))
}
ExprKind::Deref { arg } => {
let arg = this.hir.mirror(arg);
let place_builder =
unpack!(block = this.expr_as_place(block, arg, mutability, fake_borrow_temps,));
block.and(place_builder.deref())
}
ExprKind::Index { lhs, index } => this.lower_index_expression(
block,
lhs,
index,
mutability,
fake_borrow_temps,
expr.temp_lifetime,
expr_span,
source_info,
),
ExprKind::UpvarRef { closure_def_id, var_hir_id } => {
let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id.expect_local());
this.lower_captured_upvar(block, upvar_id)
}
ExprKind::VarRef { id } => {
let place_builder = if this.is_bound_var_in_guard(id) {
let index = this.var_local_id(id, RefWithinGuard);
PlaceBuilder::from(index).deref()
} else {
let index = this.var_local_id(id, OutsideGuard);
PlaceBuilder::from(index)
};
block.and(place_builder)
}
ExprKind::PlaceTypeAscription { source, user_ty } => {
let source = this.hir.mirror(source);
let place_builder = unpack!(
block = this.expr_as_place(block, source, mutability, fake_borrow_temps,)
);
if let Some(user_ty) = user_ty {
let annotation_index =
this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation {
span: source_info.span,
user_ty,
inferred_ty: expr.ty,
});
let place =
place_builder.clone().into_place(this.hir.tcx(), this.hir.typeck_results());
this.cfg.push(
block,
Statement {
source_info,
kind: StatementKind::AscribeUserType(
box (
place,
UserTypeProjection { base: annotation_index, projs: vec![] },
),
Variance::Invariant,
),
},
);
}
block.and(place_builder)
}
ExprKind::ValueTypeAscription { source, user_ty } => {
let source = this.hir.mirror(source);
let temp =
unpack!(block = this.as_temp(block, source.temp_lifetime, source, mutability));
if let Some(user_ty) = user_ty {
let annotation_index =
this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation {
span: source_info.span,
user_ty,
inferred_ty: expr.ty,
});
this.cfg.push(
block,
Statement {
source_info,
kind: StatementKind::AscribeUserType(
box (
Place::from(temp),
UserTypeProjection { base: annotation_index, projs: vec![] },
),
Variance::Invariant,
),
},
);
}
block.and(PlaceBuilder::from(temp))
}
ExprKind::Array { .. }
| ExprKind::Tuple { .. }
| ExprKind::Adt { .. }
| ExprKind::Closure { .. }
| ExprKind::Unary { .. }
| ExprKind::Binary { .. }
| ExprKind::LogicalOp { .. }
| ExprKind::Box { .. }
| ExprKind::Cast { .. }
| ExprKind::Use { .. }
| ExprKind::NeverToAny { .. }
| ExprKind::Pointer { .. }
| ExprKind::Repeat { .. }
| ExprKind::Borrow { .. }
| ExprKind::AddressOf { .. }
| ExprKind::Match { .. }
| ExprKind::If { .. }
| ExprKind::Loop { .. }
| ExprKind::Block { .. }
| ExprKind::Assign { .. }
| ExprKind::AssignOp { .. }
| ExprKind::Break { .. }
| ExprKind::Continue { .. }
| ExprKind::Return { .. }
| ExprKind::Literal { .. }
| ExprKind::ConstBlock { .. }
| ExprKind::StaticRef { .. }
| ExprKind::InlineAsm { .. }
| ExprKind::LlvmInlineAsm { .. }
| ExprKind::Yield { .. }
| ExprKind::ThreadLocalRef(_)
| ExprKind::Call { .. } => {
// these are not places, so we need to make a temporary.
debug_assert!(!matches!(Category::of(&expr.kind), Some(Category::Place)));
let temp =
unpack!(block = this.as_temp(block, expr.temp_lifetime, expr, mutability));
block.and(PlaceBuilder::from(temp))
}
}
}
/// Lower a captured upvar. Note we might not know the actual capture index,
/// so we create a place starting from `PlaceBase::Upvar`, which will be resolved
/// once all projections that allow us to indentify a capture have been applied.
fn lower_captured_upvar(
&mut self,
block: BasicBlock,
upvar_id: ty::UpvarId,
) -> BlockAnd<PlaceBuilder<'tcx>> {
let closure_ty = self
.hir
.typeck_results()
.node_type(self.hir.tcx().hir().local_def_id_to_hir_id(upvar_id.closure_expr_id));
let closure_kind = if let ty::Closure(_, closure_substs) = closure_ty.kind() {
self.hir.infcx().closure_kind(closure_substs).unwrap()
} else {
// Generators are considered FnOnce.
ty::ClosureKind::FnOnce
};
block.and(PlaceBuilder::from(PlaceBase::Upvar {
var_hir_id: upvar_id.var_path.hir_id,
closure_def_id: upvar_id.closure_expr_id.to_def_id(),
closure_kind,
}))
}
/// Lower an index expression
///
/// This has two complications;
///
/// * We need to do a bounds check.
/// * We need to ensure that the bounds check can't be invalidated using an
/// expression like `x[1][{x = y; 2}]`. We use fake borrows here to ensure
/// that this is the case.
fn lower_index_expression(
&mut self,
mut block: BasicBlock,
base: ExprRef<'tcx>,
index: ExprRef<'tcx>,
mutability: Mutability,
fake_borrow_temps: Option<&mut Vec<Local>>,
temp_lifetime: Option<region::Scope>,
expr_span: Span,
source_info: SourceInfo,
) -> BlockAnd<PlaceBuilder<'tcx>> {
let lhs = self.hir.mirror(base);
let base_fake_borrow_temps = &mut Vec::new();
let is_outermost_index = fake_borrow_temps.is_none();
let fake_borrow_temps = fake_borrow_temps.unwrap_or(base_fake_borrow_temps);
let mut base_place =
unpack!(block = self.expr_as_place(block, lhs, mutability, Some(fake_borrow_temps),));
// Making this a *fresh* temporary means we do not have to worry about
// the index changing later: Nothing will ever change this temporary.
// The "retagging" transformation (for Stacked Borrows) relies on this.
let idx = unpack!(block = self.as_temp(block, temp_lifetime, index, Mutability::Not,));
block = self.bounds_check(
block,
base_place.clone().into_place(self.hir.tcx(), self.hir.typeck_results()),
idx,
expr_span,
source_info,
);
if is_outermost_index {
self.read_fake_borrows(block, fake_borrow_temps, source_info)
} else {
base_place =
base_place.expect_upvars_resolved(self.hir.tcx(), self.hir.typeck_results());
self.add_fake_borrows_of_base(
&base_place,
block,
fake_borrow_temps,
expr_span,
source_info,
);
}
block.and(base_place.index(idx))
}
fn bounds_check(
&mut self,
block: BasicBlock,
slice: Place<'tcx>,
index: Local,
expr_span: Span,
source_info: SourceInfo,
) -> BasicBlock {
let usize_ty = self.hir.usize_ty();
let bool_ty = self.hir.bool_ty();
// bounds check:
let len = self.temp(usize_ty, expr_span);
let lt = self.temp(bool_ty, expr_span);
// len = len(slice)
self.cfg.push_assign(block, source_info, len, Rvalue::Len(slice));
// lt = idx < len
self.cfg.push_assign(
block,
source_info,
lt,
Rvalue::BinaryOp(
BinOp::Lt,
box (Operand::Copy(Place::from(index)), Operand::Copy(len)),
),
);
let msg = BoundsCheck { len: Operand::Move(len), index: Operand::Copy(Place::from(index)) };
// assert!(lt, "...")
self.assert(block, Operand::Move(lt), true, msg, expr_span)
}
fn add_fake_borrows_of_base(
&mut self,
base_place: &PlaceBuilder<'tcx>,
block: BasicBlock,
fake_borrow_temps: &mut Vec<Local>,
expr_span: Span,
source_info: SourceInfo,
) {
let tcx = self.hir.tcx();
let local = match base_place.base {
PlaceBase::Local(local) => local,
PlaceBase::Upvar { .. } => bug!("Expected PlacseBase::Local found Upvar"),
};
let place_ty = Place::ty_from(local, &base_place.projection, &self.local_decls, tcx);
if let ty::Slice(_) = place_ty.ty.kind() {
// We need to create fake borrows to ensure that the bounds
// check that we just did stays valid. Since we can't assign to
// unsized values, we only need to ensure that none of the
// pointers in the base place are modified.
for (idx, elem) in base_place.projection.iter().enumerate().rev() {
match elem {
ProjectionElem::Deref => {
let fake_borrow_deref_ty = Place::ty_from(
local,
&base_place.projection[..idx],
&self.local_decls,
tcx,
)
.ty;
let fake_borrow_ty =
tcx.mk_imm_ref(tcx.lifetimes.re_erased, fake_borrow_deref_ty);
let fake_borrow_temp =
self.local_decls.push(LocalDecl::new(fake_borrow_ty, expr_span));
let projection = tcx.intern_place_elems(&base_place.projection[..idx]);
self.cfg.push_assign(
block,
source_info,
fake_borrow_temp.into(),
Rvalue::Ref(
tcx.lifetimes.re_erased,
BorrowKind::Shallow,
Place { local, projection },
),
);
fake_borrow_temps.push(fake_borrow_temp);
}
ProjectionElem::Index(_) => {
let index_ty = Place::ty_from(
local,
&base_place.projection[..idx],
&self.local_decls,
tcx,
);
match index_ty.ty.kind() {
// The previous index expression has already
// done any index expressions needed here.
ty::Slice(_) => break,
ty::Array(..) => (),
_ => bug!("unexpected index base"),
}
}
ProjectionElem::Field(..)
| ProjectionElem::Downcast(..)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. } => (),
}
}
}
}
fn read_fake_borrows(
&mut self,
bb: BasicBlock,
fake_borrow_temps: &mut Vec<Local>,
source_info: SourceInfo,
) {
// All indexes have been evaluated now, read all of the
// fake borrows so that they are live across those index
// expressions.
for temp in fake_borrow_temps {
self.cfg.push_fake_read(bb, source_info, FakeReadCause::ForIndex, Place::from(*temp));
}
}
}