rust/src/librustdoc/clean/mod.rs

2365 lines
93 KiB
Rust

//! This module contains the "cleaned" pieces of the AST, and the functions
//! that clean them.
mod auto_trait;
mod blanket_impl;
crate mod cfg;
crate mod inline;
mod simplify;
crate mod types;
crate mod utils;
use rustc_ast as ast;
use rustc_attr as attr;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_index::vec::{Idx, IndexVec};
use rustc_infer::infer::region_constraints::{Constraint, RegionConstraintData};
use rustc_middle::bug;
use rustc_middle::middle::resolve_lifetime as rl;
use rustc_middle::ty::fold::TypeFolder;
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::{self, AdtKind, Lift, Ty, TyCtxt};
use rustc_mir::const_eval::{is_const_fn, is_min_const_fn, is_unstable_const_fn};
use rustc_span::hygiene::{AstPass, MacroKind};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{self, ExpnKind};
use rustc_typeck::hir_ty_to_ty;
use std::collections::hash_map::Entry;
use std::default::Default;
use std::hash::Hash;
use std::rc::Rc;
use std::{mem, vec};
use crate::core::{self, DocContext, ImplTraitParam};
use crate::doctree;
use utils::*;
crate use utils::{get_auto_trait_and_blanket_impls, krate, register_res};
crate use self::types::FnRetTy::*;
crate use self::types::ItemKind::*;
crate use self::types::SelfTy::*;
crate use self::types::Type::*;
crate use self::types::Visibility::{Inherited, Public};
crate use self::types::*;
crate trait Clean<T> {
fn clean(&self, cx: &mut DocContext<'_>) -> T;
}
impl<T: Clean<U>, U> Clean<Vec<U>> for [T] {
fn clean(&self, cx: &mut DocContext<'_>) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U, V: Idx> Clean<IndexVec<V, U>> for IndexVec<V, T> {
fn clean(&self, cx: &mut DocContext<'_>) -> IndexVec<V, U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U> Clean<U> for &T {
fn clean(&self, cx: &mut DocContext<'_>) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<U> for Rc<T> {
fn clean(&self, cx: &mut DocContext<'_>) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Option<U>> for Option<T> {
fn clean(&self, cx: &mut DocContext<'_>) -> Option<U> {
self.as_ref().map(|v| v.clean(cx))
}
}
impl Clean<ExternalCrate> for CrateNum {
fn clean(&self, cx: &mut DocContext<'_>) -> ExternalCrate {
let tcx = cx.tcx;
let root = DefId { krate: *self, index: CRATE_DEF_INDEX };
let krate_span = tcx.def_span(root);
let krate_src = cx.sess().source_map().span_to_filename(krate_span);
// Collect all inner modules which are tagged as implementations of
// primitives.
//
// Note that this loop only searches the top-level items of the crate,
// and this is intentional. If we were to search the entire crate for an
// item tagged with `#[doc(primitive)]` then we would also have to
// search the entirety of external modules for items tagged
// `#[doc(primitive)]`, which is a pretty inefficient process (decoding
// all that metadata unconditionally).
//
// In order to keep the metadata load under control, the
// `#[doc(primitive)]` feature is explicitly designed to only allow the
// primitive tags to show up as the top level items in a crate.
//
// Also note that this does not attempt to deal with modules tagged
// duplicately for the same primitive. This is handled later on when
// rendering by delegating everything to a hash map.
let mut as_primitive = |res: Res| {
if let Res::Def(DefKind::Mod, def_id) = res {
let attrs = cx.tcx.get_attrs(def_id).clean(cx);
let mut prim = None;
for attr in attrs.lists(sym::doc) {
if let Some(v) = attr.value_str() {
if attr.has_name(sym::primitive) {
prim = PrimitiveType::from_symbol(v);
if prim.is_some() {
break;
}
// FIXME: should warn on unknown primitives?
}
}
}
return prim.map(|p| (def_id, p));
}
None
};
let primitives = if root.is_local() {
tcx.hir()
.krate()
.item
.module
.item_ids
.iter()
.filter_map(|&id| {
let item = tcx.hir().item(id);
match item.kind {
hir::ItemKind::Mod(_) => {
as_primitive(Res::Def(DefKind::Mod, id.def_id.to_def_id()))
}
hir::ItemKind::Use(ref path, hir::UseKind::Single)
if item.vis.node.is_pub() =>
{
as_primitive(path.res).map(|(_, prim)| {
// Pretend the primitive is local.
(id.def_id.to_def_id(), prim)
})
}
_ => None,
}
})
.collect()
} else {
tcx.item_children(root).iter().map(|item| item.res).filter_map(as_primitive).collect()
};
let mut as_keyword = |res: Res| {
if let Res::Def(DefKind::Mod, def_id) = res {
let attrs = tcx.get_attrs(def_id).clean(cx);
let mut keyword = None;
for attr in attrs.lists(sym::doc) {
if attr.has_name(sym::keyword) {
if let Some(v) = attr.value_str() {
keyword = Some(v);
break;
}
}
}
return keyword.map(|p| (def_id, p));
}
None
};
let keywords = if root.is_local() {
tcx.hir()
.krate()
.item
.module
.item_ids
.iter()
.filter_map(|&id| {
let item = tcx.hir().item(id);
match item.kind {
hir::ItemKind::Mod(_) => {
as_keyword(Res::Def(DefKind::Mod, id.def_id.to_def_id()))
}
hir::ItemKind::Use(ref path, hir::UseKind::Single)
if item.vis.node.is_pub() =>
{
as_keyword(path.res).map(|(_, prim)| (id.def_id.to_def_id(), prim))
}
_ => None,
}
})
.collect()
} else {
tcx.item_children(root).iter().map(|item| item.res).filter_map(as_keyword).collect()
};
ExternalCrate {
name: tcx.crate_name(*self),
src: krate_src,
attrs: tcx.get_attrs(root).clean(cx),
primitives,
keywords,
}
}
}
impl Clean<Item> for doctree::Module<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let mut items: Vec<Item> = vec![];
items.extend(self.foreigns.iter().map(|x| x.clean(cx)));
items.extend(self.mods.iter().map(|x| x.clean(cx)));
items.extend(self.items.iter().map(|x| x.clean(cx)).flatten());
items.extend(self.macros.iter().map(|x| x.clean(cx)));
// determine if we should display the inner contents or
// the outer `mod` item for the source code.
let span = {
let sm = cx.sess().source_map();
let outer = sm.lookup_char_pos(self.where_outer.lo());
let inner = sm.lookup_char_pos(self.where_inner.lo());
if outer.file.start_pos == inner.file.start_pos {
// mod foo { ... }
self.where_outer
} else {
// mod foo; (and a separate SourceFile for the contents)
self.where_inner
}
};
let what_rustc_thinks = Item::from_hir_id_and_parts(
self.id,
self.name,
ModuleItem(Module { is_crate: self.is_crate, items }),
cx,
);
Item { source: span.clean(cx), ..what_rustc_thinks }
}
}
impl Clean<Attributes> for [ast::Attribute] {
fn clean(&self, cx: &mut DocContext<'_>) -> Attributes {
Attributes::from_ast(cx.sess().diagnostic(), self, None)
}
}
impl Clean<GenericBound> for hir::GenericBound<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericBound {
match *self {
hir::GenericBound::Outlives(lt) => GenericBound::Outlives(lt.clean(cx)),
hir::GenericBound::LangItemTrait(lang_item, span, _, generic_args) => {
let def_id = cx.tcx.require_lang_item(lang_item, Some(span));
let trait_ref = ty::TraitRef::identity(cx.tcx, def_id);
let generic_args = generic_args.clean(cx);
let bindings = match generic_args {
GenericArgs::AngleBracketed { bindings, .. } => bindings,
_ => bug!("clean: parenthesized `GenericBound::LangItemTrait`"),
};
GenericBound::TraitBound(
PolyTrait { trait_: (trait_ref, &*bindings).clean(cx), generic_params: vec![] },
hir::TraitBoundModifier::None,
)
}
hir::GenericBound::Trait(ref t, modifier) => {
GenericBound::TraitBound(t.clean(cx), modifier)
}
}
}
}
impl Clean<Type> for (ty::TraitRef<'_>, &[TypeBinding]) {
fn clean(&self, cx: &mut DocContext<'_>) -> Type {
let (trait_ref, bounds) = *self;
inline::record_extern_fqn(cx, trait_ref.def_id, TypeKind::Trait);
let path = external_path(
cx,
cx.tcx.item_name(trait_ref.def_id),
Some(trait_ref.def_id),
true,
bounds.to_vec(),
trait_ref.substs,
);
debug!("ty::TraitRef\n subst: {:?}\n", trait_ref.substs);
ResolvedPath { path, param_names: None, did: trait_ref.def_id, is_generic: false }
}
}
impl<'tcx> Clean<GenericBound> for ty::TraitRef<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericBound {
GenericBound::TraitBound(
PolyTrait { trait_: (*self, &[][..]).clean(cx), generic_params: vec![] },
hir::TraitBoundModifier::None,
)
}
}
impl Clean<GenericBound> for (ty::PolyTraitRef<'_>, &[TypeBinding]) {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericBound {
let (poly_trait_ref, bounds) = *self;
let poly_trait_ref = poly_trait_ref.lift_to_tcx(cx.tcx).unwrap();
// collect any late bound regions
let late_bound_regions: Vec<_> = cx
.tcx
.collect_referenced_late_bound_regions(&poly_trait_ref)
.into_iter()
.filter_map(|br| match br {
ty::BrNamed(_, name) => {
Some(GenericParamDef { name, kind: GenericParamDefKind::Lifetime })
}
_ => None,
})
.collect();
GenericBound::TraitBound(
PolyTrait {
trait_: (poly_trait_ref.skip_binder(), bounds).clean(cx),
generic_params: late_bound_regions,
},
hir::TraitBoundModifier::None,
)
}
}
impl<'tcx> Clean<GenericBound> for ty::PolyTraitRef<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericBound {
(*self, &[][..]).clean(cx)
}
}
impl<'tcx> Clean<Option<Vec<GenericBound>>> for InternalSubsts<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> Option<Vec<GenericBound>> {
let mut v = Vec::new();
v.extend(self.regions().filter_map(|r| r.clean(cx)).map(GenericBound::Outlives));
v.extend(self.types().map(|t| {
GenericBound::TraitBound(
PolyTrait { trait_: t.clean(cx), generic_params: Vec::new() },
hir::TraitBoundModifier::None,
)
}));
if !v.is_empty() { Some(v) } else { None }
}
}
impl Clean<Lifetime> for hir::Lifetime {
fn clean(&self, cx: &mut DocContext<'_>) -> Lifetime {
let def = cx.tcx.named_region(self.hir_id);
match def {
Some(
rl::Region::EarlyBound(_, node_id, _)
| rl::Region::LateBound(_, node_id, _)
| rl::Region::Free(_, node_id),
) => {
if let Some(lt) = cx.lt_substs.get(&node_id).cloned() {
return lt;
}
}
_ => {}
}
Lifetime(self.name.ident().name)
}
}
impl Clean<Lifetime> for hir::GenericParam<'_> {
fn clean(&self, _: &mut DocContext<'_>) -> Lifetime {
match self.kind {
hir::GenericParamKind::Lifetime { .. } => {
if !self.bounds.is_empty() {
let mut bounds = self.bounds.iter().map(|bound| match bound {
hir::GenericBound::Outlives(lt) => lt,
_ => panic!(),
});
let name = bounds.next().expect("no more bounds").name.ident();
let mut s = format!("{}: {}", self.name.ident(), name);
for bound in bounds {
s.push_str(&format!(" + {}", bound.name.ident()));
}
Lifetime(Symbol::intern(&s))
} else {
Lifetime(self.name.ident().name)
}
}
_ => panic!(),
}
}
}
impl Clean<Constant> for hir::ConstArg {
fn clean(&self, cx: &mut DocContext<'_>) -> Constant {
Constant {
type_: cx
.tcx
.type_of(cx.tcx.hir().body_owner_def_id(self.value.body).to_def_id())
.clean(cx),
expr: print_const_expr(cx.tcx, self.value.body),
value: None,
is_literal: is_literal_expr(cx, self.value.body.hir_id),
}
}
}
impl Clean<Lifetime> for ty::GenericParamDef {
fn clean(&self, _cx: &mut DocContext<'_>) -> Lifetime {
Lifetime(self.name)
}
}
impl Clean<Option<Lifetime>> for ty::RegionKind {
fn clean(&self, _cx: &mut DocContext<'_>) -> Option<Lifetime> {
match *self {
ty::ReStatic => Some(Lifetime::statik()),
ty::ReLateBound(_, ty::BoundRegion { kind: ty::BrNamed(_, name) }) => {
Some(Lifetime(name))
}
ty::ReEarlyBound(ref data) => Some(Lifetime(data.name)),
ty::ReLateBound(..)
| ty::ReFree(..)
| ty::ReVar(..)
| ty::RePlaceholder(..)
| ty::ReEmpty(_)
| ty::ReErased => {
debug!("cannot clean region {:?}", self);
None
}
}
}
}
impl Clean<WherePredicate> for hir::WherePredicate<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> WherePredicate {
match *self {
hir::WherePredicate::BoundPredicate(ref wbp) => WherePredicate::BoundPredicate {
ty: wbp.bounded_ty.clean(cx),
bounds: wbp.bounds.clean(cx),
},
hir::WherePredicate::RegionPredicate(ref wrp) => WherePredicate::RegionPredicate {
lifetime: wrp.lifetime.clean(cx),
bounds: wrp.bounds.clean(cx),
},
hir::WherePredicate::EqPredicate(ref wrp) => {
WherePredicate::EqPredicate { lhs: wrp.lhs_ty.clean(cx), rhs: wrp.rhs_ty.clean(cx) }
}
}
}
}
impl<'a> Clean<Option<WherePredicate>> for ty::Predicate<'a> {
fn clean(&self, cx: &mut DocContext<'_>) -> Option<WherePredicate> {
let bound_predicate = self.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Trait(pred, _) => Some(bound_predicate.rebind(pred).clean(cx)),
ty::PredicateKind::RegionOutlives(pred) => pred.clean(cx),
ty::PredicateKind::TypeOutlives(pred) => pred.clean(cx),
ty::PredicateKind::Projection(pred) => Some(pred.clean(cx)),
ty::PredicateKind::Subtype(..)
| ty::PredicateKind::WellFormed(..)
| ty::PredicateKind::ObjectSafe(..)
| ty::PredicateKind::ClosureKind(..)
| ty::PredicateKind::ConstEvaluatable(..)
| ty::PredicateKind::ConstEquate(..)
| ty::PredicateKind::TypeWellFormedFromEnv(..) => panic!("not user writable"),
}
}
}
impl<'a> Clean<WherePredicate> for ty::PolyTraitPredicate<'a> {
fn clean(&self, cx: &mut DocContext<'_>) -> WherePredicate {
let poly_trait_ref = self.map_bound(|pred| pred.trait_ref);
WherePredicate::BoundPredicate {
ty: poly_trait_ref.skip_binder().self_ty().clean(cx),
bounds: vec![poly_trait_ref.clean(cx)],
}
}
}
impl<'tcx> Clean<Option<WherePredicate>>
for ty::OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>
{
fn clean(&self, cx: &mut DocContext<'_>) -> Option<WherePredicate> {
let ty::OutlivesPredicate(a, b) = self;
if let (ty::ReEmpty(_), ty::ReEmpty(_)) = (a, b) {
return None;
}
Some(WherePredicate::RegionPredicate {
lifetime: a.clean(cx).expect("failed to clean lifetime"),
bounds: vec![GenericBound::Outlives(b.clean(cx).expect("failed to clean bounds"))],
})
}
}
impl<'tcx> Clean<Option<WherePredicate>> for ty::OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>> {
fn clean(&self, cx: &mut DocContext<'_>) -> Option<WherePredicate> {
let ty::OutlivesPredicate(ty, lt) = self;
if let ty::ReEmpty(_) = lt {
return None;
}
Some(WherePredicate::BoundPredicate {
ty: ty.clean(cx),
bounds: vec![GenericBound::Outlives(lt.clean(cx).expect("failed to clean lifetimes"))],
})
}
}
impl<'tcx> Clean<WherePredicate> for ty::ProjectionPredicate<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> WherePredicate {
let ty::ProjectionPredicate { projection_ty, ty } = self;
WherePredicate::EqPredicate { lhs: projection_ty.clean(cx), rhs: ty.clean(cx) }
}
}
impl<'tcx> Clean<Type> for ty::ProjectionTy<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> Type {
let lifted = self.lift_to_tcx(cx.tcx).unwrap();
let trait_ = match lifted.trait_ref(cx.tcx).clean(cx) {
GenericBound::TraitBound(t, _) => t.trait_,
GenericBound::Outlives(_) => panic!("cleaning a trait got a lifetime"),
};
Type::QPath {
name: cx.tcx.associated_item(self.item_def_id).ident.name,
self_type: box self.self_ty().clean(cx),
trait_: box trait_,
}
}
}
impl Clean<GenericParamDef> for ty::GenericParamDef {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericParamDef {
let (name, kind) = match self.kind {
ty::GenericParamDefKind::Lifetime => (self.name, GenericParamDefKind::Lifetime),
ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
let default =
if has_default { Some(cx.tcx.type_of(self.def_id).clean(cx)) } else { None };
(
self.name,
GenericParamDefKind::Type {
did: self.def_id,
bounds: vec![], // These are filled in from the where-clauses.
default,
synthetic,
},
)
}
ty::GenericParamDefKind::Const { .. } => (
self.name,
GenericParamDefKind::Const {
did: self.def_id,
ty: cx.tcx.type_of(self.def_id).clean(cx),
},
),
};
GenericParamDef { name, kind }
}
}
impl Clean<GenericParamDef> for hir::GenericParam<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericParamDef {
let (name, kind) = match self.kind {
hir::GenericParamKind::Lifetime { .. } => {
let name = if !self.bounds.is_empty() {
let mut bounds = self.bounds.iter().map(|bound| match bound {
hir::GenericBound::Outlives(lt) => lt,
_ => panic!(),
});
let name = bounds.next().expect("no more bounds").name.ident();
let mut s = format!("{}: {}", self.name.ident(), name);
for bound in bounds {
s.push_str(&format!(" + {}", bound.name.ident()));
}
Symbol::intern(&s)
} else {
self.name.ident().name
};
(name, GenericParamDefKind::Lifetime)
}
hir::GenericParamKind::Type { ref default, synthetic } => (
self.name.ident().name,
GenericParamDefKind::Type {
did: cx.tcx.hir().local_def_id(self.hir_id).to_def_id(),
bounds: self.bounds.clean(cx),
default: default.clean(cx),
synthetic,
},
),
hir::GenericParamKind::Const { ref ty, default: _ } => (
self.name.ident().name,
GenericParamDefKind::Const {
did: cx.tcx.hir().local_def_id(self.hir_id).to_def_id(),
ty: ty.clean(cx),
// FIXME(const_generics_defaults): add `default` field here for docs
},
),
};
GenericParamDef { name, kind }
}
}
impl Clean<Generics> for hir::Generics<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Generics {
// Synthetic type-parameters are inserted after normal ones.
// In order for normal parameters to be able to refer to synthetic ones,
// scans them first.
fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
match param.kind {
hir::GenericParamKind::Type { synthetic, .. } => {
synthetic == Some(hir::SyntheticTyParamKind::ImplTrait)
}
_ => false,
}
}
/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
///
/// See [`lifetime_to_generic_param`] in [`rustc_ast_lowering`] for more information.
///
/// [`lifetime_to_generic_param`]: rustc_ast_lowering::LoweringContext::lifetime_to_generic_param
fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
matches!(
param.kind,
hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided }
)
}
let impl_trait_params = self
.params
.iter()
.filter(|param| is_impl_trait(param))
.map(|param| {
let param: GenericParamDef = param.clean(cx);
match param.kind {
GenericParamDefKind::Lifetime => unreachable!(),
GenericParamDefKind::Type { did, ref bounds, .. } => {
cx.impl_trait_bounds.insert(did.into(), bounds.clone());
}
GenericParamDefKind::Const { .. } => unreachable!(),
}
param
})
.collect::<Vec<_>>();
let mut params = Vec::with_capacity(self.params.len());
for p in self.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
let p = p.clean(cx);
params.push(p);
}
params.extend(impl_trait_params);
let mut generics =
Generics { params, where_predicates: self.where_clause.predicates.clean(cx) };
// Some duplicates are generated for ?Sized bounds between type params and where
// predicates. The point in here is to move the bounds definitions from type params
// to where predicates when such cases occur.
for where_pred in &mut generics.where_predicates {
match *where_pred {
WherePredicate::BoundPredicate { ty: Generic(ref name), ref mut bounds } => {
if bounds.is_empty() {
for param in &mut generics.params {
match param.kind {
GenericParamDefKind::Lifetime => {}
GenericParamDefKind::Type { bounds: ref mut ty_bounds, .. } => {
if &param.name == name {
mem::swap(bounds, ty_bounds);
break;
}
}
GenericParamDefKind::Const { .. } => {}
}
}
}
}
_ => continue,
}
}
generics
}
}
impl<'a, 'tcx> Clean<Generics> for (&'a ty::Generics, ty::GenericPredicates<'tcx>) {
fn clean(&self, cx: &mut DocContext<'_>) -> Generics {
use self::WherePredicate as WP;
use std::collections::BTreeMap;
let (gens, preds) = *self;
// Don't populate `cx.impl_trait_bounds` before `clean`ning `where` clauses,
// since `Clean for ty::Predicate` would consume them.
let mut impl_trait = BTreeMap::<ImplTraitParam, Vec<GenericBound>>::default();
// Bounds in the type_params and lifetimes fields are repeated in the
// predicates field (see rustc_typeck::collect::ty_generics), so remove
// them.
let stripped_params = gens
.params
.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.clean(cx)),
ty::GenericParamDefKind::Type { synthetic, .. } => {
if param.name == kw::SelfUpper {
assert_eq!(param.index, 0);
return None;
}
if synthetic == Some(hir::SyntheticTyParamKind::ImplTrait) {
impl_trait.insert(param.index.into(), vec![]);
return None;
}
Some(param.clean(cx))
}
ty::GenericParamDefKind::Const { .. } => Some(param.clean(cx)),
})
.collect::<Vec<GenericParamDef>>();
// param index -> [(DefId of trait, associated type name, type)]
let mut impl_trait_proj = FxHashMap::<u32, Vec<(DefId, Symbol, Ty<'tcx>)>>::default();
let where_predicates = preds
.predicates
.iter()
.flat_map(|(p, _)| {
let mut projection = None;
let param_idx = (|| {
let bound_p = p.kind();
match bound_p.skip_binder() {
ty::PredicateKind::Trait(pred, _constness) => {
if let ty::Param(param) = pred.self_ty().kind() {
return Some(param.index);
}
}
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
if let ty::Param(param) = ty.kind() {
return Some(param.index);
}
}
ty::PredicateKind::Projection(p) => {
if let ty::Param(param) = p.projection_ty.self_ty().kind() {
projection = Some(bound_p.rebind(p));
return Some(param.index);
}
}
_ => (),
}
None
})();
if let Some(param_idx) = param_idx {
if let Some(b) = impl_trait.get_mut(&param_idx.into()) {
let p = p.clean(cx)?;
b.extend(
p.get_bounds()
.into_iter()
.flatten()
.cloned()
.filter(|b| !b.is_sized_bound(cx)),
);
let proj = projection
.map(|p| (p.skip_binder().projection_ty.clean(cx), p.skip_binder().ty));
if let Some(((_, trait_did, name), rhs)) =
proj.as_ref().and_then(|(lhs, rhs)| Some((lhs.projection()?, rhs)))
{
impl_trait_proj
.entry(param_idx)
.or_default()
.push((trait_did, name, rhs));
}
return None;
}
}
Some(p)
})
.collect::<Vec<_>>();
for (param, mut bounds) in impl_trait {
// Move trait bounds to the front.
bounds.sort_by_key(|b| !matches!(b, GenericBound::TraitBound(..)));
if let crate::core::ImplTraitParam::ParamIndex(idx) = param {
if let Some(proj) = impl_trait_proj.remove(&idx) {
for (trait_did, name, rhs) in proj {
let rhs = rhs.clean(cx);
simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
}
}
} else {
unreachable!();
}
cx.impl_trait_bounds.insert(param, bounds);
}
// Now that `cx.impl_trait_bounds` is populated, we can process
// remaining predicates which could contain `impl Trait`.
let mut where_predicates =
where_predicates.into_iter().flat_map(|p| p.clean(cx)).collect::<Vec<_>>();
// Type parameters have a Sized bound by default unless removed with
// ?Sized. Scan through the predicates and mark any type parameter with
// a Sized bound, removing the bounds as we find them.
//
// Note that associated types also have a sized bound by default, but we
// don't actually know the set of associated types right here so that's
// handled in cleaning associated types
let mut sized_params = FxHashSet::default();
where_predicates.retain(|pred| match *pred {
WP::BoundPredicate { ty: Generic(ref g), ref bounds } => {
if bounds.iter().any(|b| b.is_sized_bound(cx)) {
sized_params.insert(*g);
false
} else {
true
}
}
_ => true,
});
// Run through the type parameters again and insert a ?Sized
// unbound for any we didn't find to be Sized.
for tp in &stripped_params {
if matches!(tp.kind, types::GenericParamDefKind::Type { .. })
&& !sized_params.contains(&tp.name)
{
where_predicates.push(WP::BoundPredicate {
ty: Type::Generic(tp.name),
bounds: vec![GenericBound::maybe_sized(cx)],
})
}
}
// It would be nice to collect all of the bounds on a type and recombine
// them if possible, to avoid e.g., `where T: Foo, T: Bar, T: Sized, T: 'a`
// and instead see `where T: Foo + Bar + Sized + 'a`
Generics {
params: stripped_params,
where_predicates: simplify::where_clauses(cx, where_predicates),
}
}
}
fn clean_fn_or_proc_macro(
item: &hir::Item<'_>,
sig: &'a hir::FnSig<'a>,
generics: &'a hir::Generics<'a>,
body_id: hir::BodyId,
name: &mut Symbol,
cx: &mut DocContext<'_>,
) -> ItemKind {
let attrs = cx.tcx.hir().attrs(item.hir_id());
let macro_kind = attrs.iter().find_map(|a| {
if a.has_name(sym::proc_macro) {
Some(MacroKind::Bang)
} else if a.has_name(sym::proc_macro_derive) {
Some(MacroKind::Derive)
} else if a.has_name(sym::proc_macro_attribute) {
Some(MacroKind::Attr)
} else {
None
}
});
match macro_kind {
Some(kind) => {
if kind == MacroKind::Derive {
*name = attrs
.lists(sym::proc_macro_derive)
.find_map(|mi| mi.ident())
.expect("proc-macro derives require a name")
.name;
}
let mut helpers = Vec::new();
for mi in attrs.lists(sym::proc_macro_derive) {
if !mi.has_name(sym::attributes) {
continue;
}
if let Some(list) = mi.meta_item_list() {
for inner_mi in list {
if let Some(ident) = inner_mi.ident() {
helpers.push(ident.name);
}
}
}
}
ProcMacroItem(ProcMacro { kind, helpers })
}
None => {
let mut func = (sig, generics, body_id).clean(cx);
let def_id = item.def_id.to_def_id();
func.header.constness =
if is_const_fn(cx.tcx, def_id) && is_unstable_const_fn(cx.tcx, def_id).is_none() {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
FunctionItem(func)
}
}
}
impl<'a> Clean<Function> for (&'a hir::FnSig<'a>, &'a hir::Generics<'a>, hir::BodyId) {
fn clean(&self, cx: &mut DocContext<'_>) -> Function {
let (generics, decl) =
enter_impl_trait(cx, |cx| (self.1.clean(cx), (&*self.0.decl, self.2).clean(cx)));
Function { decl, generics, header: self.0.header }
}
}
impl<'a> Clean<Arguments> for (&'a [hir::Ty<'a>], &'a [Ident]) {
fn clean(&self, cx: &mut DocContext<'_>) -> Arguments {
Arguments {
values: self
.0
.iter()
.enumerate()
.map(|(i, ty)| {
let mut name = self.1.get(i).map_or(kw::Empty, |ident| ident.name);
if name.is_empty() {
name = kw::Underscore;
}
Argument { name, type_: ty.clean(cx) }
})
.collect(),
}
}
}
impl<'a> Clean<Arguments> for (&'a [hir::Ty<'a>], hir::BodyId) {
fn clean(&self, cx: &mut DocContext<'_>) -> Arguments {
let body = cx.tcx.hir().body(self.1);
Arguments {
values: self
.0
.iter()
.enumerate()
.map(|(i, ty)| Argument {
name: name_from_pat(&body.params[i].pat),
type_: ty.clean(cx),
})
.collect(),
}
}
}
impl<'a, A: Copy> Clean<FnDecl> for (&'a hir::FnDecl<'a>, A)
where
(&'a [hir::Ty<'a>], A): Clean<Arguments>,
{
fn clean(&self, cx: &mut DocContext<'_>) -> FnDecl {
FnDecl {
inputs: (self.0.inputs, self.1).clean(cx),
output: self.0.output.clean(cx),
c_variadic: self.0.c_variadic,
attrs: Attributes::default(),
}
}
}
impl<'tcx> Clean<FnDecl> for (DefId, ty::PolyFnSig<'tcx>) {
fn clean(&self, cx: &mut DocContext<'_>) -> FnDecl {
let (did, sig) = *self;
let mut names = if did.is_local() { &[] } else { cx.tcx.fn_arg_names(did) }.iter();
FnDecl {
output: Return(sig.skip_binder().output().clean(cx)),
attrs: Attributes::default(),
c_variadic: sig.skip_binder().c_variadic,
inputs: Arguments {
values: sig
.skip_binder()
.inputs()
.iter()
.map(|t| Argument {
type_: t.clean(cx),
name: names.next().map_or(kw::Empty, |i| i.name),
})
.collect(),
},
}
}
}
impl Clean<FnRetTy> for hir::FnRetTy<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> FnRetTy {
match *self {
Self::Return(ref typ) => Return(typ.clean(cx)),
Self::DefaultReturn(..) => DefaultReturn,
}
}
}
impl Clean<bool> for hir::IsAuto {
fn clean(&self, _: &mut DocContext<'_>) -> bool {
match *self {
hir::IsAuto::Yes => true,
hir::IsAuto::No => false,
}
}
}
impl Clean<Type> for hir::TraitRef<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Type {
let path = self.path.clean(cx);
resolve_type(cx, path, self.hir_ref_id)
}
}
impl Clean<PolyTrait> for hir::PolyTraitRef<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> PolyTrait {
PolyTrait {
trait_: self.trait_ref.clean(cx),
generic_params: self.bound_generic_params.clean(cx),
}
}
}
impl Clean<TypeKind> for hir::def::DefKind {
fn clean(&self, _: &mut DocContext<'_>) -> TypeKind {
(*self).into()
}
}
impl Clean<Item> for hir::TraitItem<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let local_did = self.def_id.to_def_id();
cx.with_param_env(local_did, |cx| {
let inner = match self.kind {
hir::TraitItemKind::Const(ref ty, default) => {
AssocConstItem(ty.clean(cx), default.map(|e| print_const_expr(cx.tcx, e)))
}
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
let mut m = (sig, &self.generics, body).clean(cx);
if m.header.constness == hir::Constness::Const
&& is_unstable_const_fn(cx.tcx, local_did).is_some()
{
m.header.constness = hir::Constness::NotConst;
}
MethodItem(m, None)
}
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(ref names)) => {
let (generics, decl) = enter_impl_trait(cx, |cx| {
(self.generics.clean(cx), (&*sig.decl, &names[..]).clean(cx))
});
let mut t = Function { header: sig.header, decl, generics };
if t.header.constness == hir::Constness::Const
&& is_unstable_const_fn(cx.tcx, local_did).is_some()
{
t.header.constness = hir::Constness::NotConst;
}
TyMethodItem(t)
}
hir::TraitItemKind::Type(ref bounds, ref default) => {
AssocTypeItem(bounds.clean(cx), default.clean(cx))
}
};
let what_rustc_thinks =
Item::from_def_id_and_parts(local_did, Some(self.ident.name), inner, cx);
// Trait items always inherit the trait's visibility -- we don't want to show `pub`.
Item { visibility: Inherited, ..what_rustc_thinks }
})
}
}
impl Clean<Item> for hir::ImplItem<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let local_did = self.def_id.to_def_id();
cx.with_param_env(local_did, |cx| {
let inner = match self.kind {
hir::ImplItemKind::Const(ref ty, expr) => {
AssocConstItem(ty.clean(cx), Some(print_const_expr(cx.tcx, expr)))
}
hir::ImplItemKind::Fn(ref sig, body) => {
let mut m = (sig, &self.generics, body).clean(cx);
if m.header.constness == hir::Constness::Const
&& is_unstable_const_fn(cx.tcx, local_did).is_some()
{
m.header.constness = hir::Constness::NotConst;
}
MethodItem(m, Some(self.defaultness))
}
hir::ImplItemKind::TyAlias(ref hir_ty) => {
let type_ = hir_ty.clean(cx);
let item_type = hir_ty_to_ty(cx.tcx, hir_ty).clean(cx);
TypedefItem(
Typedef {
type_,
generics: Generics::default(),
item_type: Some(item_type),
},
true,
)
}
};
let what_rustc_thinks =
Item::from_def_id_and_parts(local_did, Some(self.ident.name), inner, cx);
let parent_item = cx.tcx.hir().expect_item(cx.tcx.hir().get_parent_item(self.hir_id()));
if let hir::ItemKind::Impl(impl_) = &parent_item.kind {
if impl_.of_trait.is_some() {
// Trait impl items always inherit the impl's visibility --
// we don't want to show `pub`.
Item { visibility: Inherited, ..what_rustc_thinks }
} else {
what_rustc_thinks
}
} else {
panic!("found impl item with non-impl parent {:?}", parent_item);
}
})
}
}
impl Clean<Item> for ty::AssocItem {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let tcx = cx.tcx;
let kind = match self.kind {
ty::AssocKind::Const => {
let ty = tcx.type_of(self.def_id);
let default = if self.defaultness.has_value() {
Some(inline::print_inlined_const(cx, self.def_id))
} else {
None
};
AssocConstItem(ty.clean(cx), default)
}
ty::AssocKind::Fn => {
let generics =
(tcx.generics_of(self.def_id), tcx.explicit_predicates_of(self.def_id))
.clean(cx);
let sig = tcx.fn_sig(self.def_id);
let mut decl = (self.def_id, sig).clean(cx);
if self.fn_has_self_parameter {
let self_ty = match self.container {
ty::ImplContainer(def_id) => tcx.type_of(def_id),
ty::TraitContainer(_) => tcx.types.self_param,
};
let self_arg_ty = sig.input(0).skip_binder();
if self_arg_ty == self_ty {
decl.inputs.values[0].type_ = Generic(kw::SelfUpper);
} else if let ty::Ref(_, ty, _) = *self_arg_ty.kind() {
if ty == self_ty {
match decl.inputs.values[0].type_ {
BorrowedRef { ref mut type_, .. } => {
**type_ = Generic(kw::SelfUpper)
}
_ => unreachable!(),
}
}
}
}
let provided = match self.container {
ty::ImplContainer(_) => true,
ty::TraitContainer(_) => self.defaultness.has_value(),
};
if provided {
let constness = if is_min_const_fn(tcx, self.def_id) {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
let asyncness = tcx.asyncness(self.def_id);
let defaultness = match self.container {
ty::ImplContainer(_) => Some(self.defaultness),
ty::TraitContainer(_) => None,
};
MethodItem(
Function {
generics,
decl,
header: hir::FnHeader {
unsafety: sig.unsafety(),
abi: sig.abi(),
constness,
asyncness,
},
},
defaultness,
)
} else {
TyMethodItem(Function {
generics,
decl,
header: hir::FnHeader {
unsafety: sig.unsafety(),
abi: sig.abi(),
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
})
}
}
ty::AssocKind::Type => {
let my_name = self.ident.name;
if let ty::TraitContainer(_) = self.container {
let bounds = tcx.explicit_item_bounds(self.def_id);
let predicates = ty::GenericPredicates { parent: None, predicates: bounds };
let generics = (tcx.generics_of(self.def_id), predicates).clean(cx);
let mut bounds = generics
.where_predicates
.iter()
.filter_map(|pred| {
let (name, self_type, trait_, bounds) = match *pred {
WherePredicate::BoundPredicate {
ty: QPath { ref name, ref self_type, ref trait_ },
ref bounds,
} => (name, self_type, trait_, bounds),
_ => return None,
};
if *name != my_name {
return None;
}
match **trait_ {
ResolvedPath { did, .. } if did == self.container.id() => {}
_ => return None,
}
match **self_type {
Generic(ref s) if *s == kw::SelfUpper => {}
_ => return None,
}
Some(bounds)
})
.flat_map(|i| i.iter().cloned())
.collect::<Vec<_>>();
// Our Sized/?Sized bound didn't get handled when creating the generics
// because we didn't actually get our whole set of bounds until just now
// (some of them may have come from the trait). If we do have a sized
// bound, we remove it, and if we don't then we add the `?Sized` bound
// at the end.
match bounds.iter().position(|b| b.is_sized_bound(cx)) {
Some(i) => {
bounds.remove(i);
}
None => bounds.push(GenericBound::maybe_sized(cx)),
}
let ty = if self.defaultness.has_value() {
Some(tcx.type_of(self.def_id))
} else {
None
};
AssocTypeItem(bounds, ty.clean(cx))
} else {
// FIXME: when could this happen? Associated items in inherent impls?
let type_ = tcx.type_of(self.def_id).clean(cx);
TypedefItem(
Typedef {
type_,
generics: Generics { params: Vec::new(), where_predicates: Vec::new() },
item_type: None,
},
true,
)
}
}
};
Item::from_def_id_and_parts(self.def_id, Some(self.ident.name), kind, cx)
}
}
fn clean_qpath(hir_ty: &hir::Ty<'_>, cx: &mut DocContext<'_>) -> Type {
use rustc_hir::GenericParamCount;
let hir::Ty { hir_id, span, ref kind } = *hir_ty;
let qpath = match kind {
hir::TyKind::Path(qpath) => qpath,
_ => unreachable!(),
};
match qpath {
hir::QPath::Resolved(None, ref path) => {
if let Res::Def(DefKind::TyParam, did) = path.res {
if let Some(new_ty) = cx.ty_substs.get(&did).cloned() {
return new_ty;
}
if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
return ImplTrait(bounds);
}
}
let mut alias = None;
if let Res::Def(DefKind::TyAlias, def_id) = path.res {
// Substitute private type aliases
if let Some(def_id) = def_id.as_local() {
let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id);
if !cx.cache.access_levels.is_exported(def_id.to_def_id()) {
alias = Some(&cx.tcx.hir().expect_item(hir_id).kind);
}
}
};
if let Some(&hir::ItemKind::TyAlias(ref ty, ref generics)) = alias {
let provided_params = &path.segments.last().expect("segments were empty");
let mut ty_substs = FxHashMap::default();
let mut lt_substs = FxHashMap::default();
let mut ct_substs = FxHashMap::default();
let generic_args = provided_params.args();
{
let mut indices: GenericParamCount = Default::default();
for param in generics.params.iter() {
match param.kind {
hir::GenericParamKind::Lifetime { .. } => {
let mut j = 0;
let lifetime = generic_args.args.iter().find_map(|arg| match arg {
hir::GenericArg::Lifetime(lt) => {
if indices.lifetimes == j {
return Some(lt);
}
j += 1;
None
}
_ => None,
});
if let Some(lt) = lifetime.cloned() {
let lt_def_id = cx.tcx.hir().local_def_id(param.hir_id);
let cleaned = if !lt.is_elided() {
lt.clean(cx)
} else {
self::types::Lifetime::elided()
};
lt_substs.insert(lt_def_id.to_def_id(), cleaned);
}
indices.lifetimes += 1;
}
hir::GenericParamKind::Type { ref default, .. } => {
let ty_param_def_id = cx.tcx.hir().local_def_id(param.hir_id);
let mut j = 0;
let type_ = generic_args.args.iter().find_map(|arg| match arg {
hir::GenericArg::Type(ty) => {
if indices.types == j {
return Some(ty);
}
j += 1;
None
}
_ => None,
});
if let Some(ty) = type_ {
ty_substs.insert(ty_param_def_id.to_def_id(), ty.clean(cx));
} else if let Some(default) = *default {
ty_substs
.insert(ty_param_def_id.to_def_id(), default.clean(cx));
}
indices.types += 1;
}
hir::GenericParamKind::Const { .. } => {
let const_param_def_id = cx.tcx.hir().local_def_id(param.hir_id);
let mut j = 0;
let const_ = generic_args.args.iter().find_map(|arg| match arg {
hir::GenericArg::Const(ct) => {
if indices.consts == j {
return Some(ct);
}
j += 1;
None
}
_ => None,
});
if let Some(ct) = const_ {
ct_substs.insert(const_param_def_id.to_def_id(), ct.clean(cx));
}
// FIXME(const_generics_defaults)
indices.consts += 1;
}
}
}
}
return cx.enter_alias(ty_substs, lt_substs, ct_substs, |cx| ty.clean(cx));
}
let path = path.clean(cx);
resolve_type(cx, path, hir_id)
}
hir::QPath::Resolved(Some(ref qself), ref p) => {
// Try to normalize `<X as Y>::T` to a type
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
if let Some(normalized_value) = normalize(cx, ty) {
return normalized_value.clean(cx);
}
let segments = if p.is_global() { &p.segments[1..] } else { &p.segments };
let trait_segments = &segments[..segments.len() - 1];
let trait_path = self::Path {
global: p.is_global(),
res: Res::Def(
DefKind::Trait,
cx.tcx.associated_item(p.res.def_id()).container.id(),
),
segments: trait_segments.clean(cx),
};
Type::QPath {
name: p.segments.last().expect("segments were empty").ident.name,
self_type: box qself.clean(cx),
trait_: box resolve_type(cx, trait_path, hir_id),
}
}
hir::QPath::TypeRelative(ref qself, ref segment) => {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
let res = if let ty::Projection(proj) = ty.kind() {
Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id)
} else {
Res::Err
};
let trait_path = hir::Path { span, res, segments: &[] }.clean(cx);
Type::QPath {
name: segment.ident.name,
self_type: box qself.clean(cx),
trait_: box resolve_type(cx, trait_path, hir_id),
}
}
hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
}
}
impl Clean<Type> for hir::Ty<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Type {
use rustc_hir::*;
match self.kind {
TyKind::Never => Never,
TyKind::Ptr(ref m) => RawPointer(m.mutbl, box m.ty.clean(cx)),
TyKind::Rptr(ref l, ref m) => {
// There are two times a `Fresh` lifetime can be created:
// 1. For `&'_ x`, written by the user. This corresponds to `lower_lifetime` in `rustc_ast_lowering`.
// 2. For `&x` as a parameter to an `async fn`. This corresponds to `elided_ref_lifetime in `rustc_ast_lowering`.
// See #59286 for more information.
// Ideally we would only hide the `'_` for case 2., but I don't know a way to distinguish it.
// Turning `fn f(&'_ self)` into `fn f(&self)` isn't the worst thing in the world, though;
// there's no case where it could cause the function to fail to compile.
let elided =
l.is_elided() || matches!(l.name, LifetimeName::Param(ParamName::Fresh(_)));
let lifetime = if elided { None } else { Some(l.clean(cx)) };
BorrowedRef { lifetime, mutability: m.mutbl, type_: box m.ty.clean(cx) }
}
TyKind::Slice(ref ty) => Slice(box ty.clean(cx)),
TyKind::Array(ref ty, ref length) => {
let def_id = cx.tcx.hir().local_def_id(length.hir_id);
// NOTE(min_const_generics): We can't use `const_eval_poly` for constants
// as we currently do not supply the parent generics to anonymous constants
// but do allow `ConstKind::Param`.
//
// `const_eval_poly` tries to to first substitute generic parameters which
// results in an ICE while manually constructing the constant and using `eval`
// does nothing for `ConstKind::Param`.
let ct = ty::Const::from_anon_const(cx.tcx, def_id);
let param_env = cx.tcx.param_env(def_id);
let length = print_const(cx, ct.eval(cx.tcx, param_env));
Array(box ty.clean(cx), length)
}
TyKind::Tup(ref tys) => Tuple(tys.clean(cx)),
TyKind::OpaqueDef(item_id, _) => {
let item = cx.tcx.hir().item(item_id);
if let hir::ItemKind::OpaqueTy(ref ty) = item.kind {
ImplTrait(ty.bounds.clean(cx))
} else {
unreachable!()
}
}
TyKind::Path(_) => clean_qpath(&self, cx),
TyKind::TraitObject(ref bounds, ref lifetime, _) => {
match bounds[0].clean(cx).trait_ {
ResolvedPath { path, param_names: None, did, is_generic } => {
let mut bounds: Vec<self::GenericBound> = bounds[1..]
.iter()
.map(|bound| {
self::GenericBound::TraitBound(
bound.clean(cx),
hir::TraitBoundModifier::None,
)
})
.collect();
if !lifetime.is_elided() {
bounds.push(self::GenericBound::Outlives(lifetime.clean(cx)));
}
ResolvedPath { path, param_names: Some(bounds), did, is_generic }
}
_ => Infer, // shouldn't happen
}
}
TyKind::BareFn(ref barefn) => BareFunction(box barefn.clean(cx)),
TyKind::Infer | TyKind::Err => Infer,
TyKind::Typeof(..) => panic!("unimplemented type {:?}", self.kind),
}
}
}
/// Returns `None` if the type could not be normalized
fn normalize(cx: &mut DocContext<'tcx>, ty: Ty<'_>) -> Option<Ty<'tcx>> {
// HACK: low-churn fix for #79459 while we wait for a trait normalization fix
if !cx.tcx.sess.opts.debugging_opts.normalize_docs {
return None;
}
use crate::rustc_trait_selection::infer::TyCtxtInferExt;
use crate::rustc_trait_selection::traits::query::normalize::AtExt;
use rustc_middle::traits::ObligationCause;
// Try to normalize `<X as Y>::T` to a type
let lifted = ty.lift_to_tcx(cx.tcx).unwrap();
let normalized = cx.tcx.infer_ctxt().enter(|infcx| {
infcx
.at(&ObligationCause::dummy(), cx.param_env)
.normalize(lifted)
.map(|resolved| infcx.resolve_vars_if_possible(resolved.value))
});
match normalized {
Ok(normalized_value) => {
debug!("normalized {:?} to {:?}", ty, normalized_value);
Some(normalized_value)
}
Err(err) => {
debug!("failed to normalize {:?}: {:?}", ty, err);
None
}
}
}
impl<'tcx> Clean<Type> for Ty<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> Type {
debug!("cleaning type: {:?}", self);
let ty = normalize(cx, self).unwrap_or(self);
match *ty.kind() {
ty::Never => Never,
ty::Bool => Primitive(PrimitiveType::Bool),
ty::Char => Primitive(PrimitiveType::Char),
ty::Int(int_ty) => Primitive(int_ty.into()),
ty::Uint(uint_ty) => Primitive(uint_ty.into()),
ty::Float(float_ty) => Primitive(float_ty.into()),
ty::Str => Primitive(PrimitiveType::Str),
ty::Slice(ty) => Slice(box ty.clean(cx)),
ty::Array(ty, n) => {
let mut n = cx.tcx.lift(n).expect("array lift failed");
n = n.eval(cx.tcx, ty::ParamEnv::reveal_all());
let n = print_const(cx, n);
Array(box ty.clean(cx), n)
}
ty::RawPtr(mt) => RawPointer(mt.mutbl, box mt.ty.clean(cx)),
ty::Ref(r, ty, mutbl) => {
BorrowedRef { lifetime: r.clean(cx), mutability: mutbl, type_: box ty.clean(cx) }
}
ty::FnDef(..) | ty::FnPtr(_) => {
let ty = cx.tcx.lift(*self).expect("FnPtr lift failed");
let sig = ty.fn_sig(cx.tcx);
let def_id = DefId::local(CRATE_DEF_INDEX);
BareFunction(box BareFunctionDecl {
unsafety: sig.unsafety(),
generic_params: Vec::new(),
decl: (def_id, sig).clean(cx),
abi: sig.abi(),
})
}
ty::Adt(def, substs) => {
let did = def.did;
let kind = match def.adt_kind() {
AdtKind::Struct => TypeKind::Struct,
AdtKind::Union => TypeKind::Union,
AdtKind::Enum => TypeKind::Enum,
};
inline::record_extern_fqn(cx, did, kind);
let path = external_path(cx, cx.tcx.item_name(did), None, false, vec![], substs);
ResolvedPath { path, param_names: None, did, is_generic: false }
}
ty::Foreign(did) => {
inline::record_extern_fqn(cx, did, TypeKind::Foreign);
let path = external_path(
cx,
cx.tcx.item_name(did),
None,
false,
vec![],
InternalSubsts::empty(),
);
ResolvedPath { path, param_names: None, did, is_generic: false }
}
ty::Dynamic(ref obj, ref reg) => {
// HACK: pick the first `did` as the `did` of the trait object. Someone
// might want to implement "native" support for marker-trait-only
// trait objects.
let mut dids = obj.principal_def_id().into_iter().chain(obj.auto_traits());
let did = dids
.next()
.unwrap_or_else(|| panic!("found trait object `{:?}` with no traits?", self));
let substs = match obj.principal() {
Some(principal) => principal.skip_binder().substs,
// marker traits have no substs.
_ => cx.tcx.intern_substs(&[]),
};
inline::record_extern_fqn(cx, did, TypeKind::Trait);
let mut param_names = vec![];
if let Some(b) = reg.clean(cx) {
param_names.push(GenericBound::Outlives(b));
}
for did in dids {
let empty = cx.tcx.intern_substs(&[]);
let path =
external_path(cx, cx.tcx.item_name(did), Some(did), false, vec![], empty);
inline::record_extern_fqn(cx, did, TypeKind::Trait);
let bound = GenericBound::TraitBound(
PolyTrait {
trait_: ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
},
generic_params: Vec::new(),
},
hir::TraitBoundModifier::None,
);
param_names.push(bound);
}
let mut bindings = vec![];
for pb in obj.projection_bounds() {
bindings.push(TypeBinding {
name: cx.tcx.associated_item(pb.item_def_id()).ident.name,
kind: TypeBindingKind::Equality { ty: pb.skip_binder().ty.clean(cx) },
});
}
let path =
external_path(cx, cx.tcx.item_name(did), Some(did), false, bindings, substs);
ResolvedPath { path, param_names: Some(param_names), did, is_generic: false }
}
ty::Tuple(ref t) => {
Tuple(t.iter().map(|t| t.expect_ty()).collect::<Vec<_>>().clean(cx))
}
ty::Projection(ref data) => data.clean(cx),
ty::Param(ref p) => {
if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
ImplTrait(bounds)
} else {
Generic(p.name)
}
}
ty::Opaque(def_id, substs) => {
// Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
// by looking up the bounds associated with the def_id.
let substs = cx.tcx.lift(substs).expect("Opaque lift failed");
let bounds = cx
.tcx
.explicit_item_bounds(def_id)
.iter()
.map(|(bound, _)| bound.subst(cx.tcx, substs))
.collect::<Vec<_>>();
let mut regions = vec![];
let mut has_sized = false;
let mut bounds = bounds
.iter()
.filter_map(|bound| {
let bound_predicate = bound.kind();
let trait_ref = match bound_predicate.skip_binder() {
ty::PredicateKind::Trait(tr, _constness) => {
bound_predicate.rebind(tr.trait_ref)
}
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
if let Some(r) = reg.clean(cx) {
regions.push(GenericBound::Outlives(r));
}
return None;
}
_ => return None,
};
if let Some(sized) = cx.tcx.lang_items().sized_trait() {
if trait_ref.def_id() == sized {
has_sized = true;
return None;
}
}
let bounds: Vec<_> = bounds
.iter()
.filter_map(|bound| {
if let ty::PredicateKind::Projection(proj) =
bound.kind().skip_binder()
{
if proj.projection_ty.trait_ref(cx.tcx)
== trait_ref.skip_binder()
{
Some(TypeBinding {
name: cx
.tcx
.associated_item(proj.projection_ty.item_def_id)
.ident
.name,
kind: TypeBindingKind::Equality {
ty: proj.ty.clean(cx),
},
})
} else {
None
}
} else {
None
}
})
.collect();
Some((trait_ref, &bounds[..]).clean(cx))
})
.collect::<Vec<_>>();
bounds.extend(regions);
if !has_sized && !bounds.is_empty() {
bounds.insert(0, GenericBound::maybe_sized(cx));
}
ImplTrait(bounds)
}
ty::Closure(..) | ty::Generator(..) => Tuple(vec![]), // FIXME(pcwalton)
ty::Bound(..) => panic!("Bound"),
ty::Placeholder(..) => panic!("Placeholder"),
ty::GeneratorWitness(..) => panic!("GeneratorWitness"),
ty::Infer(..) => panic!("Infer"),
ty::Error(_) => panic!("Error"),
}
}
}
impl<'tcx> Clean<Constant> for ty::Const<'tcx> {
fn clean(&self, cx: &mut DocContext<'_>) -> Constant {
Constant {
type_: self.ty.clean(cx),
expr: format!("{}", self),
value: None,
is_literal: false,
}
}
}
impl Clean<Item> for hir::FieldDef<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let what_rustc_thinks = Item::from_hir_id_and_parts(
self.hir_id,
Some(self.ident.name),
StructFieldItem(self.ty.clean(cx)),
cx,
);
// Don't show `pub` for fields on enum variants; they are always public
Item { visibility: self.vis.clean(cx), ..what_rustc_thinks }
}
}
impl Clean<Item> for ty::FieldDef {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let what_rustc_thinks = Item::from_def_id_and_parts(
self.did,
Some(self.ident.name),
StructFieldItem(cx.tcx.type_of(self.did).clean(cx)),
cx,
);
// Don't show `pub` for fields on enum variants; they are always public
Item { visibility: self.vis.clean(cx), ..what_rustc_thinks }
}
}
impl Clean<Visibility> for hir::Visibility<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Visibility {
match self.node {
hir::VisibilityKind::Public => Visibility::Public,
hir::VisibilityKind::Inherited => Visibility::Inherited,
hir::VisibilityKind::Crate(_) => {
let krate = DefId::local(CRATE_DEF_INDEX);
Visibility::Restricted(krate)
}
hir::VisibilityKind::Restricted { ref path, .. } => {
let path = path.clean(cx);
let did = register_res(cx, path.res);
Visibility::Restricted(did)
}
}
}
}
impl Clean<Visibility> for ty::Visibility {
fn clean(&self, _cx: &mut DocContext<'_>) -> Visibility {
match *self {
ty::Visibility::Public => Visibility::Public,
// NOTE: this is not quite right: `ty` uses `Invisible` to mean 'private',
// while rustdoc really does mean inherited. That means that for enum variants, such as
// `pub enum E { V }`, `V` will be marked as `Public` by `ty`, but as `Inherited` by rustdoc.
// This is the main reason `impl Clean for hir::Visibility` still exists; various parts of clean
// override `tcx.visibility` explicitly to make sure this distinction is captured.
ty::Visibility::Invisible => Visibility::Inherited,
ty::Visibility::Restricted(module) => Visibility::Restricted(module),
}
}
}
impl Clean<VariantStruct> for rustc_hir::VariantData<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> VariantStruct {
VariantStruct {
struct_type: CtorKind::from_hir(self),
fields: self.fields().iter().map(|x| x.clean(cx)).collect(),
fields_stripped: false,
}
}
}
impl Clean<Item> for ty::VariantDef {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let kind = match self.ctor_kind {
CtorKind::Const => Variant::CLike,
CtorKind::Fn => Variant::Tuple(
self.fields.iter().map(|f| cx.tcx.type_of(f.did).clean(cx)).collect(),
),
CtorKind::Fictive => Variant::Struct(VariantStruct {
struct_type: CtorKind::Fictive,
fields_stripped: false,
fields: self
.fields
.iter()
.map(|field| {
let name = Some(field.ident.name);
let kind = StructFieldItem(cx.tcx.type_of(field.did).clean(cx));
let what_rustc_thinks =
Item::from_def_id_and_parts(field.did, name, kind, cx);
// don't show `pub` for fields, which are always public
Item { visibility: Visibility::Inherited, ..what_rustc_thinks }
})
.collect(),
}),
};
let what_rustc_thinks =
Item::from_def_id_and_parts(self.def_id, Some(self.ident.name), VariantItem(kind), cx);
// don't show `pub` for fields, which are always public
Item { visibility: Inherited, ..what_rustc_thinks }
}
}
impl Clean<Variant> for hir::VariantData<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Variant {
match self {
hir::VariantData::Struct(..) => Variant::Struct(self.clean(cx)),
hir::VariantData::Tuple(..) => {
Variant::Tuple(self.fields().iter().map(|x| x.ty.clean(cx)).collect())
}
hir::VariantData::Unit(..) => Variant::CLike,
}
}
}
impl Clean<Span> for rustc_span::Span {
fn clean(&self, _cx: &mut DocContext<'_>) -> Span {
Span::from_rustc_span(*self)
}
}
impl Clean<Path> for hir::Path<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Path {
Path {
global: self.is_global(),
res: self.res,
segments: if self.is_global() { &self.segments[1..] } else { &self.segments }.clean(cx),
}
}
}
impl Clean<GenericArgs> for hir::GenericArgs<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> GenericArgs {
if self.parenthesized {
let output = self.bindings[0].ty().clean(cx);
GenericArgs::Parenthesized {
inputs: self.inputs().clean(cx),
output: if output != Type::Tuple(Vec::new()) { Some(output) } else { None },
}
} else {
GenericArgs::AngleBracketed {
args: self
.args
.iter()
.map(|arg| match arg {
hir::GenericArg::Lifetime(lt) if !lt.is_elided() => {
GenericArg::Lifetime(lt.clean(cx))
}
hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
hir::GenericArg::Type(ty) => GenericArg::Type(ty.clean(cx)),
hir::GenericArg::Const(ct) => GenericArg::Const(ct.clean(cx)),
})
.collect(),
bindings: self.bindings.clean(cx),
}
}
}
}
impl Clean<PathSegment> for hir::PathSegment<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> PathSegment {
PathSegment { name: self.ident.name, args: self.args().clean(cx) }
}
}
impl Clean<String> for Ident {
#[inline]
fn clean(&self, cx: &mut DocContext<'_>) -> String {
self.name.clean(cx)
}
}
impl Clean<String> for Symbol {
#[inline]
fn clean(&self, _: &mut DocContext<'_>) -> String {
self.to_string()
}
}
impl Clean<BareFunctionDecl> for hir::BareFnTy<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> BareFunctionDecl {
let (generic_params, decl) = enter_impl_trait(cx, |cx| {
(self.generic_params.clean(cx), (&*self.decl, self.param_names).clean(cx))
});
BareFunctionDecl { unsafety: self.unsafety, abi: self.abi, decl, generic_params }
}
}
impl Clean<Vec<Item>> for (&hir::Item<'_>, Option<Symbol>) {
fn clean(&self, cx: &mut DocContext<'_>) -> Vec<Item> {
use hir::ItemKind;
let (item, renamed) = self;
let def_id = item.def_id.to_def_id();
let mut name = renamed.unwrap_or_else(|| cx.tcx.hir().name(item.hir_id()));
cx.with_param_env(def_id, |cx| {
let kind = match item.kind {
ItemKind::Static(ty, mutability, body_id) => {
StaticItem(Static { type_: ty.clean(cx), mutability, expr: Some(body_id) })
}
ItemKind::Const(ty, body_id) => ConstantItem(Constant {
type_: ty.clean(cx),
expr: print_const_expr(cx.tcx, body_id),
value: print_evaluated_const(cx, def_id),
is_literal: is_literal_expr(cx, body_id.hir_id),
}),
ItemKind::OpaqueTy(ref ty) => OpaqueTyItem(OpaqueTy {
bounds: ty.bounds.clean(cx),
generics: ty.generics.clean(cx),
}),
ItemKind::TyAlias(hir_ty, ref generics) => {
let rustdoc_ty = hir_ty.clean(cx);
let ty = hir_ty_to_ty(cx.tcx, hir_ty).clean(cx);
TypedefItem(
Typedef {
type_: rustdoc_ty,
generics: generics.clean(cx),
item_type: Some(ty),
},
false,
)
}
ItemKind::Enum(ref def, ref generics) => EnumItem(Enum {
variants: def.variants.iter().map(|v| v.clean(cx)).collect(),
generics: generics.clean(cx),
variants_stripped: false,
}),
ItemKind::TraitAlias(ref generics, bounds) => TraitAliasItem(TraitAlias {
generics: generics.clean(cx),
bounds: bounds.clean(cx),
}),
ItemKind::Union(ref variant_data, ref generics) => UnionItem(Union {
generics: generics.clean(cx),
fields: variant_data.fields().clean(cx),
fields_stripped: false,
}),
ItemKind::Struct(ref variant_data, ref generics) => StructItem(Struct {
struct_type: CtorKind::from_hir(variant_data),
generics: generics.clean(cx),
fields: variant_data.fields().clean(cx),
fields_stripped: false,
}),
ItemKind::Impl(ref impl_) => return clean_impl(impl_, item.hir_id(), cx),
// proc macros can have a name set by attributes
ItemKind::Fn(ref sig, ref generics, body_id) => {
clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
}
ItemKind::Trait(is_auto, unsafety, ref generics, ref bounds, ref item_ids) => {
let items = item_ids
.iter()
.map(|ti| cx.tcx.hir().trait_item(ti.id).clean(cx))
.collect();
TraitItem(Trait {
unsafety,
items,
generics: generics.clean(cx),
bounds: bounds.clean(cx),
is_auto: is_auto.clean(cx),
})
}
ItemKind::ExternCrate(orig_name) => {
return clean_extern_crate(item, name, orig_name, cx);
}
ItemKind::Use(path, kind) => {
return clean_use_statement(item, name, path, kind, cx);
}
_ => unreachable!("not yet converted"),
};
vec![Item::from_def_id_and_parts(def_id, Some(name), kind, cx)]
})
}
}
impl Clean<Item> for hir::Variant<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let kind = VariantItem(self.data.clean(cx));
let what_rustc_thinks =
Item::from_hir_id_and_parts(self.id, Some(self.ident.name), kind, cx);
// don't show `pub` for variants, which are always public
Item { visibility: Inherited, ..what_rustc_thinks }
}
}
impl Clean<bool> for ty::ImplPolarity {
/// Returns whether the impl has negative polarity.
fn clean(&self, _: &mut DocContext<'_>) -> bool {
match self {
&ty::ImplPolarity::Positive |
// FIXME: do we want to do something else here?
&ty::ImplPolarity::Reservation => false,
&ty::ImplPolarity::Negative => true,
}
}
}
fn clean_impl(impl_: &hir::Impl<'_>, hir_id: hir::HirId, cx: &mut DocContext<'_>) -> Vec<Item> {
let tcx = cx.tcx;
let mut ret = Vec::new();
let trait_ = impl_.of_trait.clean(cx);
let items =
impl_.items.iter().map(|ii| tcx.hir().impl_item(ii.id).clean(cx)).collect::<Vec<_>>();
let def_id = tcx.hir().local_def_id(hir_id);
// If this impl block is an implementation of the Deref trait, then we
// need to try inlining the target's inherent impl blocks as well.
if trait_.def_id() == tcx.lang_items().deref_trait() {
build_deref_target_impls(cx, &items, &mut ret);
}
let provided: FxHashSet<Symbol> = trait_
.def_id()
.map(|did| tcx.provided_trait_methods(did).map(|meth| meth.ident.name).collect())
.unwrap_or_default();
let for_ = impl_.self_ty.clean(cx);
let type_alias = for_.def_id().and_then(|did| match tcx.def_kind(did) {
DefKind::TyAlias => Some(tcx.type_of(did).clean(cx)),
_ => None,
});
let mut make_item = |trait_: Option<Type>, for_: Type, items: Vec<Item>| {
let kind = ImplItem(Impl {
unsafety: impl_.unsafety,
generics: impl_.generics.clean(cx),
provided_trait_methods: provided.clone(),
trait_,
for_,
items,
negative_polarity: tcx.impl_polarity(def_id).clean(cx),
synthetic: false,
blanket_impl: None,
});
Item::from_hir_id_and_parts(hir_id, None, kind, cx)
};
if let Some(type_alias) = type_alias {
ret.push(make_item(trait_.clone(), type_alias, items.clone()));
}
ret.push(make_item(trait_, for_, items));
ret
}
fn clean_extern_crate(
krate: &hir::Item<'_>,
name: Symbol,
orig_name: Option<Symbol>,
cx: &mut DocContext<'_>,
) -> Vec<Item> {
// this is the ID of the `extern crate` statement
let cnum = cx.tcx.extern_mod_stmt_cnum(krate.def_id).unwrap_or(LOCAL_CRATE);
// this is the ID of the crate itself
let crate_def_id = DefId { krate: cnum, index: CRATE_DEF_INDEX };
let attrs = cx.tcx.hir().attrs(krate.hir_id());
let please_inline = krate.vis.node.is_pub()
&& attrs.iter().any(|a| {
a.has_name(sym::doc)
&& match a.meta_item_list() {
Some(l) => attr::list_contains_name(&l, sym::inline),
None => false,
}
});
if please_inline {
let mut visited = FxHashSet::default();
let res = Res::Def(DefKind::Mod, crate_def_id);
if let Some(items) = inline::try_inline(
cx,
cx.tcx.parent_module(krate.hir_id()).to_def_id(),
res,
name,
Some(attrs),
&mut visited,
) {
return items;
}
}
// FIXME: using `from_def_id_and_kind` breaks `rustdoc/masked` for some reason
vec![Item {
name: Some(name),
attrs: box attrs.clean(cx),
source: krate.span.clean(cx),
def_id: crate_def_id,
visibility: krate.vis.clean(cx),
kind: box ExternCrateItem { src: orig_name },
}]
}
fn clean_use_statement(
import: &hir::Item<'_>,
name: Symbol,
path: &hir::Path<'_>,
kind: hir::UseKind,
cx: &mut DocContext<'_>,
) -> Vec<Item> {
// We need this comparison because some imports (for std types for example)
// are "inserted" as well but directly by the compiler and they should not be
// taken into account.
if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
return Vec::new();
}
let attrs = cx.tcx.hir().attrs(import.hir_id());
let inline_attr = attrs.lists(sym::doc).get_word_attr(sym::inline);
let pub_underscore = import.vis.node.is_pub() && name == kw::Underscore;
if pub_underscore {
if let Some(ref inline) = inline_attr {
rustc_errors::struct_span_err!(
cx.tcx.sess,
inline.span(),
E0780,
"anonymous imports cannot be inlined"
)
.span_label(import.span, "anonymous import")
.emit();
}
}
// We consider inlining the documentation of `pub use` statements, but we
// forcefully don't inline if this is not public or if the
// #[doc(no_inline)] attribute is present.
// Don't inline doc(hidden) imports so they can be stripped at a later stage.
let mut denied = !import.vis.node.is_pub()
|| pub_underscore
|| attrs.iter().any(|a| {
a.has_name(sym::doc)
&& match a.meta_item_list() {
Some(l) => {
attr::list_contains_name(&l, sym::no_inline)
|| attr::list_contains_name(&l, sym::hidden)
}
None => false,
}
});
// Also check whether imports were asked to be inlined, in case we're trying to re-export a
// crate in Rust 2018+
let path = path.clean(cx);
let inner = if kind == hir::UseKind::Glob {
if !denied {
let mut visited = FxHashSet::default();
if let Some(items) = inline::try_inline_glob(cx, path.res, &mut visited) {
return items;
}
}
Import::new_glob(resolve_use_source(cx, path), true)
} else {
if inline_attr.is_none() {
if let Res::Def(DefKind::Mod, did) = path.res {
if !did.is_local() && did.index == CRATE_DEF_INDEX {
// if we're `pub use`ing an extern crate root, don't inline it unless we
// were specifically asked for it
denied = true;
}
}
}
if !denied {
let mut visited = FxHashSet::default();
if let Some(mut items) = inline::try_inline(
cx,
cx.tcx.parent_module(import.hir_id()).to_def_id(),
path.res,
name,
Some(attrs),
&mut visited,
) {
items.push(Item::from_def_id_and_parts(
import.def_id.to_def_id(),
None,
ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
cx,
));
return items;
}
}
Import::new_simple(name, resolve_use_source(cx, path), true)
};
vec![Item::from_def_id_and_parts(import.def_id.to_def_id(), None, ImportItem(inner), cx)]
}
impl Clean<Item> for (&hir::ForeignItem<'_>, Option<Symbol>) {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let (item, renamed) = self;
cx.with_param_env(item.def_id.to_def_id(), |cx| {
let kind = match item.kind {
hir::ForeignItemKind::Fn(ref decl, ref names, ref generics) => {
let abi = cx.tcx.hir().get_foreign_abi(item.hir_id());
let (generics, decl) = enter_impl_trait(cx, |cx| {
(generics.clean(cx), (&**decl, &names[..]).clean(cx))
});
ForeignFunctionItem(Function {
decl,
generics,
header: hir::FnHeader {
unsafety: hir::Unsafety::Unsafe,
abi,
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
})
}
hir::ForeignItemKind::Static(ref ty, mutability) => {
ForeignStaticItem(Static { type_: ty.clean(cx), mutability, expr: None })
}
hir::ForeignItemKind::Type => ForeignTypeItem,
};
Item::from_hir_id_and_parts(
item.hir_id(),
Some(renamed.unwrap_or(item.ident.name)),
kind,
cx,
)
})
}
}
impl Clean<Item> for (&hir::MacroDef<'_>, Option<Symbol>) {
fn clean(&self, cx: &mut DocContext<'_>) -> Item {
let (item, renamed) = self;
let name = renamed.unwrap_or(item.ident.name);
let tts = item.ast.body.inner_tokens().trees().collect::<Vec<_>>();
// Extract the spans of all matchers. They represent the "interface" of the macro.
let matchers = tts.chunks(4).map(|arm| arm[0].span()).collect::<Vec<_>>();
let source = if item.ast.macro_rules {
format!(
"macro_rules! {} {{\n{}}}",
name,
matchers
.iter()
.map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) })
.collect::<String>(),
)
} else {
let vis = item.vis.clean(cx);
let def_id = item.def_id.to_def_id();
if matchers.len() <= 1 {
format!(
"{}macro {}{} {{\n ...\n}}",
vis.print_with_space(cx.tcx, def_id, &cx.cache),
name,
matchers.iter().map(|span| span.to_src(cx)).collect::<String>(),
)
} else {
format!(
"{}macro {} {{\n{}}}",
vis.print_with_space(cx.tcx, def_id, &cx.cache),
name,
matchers
.iter()
.map(|span| { format!(" {} => {{ ... }},\n", span.to_src(cx)) })
.collect::<String>(),
)
}
};
Item::from_hir_id_and_parts(
item.hir_id(),
Some(name),
MacroItem(Macro { source, imported_from: None }),
cx,
)
}
}
impl Clean<TypeBinding> for hir::TypeBinding<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> TypeBinding {
TypeBinding { name: self.ident.name, kind: self.kind.clean(cx) }
}
}
impl Clean<TypeBindingKind> for hir::TypeBindingKind<'_> {
fn clean(&self, cx: &mut DocContext<'_>) -> TypeBindingKind {
match *self {
hir::TypeBindingKind::Equality { ref ty } => {
TypeBindingKind::Equality { ty: ty.clean(cx) }
}
hir::TypeBindingKind::Constraint { ref bounds } => {
TypeBindingKind::Constraint { bounds: bounds.iter().map(|b| b.clean(cx)).collect() }
}
}
}
}
enum SimpleBound {
TraitBound(Vec<PathSegment>, Vec<SimpleBound>, Vec<GenericParamDef>, hir::TraitBoundModifier),
Outlives(Lifetime),
}
impl From<GenericBound> for SimpleBound {
fn from(bound: GenericBound) -> Self {
match bound.clone() {
GenericBound::Outlives(l) => SimpleBound::Outlives(l),
GenericBound::TraitBound(t, mod_) => match t.trait_ {
Type::ResolvedPath { path, param_names, .. } => SimpleBound::TraitBound(
path.segments,
param_names.map_or_else(Vec::new, |v| {
v.iter().map(|p| SimpleBound::from(p.clone())).collect()
}),
t.generic_params,
mod_,
),
_ => panic!("Unexpected bound {:?}", bound),
},
}
}
}