33259d9797
The compiler has previously been producing binaries on the order of 1.8MB for hello world programs "fn main() {}". This is largely a result of the compilation model used by compiling entire libraries into a single object file and because static linking is favored by default. When linking, linkers will pull in the entire contents of an object file if any symbol from the object file is used. This means that if any symbol from a rust library is used, the entire library is pulled in unconditionally, regardless of whether the library is used or not. Traditional C/C++ projects do not normally encounter these large executable problems because their archives (rust's rlibs) are composed of many objects. Because of this, linkers can eliminate entire objects from being in the final executable. With rustc, however, the linker does not have the opportunity to leave out entire object files. In order to get similar benefits from dead code stripping at link time, this commit enables the -ffunction-sections and -fdata-sections flags in LLVM, as well as passing --gc-sections to the linker *by default*. This means that each function and each global will be placed into its own section, allowing the linker to GC all unused functions and data symbols. By enabling these flags, rust is able to generate much smaller binaries default. On linux, a hello world binary went from 1.8MB to 597K (a 67% reduction in size). The output size of dynamic libraries remained constant, but the output size of rlibs increased, as seen below: libarena - 2.27% bigger libcollections - 0.64% bigger libflate - 0.85% bigger libfourcc - 14.67% bigger libgetopts - 4.52% bigger libglob - 2.74% bigger libgreen - 9.68% bigger libhexfloat - 13.68% bigger liblibc - 10.79% bigger liblog - 10.95% bigger libnative - 8.34% bigger libnum - 2.31% bigger librand - 1.71% bigger libregex - 6.43% bigger librustc - 4.21% bigger librustdoc - 8.98% bigger librustuv - 4.11% bigger libsemver - 2.68% bigger libserialize - 1.92% bigger libstd - 3.59% bigger libsync - 3.96% bigger libsyntax - 4.96% bigger libterm - 13.96% bigger libtest - 6.03% bigger libtime - 2.86% bigger liburl - 6.59% bigger libuuid - 4.70% bigger libworkcache - 8.44% bigger This increase in size is a result of encoding many more section names into each object file (rlib). These increases are moderate enough that this change seems worthwhile to me, due to the drastic improvements seen in the final artifacts. The overall increase of the stage2 target folder (not the size of an install) went from 337MB to 348MB (3% increase). Additionally, linking is generally slower when executed with all these new sections plus the --gc-sections flag. The stage0 compiler takes 1.4s to link the `rustc` binary, where the stage1 compiler takes 1.9s to link the binary. Three megabytes are shaved off the binary. I found this increase in link time to be acceptable relative to the benefits of code size gained. This commit only enables --gc-sections for *executables*, not dynamic libraries. LLVM does all the heavy lifting when producing an object file for a dynamic library, so there is little else for the linker to do (remember that we only have one object file). I conducted similar experiments by putting a *module's* functions and data symbols into its own section (granularity moved to a module level instead of a function/static level). The size benefits of a hello world were seen to be on the order of 400K rather than 1.2MB. It seemed that enough benefit was gained using ffunction-sections that this route was less desirable, despite the lesser increases in binary rlib size. |
||
---|---|---|
man | ||
mk | ||
src | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.mailmap | ||
.travis.yml | ||
AUTHORS.txt | ||
configure | ||
CONTRIBUTING.md | ||
COPYRIGHT | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
Makefile.in | ||
README.md | ||
RELEASES.txt |
The Rust Programming Language
This is a compiler for Rust, including standard libraries, tools and documentation.
Quick Start
- Download a binary installer for your platform.
- Read the tutorial.
- Enjoy!
Note: Windows users can read the detailed getting started notes on the wiki.
Building from Source
-
Make sure you have installed the dependencies:
g++
4.4 orclang++
3.xpython
2.6 or later (but not 3.x)perl
5.0 or later- GNU
make
3.81 or later curl
git
-
Download and build Rust:
You can either download a tarball or build directly from the repo.
To build from the tarball do:
$ curl -O http://static.rust-lang.org/dist/rust-nightly.tar.gz $ tar -xzf rust-nightly.tar.gz $ cd rust-nightly
Or to build from the repo do:
$ git clone https://github.com/mozilla/rust.git $ cd rust
Now that you have Rust's source code, you can configure and build it:
$ ./configure $ make && make install
Note: You may need to use
sudo make install
if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a--prefix
argument toconfigure
. Various other options are also supported, pass--help
for more information on them.When complete,
make install
will place several programs into/usr/local/bin
:rustc
, the Rust compiler, andrustdoc
, the API-documentation tool. system. -
Read the tutorial.
-
Enjoy!
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
- Windows (7, 8, Server 2008 R2), x86 only
- Linux (2.6.18 or later, various distributions), x86 and x86-64
- OSX 10.7 (Lion) or greater, x86 and x86-64
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.
There is a lot more documentation in the wiki.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.