rust/tests/compile-fail/methods.rs
mcarton de9a80cd10 Check type for SINGLE_CHAR_PATTERN
It’d be nicer to actually check for `Pattern` bounds but in the meantime
this needs to be fixed.
2016-04-20 21:16:59 +02:00

489 lines
15 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![feature(plugin)]
#![plugin(clippy)]
#![deny(clippy, clippy_pedantic)]
#![allow(blacklisted_name, unused, print_stdout, non_ascii_literal, new_without_default)]
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::collections::HashSet;
use std::ops::Mul;
struct T;
impl T {
fn add(self, other: T) -> T { self } //~ERROR defining a method called `add`
fn drop(&mut self) { } //~ERROR defining a method called `drop`
fn sub(&self, other: T) -> &T { self } // no error, self is a ref
fn div(self) -> T { self } // no error, different #arguments
fn rem(self, other: T) { } // no error, wrong return type
fn into_u32(self) -> u32 { 0 } // fine
fn into_u16(&self) -> u16 { 0 } //~ERROR methods called `into_*` usually take self by value
fn to_something(self) -> u32 { 0 } //~ERROR methods called `to_*` usually take self by reference
fn new(self) {}
//~^ ERROR methods called `new` usually take no self
//~| ERROR methods called `new` usually return `Self`
}
struct Lt<'a> {
foo: &'a u32,
}
impl<'a> Lt<'a> {
// The lifetime is different, but thats irrelevant, see #734
#[allow(needless_lifetimes)]
pub fn new<'b>(s: &'b str) -> Lt<'b> { unimplemented!() }
}
struct Lt2<'a> {
foo: &'a u32,
}
impl<'a> Lt2<'a> {
// The lifetime is different, but thats irrelevant, see #734
pub fn new(s: &str) -> Lt2 { unimplemented!() }
}
struct Lt3<'a> {
foo: &'a u32,
}
impl<'a> Lt3<'a> {
// The lifetime is different, but thats irrelevant, see #734
pub fn new() -> Lt3<'static> { unimplemented!() }
}
#[derive(Clone,Copy)]
struct U;
impl U {
fn new() -> Self { U }
fn to_something(self) -> u32 { 0 } // ok because U is Copy
}
struct V<T> {
_dummy: T
}
impl<T> V<T> {
fn new() -> Option<V<T>> { None }
}
impl Mul<T> for T {
type Output = T;
fn mul(self, other: T) -> T { self } // no error, obviously
}
/// Utility macro to test linting behavior in `option_methods()`
/// The lints included in `option_methods()` should not lint if the call to map is partially
/// within a macro
macro_rules! opt_map {
($opt:expr, $map:expr) => {($opt).map($map)};
}
/// Checks implementation of the following lints:
/// * `OPTION_MAP_UNWRAP_OR`
/// * `OPTION_MAP_UNWRAP_OR_ELSE`
fn option_methods() {
let opt = Some(1);
// Check OPTION_MAP_UNWRAP_OR
// single line case
let _ = opt.map(|x| x + 1) //~ ERROR called `map(f).unwrap_or(a)`
//~| NOTE replace `map(|x| x + 1).unwrap_or(0)`
.unwrap_or(0); // should lint even though this call is on a separate line
// multi line cases
let _ = opt.map(|x| { //~ ERROR called `map(f).unwrap_or(a)`
x + 1
}
).unwrap_or(0);
let _ = opt.map(|x| x + 1) //~ ERROR called `map(f).unwrap_or(a)`
.unwrap_or({
0
});
// macro case
let _ = opt_map!(opt, |x| x + 1).unwrap_or(0); // should not lint
// Check OPTION_MAP_UNWRAP_OR_ELSE
// single line case
let _ = opt.map(|x| x + 1) //~ ERROR called `map(f).unwrap_or_else(g)`
//~| NOTE replace `map(|x| x + 1).unwrap_or_else(|| 0)`
.unwrap_or_else(|| 0); // should lint even though this call is on a separate line
// multi line cases
let _ = opt.map(|x| { //~ ERROR called `map(f).unwrap_or_else(g)`
x + 1
}
).unwrap_or_else(|| 0);
let _ = opt.map(|x| x + 1) //~ ERROR called `map(f).unwrap_or_else(g)`
.unwrap_or_else(||
0
);
// macro case
let _ = opt_map!(opt, |x| x + 1).unwrap_or_else(|| 0); // should not lint
}
/// Struct to generate false positive for Iterator-based lints
#[derive(Copy, Clone)]
struct IteratorFalsePositives {
foo: u32,
}
impl IteratorFalsePositives {
fn filter(self) -> IteratorFalsePositives {
self
}
fn next(self) -> IteratorFalsePositives {
self
}
fn find(self) -> Option<u32> {
Some(self.foo)
}
fn position(self) -> Option<u32> {
Some(self.foo)
}
fn rposition(self) -> Option<u32> {
Some(self.foo)
}
}
/// Checks implementation of `FILTER_NEXT` lint
fn filter_next() {
let v = vec![3, 2, 1, 0, -1, -2, -3];
// check single-line case
let _ = v.iter().filter(|&x| *x < 0).next();
//~^ ERROR called `filter(p).next()` on an Iterator.
//~| NOTE replace `filter(|&x| *x < 0).next()`
// check multi-line case
let _ = v.iter().filter(|&x| { //~ERROR called `filter(p).next()` on an Iterator.
*x < 0
}
).next();
// check that we don't lint if the caller is not an Iterator
let foo = IteratorFalsePositives { foo: 0 };
let _ = foo.filter().next();
}
/// Checks implementation of `SEARCH_IS_SOME` lint
fn search_is_some() {
let v = vec![3, 2, 1, 0, -1, -2, -3];
// check `find().is_some()`, single-line
let _ = v.iter().find(|&x| *x < 0).is_some();
//~^ ERROR called `is_some()` after searching
//~| NOTE replace `find(|&x| *x < 0).is_some()`
// check `find().is_some()`, multi-line
let _ = v.iter().find(|&x| { //~ERROR called `is_some()` after searching
*x < 0
}
).is_some();
// check `position().is_some()`, single-line
let _ = v.iter().position(|&x| x < 0).is_some();
//~^ ERROR called `is_some()` after searching
//~| NOTE replace `position(|&x| x < 0).is_some()`
// check `position().is_some()`, multi-line
let _ = v.iter().position(|&x| { //~ERROR called `is_some()` after searching
x < 0
}
).is_some();
// check `rposition().is_some()`, single-line
let _ = v.iter().rposition(|&x| x < 0).is_some();
//~^ ERROR called `is_some()` after searching
//~| NOTE replace `rposition(|&x| x < 0).is_some()`
// check `rposition().is_some()`, multi-line
let _ = v.iter().rposition(|&x| { //~ERROR called `is_some()` after searching
x < 0
}
).is_some();
// check that we don't lint if the caller is not an Iterator
let foo = IteratorFalsePositives { foo: 0 };
let _ = foo.find().is_some();
let _ = foo.position().is_some();
let _ = foo.rposition().is_some();
}
/// Checks implementation of the `OR_FUN_CALL` lint
fn or_fun_call() {
struct Foo;
impl Foo {
fn new() -> Foo { Foo }
}
fn make<T>() -> T { unimplemented!(); }
let with_constructor = Some(vec![1]);
with_constructor.unwrap_or(make());
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_constructor.unwrap_or_else(make)
let with_new = Some(vec![1]);
with_new.unwrap_or(Vec::new());
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_new.unwrap_or_default();
let with_const_args = Some(vec![1]);
with_const_args.unwrap_or(Vec::with_capacity(12));
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_const_args.unwrap_or_else(|| Vec::with_capacity(12));
let with_err : Result<_, ()> = Ok(vec![1]);
with_err.unwrap_or(make());
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_err.unwrap_or_else(|_| make());
let with_err_args : Result<_, ()> = Ok(vec![1]);
with_err_args.unwrap_or(Vec::with_capacity(12));
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_err_args.unwrap_or_else(|_| Vec::with_capacity(12));
let with_default_trait = Some(1);
with_default_trait.unwrap_or(Default::default());
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_default_trait.unwrap_or_default();
let with_default_type = Some(1);
with_default_type.unwrap_or(u64::default());
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_default_type.unwrap_or_default();
let with_vec = Some(vec![1]);
with_vec.unwrap_or(vec![]);
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION with_vec.unwrap_or_else(|| vec![]);
let without_default = Some(Foo);
without_default.unwrap_or(Foo::new());
//~^ERROR use of `unwrap_or`
//~|HELP try this
//~|SUGGESTION without_default.unwrap_or_else(Foo::new);
let mut map = HashMap::<u64, String>::new();
map.entry(42).or_insert(String::new());
//~^ERROR use of `or_insert` followed by a function call
//~|HELP try this
//~|SUGGESTION map.entry(42).or_insert_with(String::new);
let mut btree = BTreeMap::<u64, String>::new();
btree.entry(42).or_insert(String::new());
//~^ERROR use of `or_insert` followed by a function call
//~|HELP try this
//~|SUGGESTION btree.entry(42).or_insert_with(String::new);
}
#[allow(similar_names)]
fn main() {
use std::io;
let opt = Some(0);
let _ = opt.unwrap(); //~ERROR used unwrap() on an Option
let res: Result<i32, ()> = Ok(0);
let _ = res.unwrap(); //~ERROR used unwrap() on a Result
res.ok().expect("disaster!"); //~ERROR called `ok().expect()`
// the following should not warn, since `expect` isn't implemented unless
// the error type implements `Debug`
let res2: Result<i32, MyError> = Ok(0);
res2.ok().expect("oh noes!");
let res3: Result<u32, MyErrorWithParam<u8>>= Ok(0);
res3.ok().expect("whoof"); //~ERROR called `ok().expect()`
let res4: Result<u32, io::Error> = Ok(0);
res4.ok().expect("argh"); //~ERROR called `ok().expect()`
let res5: io::Result<u32> = Ok(0);
res5.ok().expect("oops"); //~ERROR called `ok().expect()`
let res6: Result<u32, &str> = Ok(0);
res6.ok().expect("meh"); //~ERROR called `ok().expect()`
}
struct MyError(()); // doesn't implement Debug
#[derive(Debug)]
struct MyErrorWithParam<T> {
x: T
}
fn starts_with() {
"".chars().next() == Some(' ');
//~^ ERROR starts_with
//~| HELP like this
//~| SUGGESTION "".starts_with(' ')
Some(' ') != "".chars().next();
//~^ ERROR starts_with
//~| HELP like this
//~| SUGGESTION !"".starts_with(' ')
}
fn use_extend_from_slice() {
let mut v : Vec<&'static str> = vec![];
v.extend(&["Hello", "World"]); //~ERROR use of `extend`
v.extend(&vec!["Some", "more"]);
//~^ERROR use of `extend`
//~| HELP try this
//~| SUGGESTION v.extend_from_slice(&vec!["Some", "more"]);
v.extend(vec!["And", "even", "more"].iter()); //~ERROR use of `extend`
let o : Option<&'static str> = None;
v.extend(o);
v.extend(Some("Bye"));
v.extend(vec!["Not", "like", "this"]);
v.extend(["But", "this"].iter());
//~^ERROR use of `extend
//~| HELP try this
//~| SUGGESTION v.extend_from_slice(&["But", "this"]);
}
fn clone_on_copy() {
42.clone(); //~ERROR using `clone` on a `Copy` type
vec![1].clone(); // ok, not a Copy type
Some(vec![1]).clone(); // ok, not a Copy type
}
fn clone_on_copy_generic<T: Copy>(t: T) {
t.clone(); //~ERROR using `clone` on a `Copy` type
Some(t).clone(); //~ERROR using `clone` on a `Copy` type
}
fn clone_on_double_ref() {
let x = vec![1];
let y = &&x;
let z: &Vec<_> = y.clone(); //~ERROR using `clone` on a double
//~| HELP try dereferencing it
//~| SUGGESTION let z: &Vec<_> = (*y).clone();
//~^^^ERROR using `clone` on a `Copy` type
println!("{:p} {:p}",*y, z);
}
fn single_char_pattern() {
let x = "foo";
x.split("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.split('x');
x.split("xx");
x.split('x');
let y = "x";
x.split(y);
// Not yet testing for multi-byte characters
// Changing `r.len() == 1` to `r.chars().count() == 1` in `lint_single_char_pattern`
// should have done this but produced an ICE
//
// We may not want to suggest changing these anyway
// See: https://github.com/Manishearth/rust-clippy/issues/650#issuecomment-184328984
x.split("ß");
x.split("");
x.split("💣");
// Can't use this lint for unicode code points which don't fit in a char
x.split("❤️");
x.contains("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.contains('x');
x.starts_with("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.starts_with('x');
x.ends_with("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.ends_with('x');
x.find("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.find('x');
x.rfind("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.rfind('x');
x.rsplit("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.rsplit('x');
x.split_terminator("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.split_terminator('x');
x.rsplit_terminator("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.rsplit_terminator('x');
x.splitn(0, "x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.splitn(0, 'x');
x.rsplitn(0, "x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.rsplitn(0, 'x');
x.matches("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.matches('x');
x.rmatches("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.rmatches('x');
x.match_indices("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.match_indices('x');
x.rmatch_indices("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.rmatch_indices('x');
x.trim_left_matches("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.trim_left_matches('x');
x.trim_right_matches("x");
//~^ ERROR single-character string constant used as pattern
//~| HELP try using a char instead:
//~| SUGGESTION x.trim_right_matches('x');
let h = HashSet::<String>::new();
h.contains("X"); // should not warn
}
#[allow(result_unwrap_used)]
fn temporary_cstring() {
use std::ffi::CString;
( // extra parenthesis to better test spans
//~^ ERROR you are getting the inner pointer of a temporary `CString`
//~| NOTE that pointer will be invalid outside this expression
CString::new("foo").unwrap()
//~^ HELP assign the `CString` to a variable to extend its lifetime
).as_ptr();
}