rust/compiler/rustc_middle/src/ty/sty.rs

2231 lines
78 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! This module contains `TyKind` and its major components.
#![allow(rustc::usage_of_ty_tykind)]
use self::TyKind::*;
use crate::infer::canonical::Canonical;
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
use crate::ty::InferTy::{self, *};
use crate::ty::{
self, AdtDef, DefIdTree, Discr, Ty, TyCtxt, TypeFlags, TypeFoldable, WithConstness,
};
use crate::ty::{DelaySpanBugEmitted, List, ParamEnv, TyS};
use polonius_engine::Atom;
use rustc_data_structures::captures::Captures;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_index::vec::Idx;
use rustc_macros::HashStable;
use rustc_span::symbol::{kw, Symbol};
use rustc_target::abi::VariantIdx;
use rustc_target::spec::abi;
use std::borrow::Cow;
use std::cmp::Ordering;
use std::marker::PhantomData;
use std::ops::Range;
use ty::util::IntTypeExt;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, Lift)]
pub struct TypeAndMut<'tcx> {
pub ty: Ty<'tcx>,
pub mutbl: hir::Mutability,
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, TyEncodable, TyDecodable, Copy)]
#[derive(HashStable)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
pub struct FreeRegion {
pub scope: DefId,
pub bound_region: BoundRegionKind,
}
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, TyEncodable, TyDecodable, Copy)]
#[derive(HashStable)]
pub enum BoundRegionKind {
/// An anonymous region parameter for a given fn (&T)
BrAnon(u32),
/// Named region parameters for functions (a in &'a T)
///
/// The `DefId` is needed to distinguish free regions in
/// the event of shadowing.
BrNamed(DefId, Symbol),
/// Anonymous region for the implicit env pointer parameter
/// to a closure
BrEnv,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, Debug, PartialOrd, Ord)]
#[derive(HashStable)]
pub struct BoundRegion {
pub kind: BoundRegionKind,
}
impl BoundRegion {
/// When canonicalizing, we replace unbound inference variables and free
/// regions with anonymous late bound regions. This method asserts that
/// we have an anonymous late bound region, which hence may refer to
/// a canonical variable.
pub fn assert_bound_var(&self) -> BoundVar {
match self.kind {
BoundRegionKind::BrAnon(var) => BoundVar::from_u32(var),
_ => bug!("bound region is not anonymous"),
}
}
}
impl BoundRegionKind {
pub fn is_named(&self) -> bool {
match *self {
BoundRegionKind::BrNamed(_, name) => name != kw::UnderscoreLifetime,
_ => false,
}
}
}
/// Defines the kinds of types.
///
/// N.B., if you change this, you'll probably want to change the corresponding
/// AST structure in `librustc_ast/ast.rs` as well.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable, Debug)]
#[derive(HashStable)]
#[rustc_diagnostic_item = "TyKind"]
pub enum TyKind<'tcx> {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive signed integer type. For example, `i32`.
Int(ty::IntTy),
/// A primitive unsigned integer type. For example, `u32`.
Uint(ty::UintTy),
/// A primitive floating-point type. For example, `f64`.
Float(ty::FloatTy),
/// Algebraic data types (ADT). For example: structures, enumerations and unions.
///
/// InternalSubsts here, possibly against intuition, *may* contain `Param`s.
/// That is, even after substitution it is possible that there are type
/// variables. This happens when the `Adt` corresponds to an ADT
/// definition and not a concrete use of it.
Adt(&'tcx AdtDef, SubstsRef<'tcx>),
/// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
Foreign(DefId),
/// The pointee of a string slice. Written as `str`.
Str,
/// An array with the given length. Written as `[T; n]`.
Array(Ty<'tcx>, &'tcx ty::Const<'tcx>),
/// The pointee of an array slice. Written as `[T]`.
Slice(Ty<'tcx>),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(TypeAndMut<'tcx>),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Region<'tcx>, Ty<'tcx>, hir::Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type, which is output (for a function
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(DefId, SubstsRef<'tcx>),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(PolyFnSig<'tcx>),
/// A trait, defined with `trait`.
Dynamic(&'tcx List<Binder<ExistentialPredicate<'tcx>>>, ty::Region<'tcx>),
/// The anonymous type of a closure. Used to represent the type of
/// `|a| a`.
Closure(DefId, SubstsRef<'tcx>),
/// The anonymous type of a generator. Used to represent the type of
/// `|a| yield a`.
Generator(DefId, SubstsRef<'tcx>, hir::Movability),
/// A type representing the types stored inside a generator.
/// This should only appear in GeneratorInteriors.
GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
/// Use `TyS::tuple_fields` to iterate over the field types.
Tuple(SubstsRef<'tcx>),
/// The projection of an associated type. For example,
/// `<T as Trait<..>>::N`.
Projection(ProjectionTy<'tcx>),
/// Opaque (`impl Trait`) type found in a return type.
/// The `DefId` comes either from
/// * the `impl Trait` ast::Ty node,
/// * or the `type Foo = impl Trait` declaration
/// The substitutions are for the generics of the function in question.
/// After typeck, the concrete type can be found in the `types` map.
Opaque(DefId, SubstsRef<'tcx>),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
Param(ParamTy),
/// Bound type variable, used only when preparing a trait query.
Bound(ty::DebruijnIndex, BoundTy),
/// A placeholder type - universally quantified higher-ranked type.
Placeholder(ty::PlaceholderType),
/// A type variable used during type checking.
Infer(InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
Error(DelaySpanBugEmitted),
}
impl TyKind<'tcx> {
#[inline]
pub fn is_primitive(&self) -> bool {
matches!(self, Bool | Char | Int(_) | Uint(_) | Float(_))
}
/// Get the article ("a" or "an") to use with this type.
pub fn article(&self) -> &'static str {
match self {
Int(_) | Float(_) | Array(_, _) => "an",
Adt(def, _) if def.is_enum() => "an",
// This should never happen, but ICEing and causing the user's code
// to not compile felt too harsh.
Error(_) => "a",
_ => "a",
}
}
}
// `TyKind` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(TyKind<'_>, 24);
/// A closure can be modeled as a struct that looks like:
///
/// struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
///
/// where:
///
/// - 'l0...'li and T0...Tj are the generic parameters
/// in scope on the function that defined the closure,
/// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
/// is rather hackily encoded via a scalar type. See
/// `TyS::to_opt_closure_kind` for details.
/// - CS represents the *closure signature*, representing as a `fn()`
/// type. For example, `fn(u32, u32) -> u32` would mean that the closure
/// implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
/// specified above.
/// - U is a type parameter representing the types of its upvars, tupled up
/// (borrowed, if appropriate; that is, if an U field represents a by-ref upvar,
/// and the up-var has the type `Foo`, then that field of U will be `&Foo`).
///
/// So, for example, given this function:
///
/// fn foo<'a, T>(data: &'a mut T) {
/// do(|| data.count += 1)
/// }
///
/// the type of the closure would be something like:
///
/// struct Closure<'a, T, U>(...U);
///
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
///
/// impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
/// ...
/// }
///
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// in an extra type parameter? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the scope of the closure itself; this is some
/// subset of `foo`, probably just the scope of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that codegen may need them
/// when monomorphizing, and they may not appear in the upvars. A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
///
/// ## Generators
///
/// Generators are handled similarly in `GeneratorSubsts`. The set of
/// type parameters is similar, but `CK` and `CS` are replaced by the
/// following type parameters:
///
/// * `GS`: The generator's "resume type", which is the type of the
/// argument passed to `resume`, and the type of `yield` expressions
/// inside the generator.
/// * `GY`: The "yield type", which is the type of values passed to
/// `yield` inside the generator.
/// * `GR`: The "return type", which is the type of value returned upon
/// completion of the generator.
/// * `GW`: The "generator witness".
#[derive(Copy, Clone, Debug, TypeFoldable)]
pub struct ClosureSubsts<'tcx> {
/// Lifetime and type parameters from the enclosing function,
/// concatenated with a tuple containing the types of the upvars.
///
/// These are separated out because codegen wants to pass them around
/// when monomorphizing.
pub substs: SubstsRef<'tcx>,
}
/// Struct returned by `split()`.
pub struct ClosureSubstsParts<'tcx, T> {
pub parent_substs: &'tcx [GenericArg<'tcx>],
pub closure_kind_ty: T,
pub closure_sig_as_fn_ptr_ty: T,
pub tupled_upvars_ty: T,
}
impl<'tcx> ClosureSubsts<'tcx> {
/// Construct `ClosureSubsts` from `ClosureSubstsParts`, containing `Substs`
/// for the closure parent, alongside additional closure-specific components.
pub fn new(
tcx: TyCtxt<'tcx>,
parts: ClosureSubstsParts<'tcx, Ty<'tcx>>,
) -> ClosureSubsts<'tcx> {
ClosureSubsts {
substs: tcx.mk_substs(
parts.parent_substs.iter().copied().chain(
[parts.closure_kind_ty, parts.closure_sig_as_fn_ptr_ty, parts.tupled_upvars_ty]
.iter()
.map(|&ty| ty.into()),
),
),
}
}
/// Divides the closure substs into their respective components.
/// The ordering assumed here must match that used by `ClosureSubsts::new` above.
fn split(self) -> ClosureSubstsParts<'tcx, GenericArg<'tcx>> {
match self.substs[..] {
[ref parent_substs @ .., closure_kind_ty, closure_sig_as_fn_ptr_ty, tupled_upvars_ty] => {
ClosureSubstsParts {
parent_substs,
closure_kind_ty,
closure_sig_as_fn_ptr_ty,
tupled_upvars_ty,
}
}
_ => bug!("closure substs missing synthetics"),
}
}
/// Returns `true` only if enough of the synthetic types are known to
/// allow using all of the methods on `ClosureSubsts` without panicking.
///
/// Used primarily by `ty::print::pretty` to be able to handle closure
/// types that haven't had their synthetic types substituted in.
pub fn is_valid(self) -> bool {
self.substs.len() >= 3
&& matches!(self.split().tupled_upvars_ty.expect_ty().kind(), Tuple(_))
}
/// Returns the substitutions of the closure's parent.
pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
self.split().parent_substs
}
/// Returns an iterator over the list of types of captured paths by the closure.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
match self.tupled_upvars_ty().kind() {
TyKind::Error(_) => None,
TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
.into_iter()
.flatten()
}
/// Returns the tuple type representing the upvars for this closure.
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
self.split().tupled_upvars_ty.expect_ty()
}
/// Returns the closure kind for this closure; may return a type
/// variable during inference. To get the closure kind during
/// inference, use `infcx.closure_kind(substs)`.
pub fn kind_ty(self) -> Ty<'tcx> {
self.split().closure_kind_ty.expect_ty()
}
/// Returns the `fn` pointer type representing the closure signature for this
/// closure.
// FIXME(eddyb) this should be unnecessary, as the shallowly resolved
// type is known at the time of the creation of `ClosureSubsts`,
// see `rustc_typeck::check::closure`.
pub fn sig_as_fn_ptr_ty(self) -> Ty<'tcx> {
self.split().closure_sig_as_fn_ptr_ty.expect_ty()
}
/// Returns the closure kind for this closure; only usable outside
/// of an inference context, because in that context we know that
/// there are no type variables.
///
/// If you have an inference context, use `infcx.closure_kind()`.
pub fn kind(self) -> ty::ClosureKind {
self.kind_ty().to_opt_closure_kind().unwrap()
}
/// Extracts the signature from the closure.
pub fn sig(self) -> ty::PolyFnSig<'tcx> {
let ty = self.sig_as_fn_ptr_ty();
match ty.kind() {
ty::FnPtr(sig) => *sig,
_ => bug!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {:?}", ty.kind()),
}
}
}
/// Similar to `ClosureSubsts`; see the above documentation for more.
#[derive(Copy, Clone, Debug, TypeFoldable)]
pub struct GeneratorSubsts<'tcx> {
pub substs: SubstsRef<'tcx>,
}
pub struct GeneratorSubstsParts<'tcx, T> {
pub parent_substs: &'tcx [GenericArg<'tcx>],
pub resume_ty: T,
pub yield_ty: T,
pub return_ty: T,
pub witness: T,
pub tupled_upvars_ty: T,
}
impl<'tcx> GeneratorSubsts<'tcx> {
/// Construct `GeneratorSubsts` from `GeneratorSubstsParts`, containing `Substs`
/// for the generator parent, alongside additional generator-specific components.
pub fn new(
tcx: TyCtxt<'tcx>,
parts: GeneratorSubstsParts<'tcx, Ty<'tcx>>,
) -> GeneratorSubsts<'tcx> {
GeneratorSubsts {
substs: tcx.mk_substs(
parts.parent_substs.iter().copied().chain(
[
parts.resume_ty,
parts.yield_ty,
parts.return_ty,
parts.witness,
parts.tupled_upvars_ty,
]
.iter()
.map(|&ty| ty.into()),
),
),
}
}
/// Divides the generator substs into their respective components.
/// The ordering assumed here must match that used by `GeneratorSubsts::new` above.
fn split(self) -> GeneratorSubstsParts<'tcx, GenericArg<'tcx>> {
match self.substs[..] {
[ref parent_substs @ .., resume_ty, yield_ty, return_ty, witness, tupled_upvars_ty] => {
GeneratorSubstsParts {
parent_substs,
resume_ty,
yield_ty,
return_ty,
witness,
tupled_upvars_ty,
}
}
_ => bug!("generator substs missing synthetics"),
}
}
/// Returns `true` only if enough of the synthetic types are known to
/// allow using all of the methods on `GeneratorSubsts` without panicking.
///
/// Used primarily by `ty::print::pretty` to be able to handle generator
/// types that haven't had their synthetic types substituted in.
pub fn is_valid(self) -> bool {
self.substs.len() >= 5
&& matches!(self.split().tupled_upvars_ty.expect_ty().kind(), Tuple(_))
}
/// Returns the substitutions of the generator's parent.
pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
self.split().parent_substs
}
/// This describes the types that can be contained in a generator.
/// It will be a type variable initially and unified in the last stages of typeck of a body.
/// It contains a tuple of all the types that could end up on a generator frame.
/// The state transformation MIR pass may only produce layouts which mention types
/// in this tuple. Upvars are not counted here.
pub fn witness(self) -> Ty<'tcx> {
self.split().witness.expect_ty()
}
/// Returns an iterator over the list of types of captured paths by the generator.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
match self.tupled_upvars_ty().kind() {
TyKind::Error(_) => None,
TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
.into_iter()
.flatten()
}
/// Returns the tuple type representing the upvars for this generator.
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
self.split().tupled_upvars_ty.expect_ty()
}
/// Returns the type representing the resume type of the generator.
pub fn resume_ty(self) -> Ty<'tcx> {
self.split().resume_ty.expect_ty()
}
/// Returns the type representing the yield type of the generator.
pub fn yield_ty(self) -> Ty<'tcx> {
self.split().yield_ty.expect_ty()
}
/// Returns the type representing the return type of the generator.
pub fn return_ty(self) -> Ty<'tcx> {
self.split().return_ty.expect_ty()
}
/// Returns the "generator signature", which consists of its yield
/// and return types.
///
/// N.B., some bits of the code prefers to see this wrapped in a
/// binder, but it never contains bound regions. Probably this
/// function should be removed.
pub fn poly_sig(self) -> PolyGenSig<'tcx> {
ty::Binder::dummy(self.sig())
}
/// Returns the "generator signature", which consists of its resume, yield
/// and return types.
pub fn sig(self) -> GenSig<'tcx> {
ty::GenSig {
resume_ty: self.resume_ty(),
yield_ty: self.yield_ty(),
return_ty: self.return_ty(),
}
}
}
impl<'tcx> GeneratorSubsts<'tcx> {
/// Generator has not been resumed yet.
pub const UNRESUMED: usize = 0;
/// Generator has returned or is completed.
pub const RETURNED: usize = 1;
/// Generator has been poisoned.
pub const POISONED: usize = 2;
const UNRESUMED_NAME: &'static str = "Unresumed";
const RETURNED_NAME: &'static str = "Returned";
const POISONED_NAME: &'static str = "Panicked";
/// The valid variant indices of this generator.
#[inline]
pub fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
// FIXME requires optimized MIR
let num_variants = tcx.generator_layout(def_id).unwrap().variant_fields.len();
VariantIdx::new(0)..VariantIdx::new(num_variants)
}
/// The discriminant for the given variant. Panics if the `variant_index` is
/// out of range.
#[inline]
pub fn discriminant_for_variant(
&self,
def_id: DefId,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Discr<'tcx> {
// Generators don't support explicit discriminant values, so they are
// the same as the variant index.
assert!(self.variant_range(def_id, tcx).contains(&variant_index));
Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
}
/// The set of all discriminants for the generator, enumerated with their
/// variant indices.
#[inline]
pub fn discriminants(
self,
def_id: DefId,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
self.variant_range(def_id, tcx).map(move |index| {
(index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
})
}
/// Calls `f` with a reference to the name of the enumerator for the given
/// variant `v`.
pub fn variant_name(v: VariantIdx) -> Cow<'static, str> {
match v.as_usize() {
Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
Self::RETURNED => Cow::from(Self::RETURNED_NAME),
Self::POISONED => Cow::from(Self::POISONED_NAME),
_ => Cow::from(format!("Suspend{}", v.as_usize() - 3)),
}
}
/// The type of the state discriminant used in the generator type.
#[inline]
pub fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
tcx.types.u32
}
/// This returns the types of the MIR locals which had to be stored across suspension points.
/// It is calculated in rustc_mir::transform::generator::StateTransform.
/// All the types here must be in the tuple in GeneratorInterior.
///
/// The locals are grouped by their variant number. Note that some locals may
/// be repeated in multiple variants.
#[inline]
pub fn state_tys(
self,
def_id: DefId,
tcx: TyCtxt<'tcx>,
) -> impl Iterator<Item = impl Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
let layout = tcx.generator_layout(def_id).unwrap();
layout.variant_fields.iter().map(move |variant| {
variant.iter().map(move |field| layout.field_tys[*field].subst(tcx, self.substs))
})
}
/// This is the types of the fields of a generator which are not stored in a
/// variant.
#[inline]
pub fn prefix_tys(self) -> impl Iterator<Item = Ty<'tcx>> {
self.upvar_tys()
}
}
#[derive(Debug, Copy, Clone)]
pub enum UpvarSubsts<'tcx> {
Closure(SubstsRef<'tcx>),
Generator(SubstsRef<'tcx>),
}
impl<'tcx> UpvarSubsts<'tcx> {
/// Returns an iterator over the list of types of captured paths by the closure/generator.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
let tupled_tys = match self {
UpvarSubsts::Closure(substs) => substs.as_closure().tupled_upvars_ty(),
UpvarSubsts::Generator(substs) => substs.as_generator().tupled_upvars_ty(),
};
match tupled_tys.kind() {
TyKind::Error(_) => None,
TyKind::Tuple(..) => Some(self.tupled_upvars_ty().tuple_fields()),
TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
}
.into_iter()
.flatten()
}
#[inline]
pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
match self {
UpvarSubsts::Closure(substs) => substs.as_closure().tupled_upvars_ty(),
UpvarSubsts::Generator(substs) => substs.as_generator().tupled_upvars_ty(),
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub enum ExistentialPredicate<'tcx> {
/// E.g., `Iterator`.
Trait(ExistentialTraitRef<'tcx>),
/// E.g., `Iterator::Item = T`.
Projection(ExistentialProjection<'tcx>),
/// E.g., `Send`.
AutoTrait(DefId),
}
impl<'tcx> ExistentialPredicate<'tcx> {
/// Compares via an ordering that will not change if modules are reordered or other changes are
/// made to the tree. In particular, this ordering is preserved across incremental compilations.
pub fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
use self::ExistentialPredicate::*;
match (*self, *other) {
(Trait(_), Trait(_)) => Ordering::Equal,
(Projection(ref a), Projection(ref b)) => {
tcx.def_path_hash(a.item_def_id).cmp(&tcx.def_path_hash(b.item_def_id))
}
(AutoTrait(ref a), AutoTrait(ref b)) => {
tcx.trait_def(*a).def_path_hash.cmp(&tcx.trait_def(*b).def_path_hash)
}
(Trait(_), _) => Ordering::Less,
(Projection(_), Trait(_)) => Ordering::Greater,
(Projection(_), _) => Ordering::Less,
(AutoTrait(_), _) => Ordering::Greater,
}
}
}
impl<'tcx> Binder<ExistentialPredicate<'tcx>> {
pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Predicate<'tcx> {
use crate::ty::ToPredicate;
match self.skip_binder() {
ExistentialPredicate::Trait(tr) => {
self.rebind(tr).with_self_ty(tcx, self_ty).without_const().to_predicate(tcx)
}
ExistentialPredicate::Projection(p) => {
self.rebind(p.with_self_ty(tcx, self_ty)).to_predicate(tcx)
}
ExistentialPredicate::AutoTrait(did) => {
let trait_ref = self.rebind(ty::TraitRef {
def_id: did,
substs: tcx.mk_substs_trait(self_ty, &[]),
});
trait_ref.without_const().to_predicate(tcx)
}
}
}
}
impl<'tcx> List<ty::Binder<ExistentialPredicate<'tcx>>> {
/// Returns the "principal `DefId`" of this set of existential predicates.
///
/// A Rust trait object type consists (in addition to a lifetime bound)
/// of a set of trait bounds, which are separated into any number
/// of auto-trait bounds, and at most one non-auto-trait bound. The
/// non-auto-trait bound is called the "principal" of the trait
/// object.
///
/// Only the principal can have methods or type parameters (because
/// auto traits can have neither of them). This is important, because
/// it means the auto traits can be treated as an unordered set (methods
/// would force an order for the vtable, while relating traits with
/// type parameters without knowing the order to relate them in is
/// a rather non-trivial task).
///
/// For example, in the trait object `dyn fmt::Debug + Sync`, the
/// principal bound is `Some(fmt::Debug)`, while the auto-trait bounds
/// are the set `{Sync}`.
///
/// It is also possible to have a "trivial" trait object that
/// consists only of auto traits, with no principal - for example,
/// `dyn Send + Sync`. In that case, the set of auto-trait bounds
/// is `{Send, Sync}`, while there is no principal. These trait objects
/// have a "trivial" vtable consisting of just the size, alignment,
/// and destructor.
pub fn principal(&self) -> Option<ty::Binder<ExistentialTraitRef<'tcx>>> {
self[0]
.map_bound(|this| match this {
ExistentialPredicate::Trait(tr) => Some(tr),
_ => None,
})
.transpose()
}
pub fn principal_def_id(&self) -> Option<DefId> {
self.principal().map(|trait_ref| trait_ref.skip_binder().def_id)
}
#[inline]
pub fn projection_bounds<'a>(
&'a self,
) -> impl Iterator<Item = ty::Binder<ExistentialProjection<'tcx>>> + 'a {
self.iter().filter_map(|predicate| {
predicate
.map_bound(|pred| match pred {
ExistentialPredicate::Projection(projection) => Some(projection),
_ => None,
})
.transpose()
})
}
#[inline]
pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a {
self.iter().filter_map(|predicate| match predicate.skip_binder() {
ExistentialPredicate::AutoTrait(did) => Some(did),
_ => None,
})
}
}
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where-clause:
///
/// T: Foo<U>
///
/// This would be represented by a trait-reference where the `DefId` is the
/// `DefId` for the trait `Foo` and the substs define `T` as parameter 0,
/// and `U` as parameter 1.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct TraitRef<'tcx> {
pub def_id: DefId,
pub substs: SubstsRef<'tcx>,
}
impl<'tcx> TraitRef<'tcx> {
pub fn new(def_id: DefId, substs: SubstsRef<'tcx>) -> TraitRef<'tcx> {
TraitRef { def_id, substs }
}
/// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
/// are the parameters defined on trait.
pub fn identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> TraitRef<'tcx> {
TraitRef { def_id, substs: InternalSubsts::identity_for_item(tcx, def_id) }
}
#[inline]
pub fn self_ty(&self) -> Ty<'tcx> {
self.substs.type_at(0)
}
pub fn from_method(
tcx: TyCtxt<'tcx>,
trait_id: DefId,
substs: SubstsRef<'tcx>,
) -> ty::TraitRef<'tcx> {
let defs = tcx.generics_of(trait_id);
ty::TraitRef { def_id: trait_id, substs: tcx.intern_substs(&substs[..defs.params.len()]) }
}
}
pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;
impl<'tcx> PolyTraitRef<'tcx> {
pub fn self_ty(&self) -> Binder<Ty<'tcx>> {
self.map_bound_ref(|tr| tr.self_ty())
}
pub fn def_id(&self) -> DefId {
self.skip_binder().def_id
}
pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
self.map_bound(|trait_ref| ty::TraitPredicate { trait_ref })
}
}
/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
///
/// exists T. T: Trait<'a, 'b, X, Y>
///
/// The substitutions don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ExistentialTraitRef<'tcx> {
pub def_id: DefId,
pub substs: SubstsRef<'tcx>,
}
impl<'tcx> ExistentialTraitRef<'tcx> {
pub fn erase_self_ty(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> ty::ExistentialTraitRef<'tcx> {
// Assert there is a Self.
trait_ref.substs.type_at(0);
ty::ExistentialTraitRef {
def_id: trait_ref.def_id,
substs: tcx.intern_substs(&trait_ref.substs[1..]),
}
}
/// Object types don't have a self type specified. Therefore, when
/// we convert the principal trait-ref into a normal trait-ref,
/// you must give *some* self type. A common choice is `mk_err()`
/// or some placeholder type.
pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
// otherwise the escaping vars would be captured by the binder
// debug_assert!(!self_ty.has_escaping_bound_vars());
ty::TraitRef { def_id: self.def_id, substs: tcx.mk_substs_trait(self_ty, self.substs) }
}
}
pub type PolyExistentialTraitRef<'tcx> = Binder<ExistentialTraitRef<'tcx>>;
impl<'tcx> PolyExistentialTraitRef<'tcx> {
pub fn def_id(&self) -> DefId {
self.skip_binder().def_id
}
/// Object types don't have a self type specified. Therefore, when
/// we convert the principal trait-ref into a normal trait-ref,
/// you must give *some* self type. A common choice is `mk_err()`
/// or some placeholder type.
pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx> {
self.map_bound(|trait_ref| trait_ref.with_self_ty(tcx, self_ty))
}
}
/// Binder is a binder for higher-ranked lifetimes or types. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<TraitRef>`). Note that when we instantiate,
/// erase, or otherwise "discharge" these bound vars, we change the
/// type from `Binder<T>` to just `T` (see
/// e.g., `liberate_late_bound_regions`).
///
/// `Decodable` and `Encodable` are implemented for `Binder<T>` using the `impl_binder_encode_decode!` macro.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct Binder<T>(T);
impl<T> Binder<T> {
/// Wraps `value` in a binder, asserting that `value` does not
/// contain any bound vars that would be bound by the
/// binder. This is commonly used to 'inject' a value T into a
/// different binding level.
pub fn dummy<'tcx>(value: T) -> Binder<T>
where
T: TypeFoldable<'tcx>,
{
debug_assert!(!value.has_escaping_bound_vars());
Binder(value)
}
/// Wraps `value` in a binder, binding higher-ranked vars (if any).
pub fn bind(value: T) -> Binder<T> {
Binder(value)
}
/// Wraps `value` in a binder without actually binding any currently
/// unbound variables.
///
/// Note that this will shift all debrujin indices of escaping bound variables
/// by 1 to avoid accidential captures.
pub fn wrap_nonbinding(tcx: TyCtxt<'tcx>, value: T) -> Binder<T>
where
T: TypeFoldable<'tcx>,
{
if value.has_escaping_bound_vars() {
Binder::bind(super::fold::shift_vars(tcx, value, 1))
} else {
Binder::dummy(value)
}
}
/// Skips the binder and returns the "bound" value. This is a
/// risky thing to do because it's easy to get confused about
/// De Bruijn indices and the like. It is usually better to
/// discharge the binder using `no_bound_vars` or
/// `replace_late_bound_regions` or something like
/// that. `skip_binder` is only valid when you are either
/// extracting data that has nothing to do with bound vars, you
/// are doing some sort of test that does not involve bound
/// regions, or you are being very careful about your depth
/// accounting.
///
/// Some examples where `skip_binder` is reasonable:
///
/// - extracting the `DefId` from a PolyTraitRef;
/// - comparing the self type of a PolyTraitRef to see if it is equal to
/// a type parameter `X`, since the type `X` does not reference any regions
pub fn skip_binder(self) -> T {
self.0
}
pub fn as_ref(&self) -> Binder<&T> {
Binder(&self.0)
}
pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
where
F: FnOnce(&T) -> U,
{
self.as_ref().map_bound(f)
}
pub fn map_bound<F, U>(self, f: F) -> Binder<U>
where
F: FnOnce(T) -> U,
{
Binder(f(self.0))
}
/// Wraps a `value` in a binder, using the same bound variables as the
/// current `Binder`. This should not be used if the new value *changes*
/// the bound variables. Note: the (old or new) value itself does not
/// necessarily need to *name* all the bound variables.
///
/// This currently doesn't do anything different than `bind`, because we
/// don't actually track bound vars. However, semantically, it is different
/// because bound vars aren't allowed to change here, whereas they are
/// in `bind`. This may be (debug) asserted in the future.
pub fn rebind<U>(&self, value: U) -> Binder<U> {
Binder(value)
}
/// Unwraps and returns the value within, but only if it contains
/// no bound vars at all. (In other words, if this binder --
/// and indeed any enclosing binder -- doesn't bind anything at
/// all.) Otherwise, returns `None`.
///
/// (One could imagine having a method that just unwraps a single
/// binder, but permits late-bound vars bound by enclosing
/// binders, but that would require adjusting the debruijn
/// indices, and given the shallow binding structure we often use,
/// would not be that useful.)
pub fn no_bound_vars<'tcx>(self) -> Option<T>
where
T: TypeFoldable<'tcx>,
{
if self.0.has_escaping_bound_vars() { None } else { Some(self.skip_binder()) }
}
/// Given two things that have the same binder level,
/// and an operation that wraps on their contents, executes the operation
/// and then wraps its result.
///
/// `f` should consider bound regions at depth 1 to be free, and
/// anything it produces with bound regions at depth 1 will be
/// bound in the resulting return value.
pub fn fuse<U, F, R>(self, u: Binder<U>, f: F) -> Binder<R>
where
F: FnOnce(T, U) -> R,
{
Binder(f(self.0, u.0))
}
/// Splits the contents into two things that share the same binder
/// level as the original, returning two distinct binders.
///
/// `f` should consider bound regions at depth 1 to be free, and
/// anything it produces with bound regions at depth 1 will be
/// bound in the resulting return values.
pub fn split<U, V, F>(self, f: F) -> (Binder<U>, Binder<V>)
where
F: FnOnce(T) -> (U, V),
{
let (u, v) = f(self.0);
(Binder(u), Binder(v))
}
}
impl<T> Binder<Option<T>> {
pub fn transpose(self) -> Option<Binder<T>> {
self.0.map(Binder)
}
}
/// Represents the projection of an associated type. In explicit UFCS
/// form this would be written `<T as Trait<..>>::N`.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ProjectionTy<'tcx> {
/// The parameters of the associated item.
pub substs: SubstsRef<'tcx>,
/// The `DefId` of the `TraitItem` for the associated type `N`.
///
/// Note that this is not the `DefId` of the `TraitRef` containing this
/// associated type, which is in `tcx.associated_item(item_def_id).container`.
pub item_def_id: DefId,
}
impl<'tcx> ProjectionTy<'tcx> {
pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
tcx.associated_item(self.item_def_id).container.id()
}
/// Extracts the underlying trait reference and own substs from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: Iterator` trait reference and `['a]` as the own substs
pub fn trait_ref_and_own_substs(
&self,
tcx: TyCtxt<'tcx>,
) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
let def_id = tcx.associated_item(self.item_def_id).container.id();
let trait_generics = tcx.generics_of(def_id);
(
ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, trait_generics) },
&self.substs[trait_generics.count()..],
)
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// WARNING: This will drop the substs for generic associated types
/// consider calling [Self::trait_ref_and_own_substs] to get those
/// as well.
pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
let def_id = self.trait_def_id(tcx);
ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, tcx.generics_of(def_id)) }
}
pub fn self_ty(&self) -> Ty<'tcx> {
self.substs.type_at(0)
}
}
#[derive(Copy, Clone, Debug, TypeFoldable)]
pub struct GenSig<'tcx> {
pub resume_ty: Ty<'tcx>,
pub yield_ty: Ty<'tcx>,
pub return_ty: Ty<'tcx>,
}
pub type PolyGenSig<'tcx> = Binder<GenSig<'tcx>>;
impl<'tcx> PolyGenSig<'tcx> {
pub fn resume_ty(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|sig| sig.resume_ty)
}
pub fn yield_ty(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|sig| sig.yield_ty)
}
pub fn return_ty(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|sig| sig.return_ty)
}
}
/// Signature of a function type, which we have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs`: is the list of arguments and their modes.
/// - `output`: is the return type.
/// - `c_variadic`: indicates whether this is a C-variadic function.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct FnSig<'tcx> {
pub inputs_and_output: &'tcx List<Ty<'tcx>>,
pub c_variadic: bool,
pub unsafety: hir::Unsafety,
pub abi: abi::Abi,
}
impl<'tcx> FnSig<'tcx> {
pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
&self.inputs_and_output[..self.inputs_and_output.len() - 1]
}
pub fn output(&self) -> Ty<'tcx> {
self.inputs_and_output[self.inputs_and_output.len() - 1]
}
// Creates a minimal `FnSig` to be used when encountering a `TyKind::Error` in a fallible
// method.
fn fake() -> FnSig<'tcx> {
FnSig {
inputs_and_output: List::empty(),
c_variadic: false,
unsafety: hir::Unsafety::Normal,
abi: abi::Abi::Rust,
}
}
}
pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;
impl<'tcx> PolyFnSig<'tcx> {
#[inline]
pub fn inputs(&self) -> Binder<&'tcx [Ty<'tcx>]> {
self.map_bound_ref(|fn_sig| fn_sig.inputs())
}
#[inline]
pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
}
pub fn inputs_and_output(&self) -> ty::Binder<&'tcx List<Ty<'tcx>>> {
self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
}
#[inline]
pub fn output(&self) -> ty::Binder<Ty<'tcx>> {
self.map_bound_ref(|fn_sig| fn_sig.output())
}
pub fn c_variadic(&self) -> bool {
self.skip_binder().c_variadic
}
pub fn unsafety(&self) -> hir::Unsafety {
self.skip_binder().unsafety
}
pub fn abi(&self) -> abi::Abi {
self.skip_binder().abi
}
}
pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<FnSig<'tcx>>>;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct ParamTy {
pub index: u32,
pub name: Symbol,
}
impl<'tcx> ParamTy {
pub fn new(index: u32, name: Symbol) -> ParamTy {
ParamTy { index, name }
}
pub fn for_self() -> ParamTy {
ParamTy::new(0, kw::SelfUpper)
}
pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
ParamTy::new(def.index, def.name)
}
#[inline]
pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
tcx.mk_ty_param(self.index, self.name)
}
}
#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
#[derive(HashStable)]
pub struct ParamConst {
pub index: u32,
pub name: Symbol,
}
impl<'tcx> ParamConst {
pub fn new(index: u32, name: Symbol) -> ParamConst {
ParamConst { index, name }
}
pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
ParamConst::new(def.index, def.name)
}
pub fn to_const(self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> &'tcx ty::Const<'tcx> {
tcx.mk_const_param(self.index, self.name, ty)
}
}
pub type Region<'tcx> = &'tcx RegionKind;
/// Representation of regions. Note that the NLL checker uses a distinct
/// representation of regions. For this reason, it internally replaces all the
/// regions with inference variables -- the index of the variable is then used
/// to index into internal NLL data structures. See `rustc_mir::borrow_check`
/// module for more information.
///
/// ## The Region lattice within a given function
///
/// In general, the region lattice looks like
///
/// ```
/// static ----------+-----...------+ (greatest)
/// | | |
/// early-bound and | |
/// free regions | |
/// | | |
/// | | |
/// empty(root) placeholder(U1) |
/// | / |
/// | / placeholder(Un)
/// empty(U1) -- /
/// | /
/// ... /
/// | /
/// empty(Un) -------- (smallest)
/// ```
///
/// Early-bound/free regions are the named lifetimes in scope from the
/// function declaration. They have relationships to one another
/// determined based on the declared relationships from the
/// function.
///
/// Note that inference variables and bound regions are not included
/// in this diagram. In the case of inference variables, they should
/// be inferred to some other region from the diagram. In the case of
/// bound regions, they are excluded because they don't make sense to
/// include -- the diagram indicates the relationship between free
/// regions.
///
/// ## Inference variables
///
/// During region inference, we sometimes create inference variables,
/// represented as `ReVar`. These will be inferred by the code in
/// `infer::lexical_region_resolve` to some free region from the
/// lattice above (the minimal region that meets the
/// constraints).
///
/// During NLL checking, where regions are defined differently, we
/// also use `ReVar` -- in that case, the index is used to index into
/// the NLL region checker's data structures. The variable may in fact
/// represent either a free region or an inference variable, in that
/// case.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are two kind of
/// bound regions: early-bound, which are bound in an item's `Generics`,
/// and are substituted by a `InternalSubsts`, and late-bound, which are part of
/// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g., in types passed to type inference, and
/// should first be substituted (by placeholder regions, free regions,
/// or region variables).
///
/// ## Placeholder and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// To do this, we replace the bound regions with placeholder markers,
/// which don't satisfy any relation not explicitly provided.
///
/// There are two kinds of placeholder regions in rustc: `ReFree` and
/// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
/// aren't checked when you `make_subregion` (or `eq_types`), only by
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `RePlaceholder` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your placeholder region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a placeholder region `'%a`, the variable `'_` would just be
/// instantiated to the placeholder region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the placeholder region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by the [rustc dev guide].
///
/// [1]: http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2]: http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
#[derive(Clone, PartialEq, Eq, Hash, Copy, TyEncodable, TyDecodable, PartialOrd, Ord)]
pub enum RegionKind {
/// Region bound in a type or fn declaration which will be
/// substituted 'early' -- that is, at the same time when type
/// parameters are substituted.
ReEarlyBound(EarlyBoundRegion),
/// Region bound in a function scope, which will be substituted when the
/// function is called.
ReLateBound(ty::DebruijnIndex, BoundRegion),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
ReFree(FreeRegion),
/// Static data that has an "infinite" lifetime. Top in the region lattice.
ReStatic,
/// A region variable. Should not exist after typeck.
ReVar(RegionVid),
/// A placeholder region -- basically, the higher-ranked version of `ReFree`.
/// Should not exist after typeck.
RePlaceholder(ty::PlaceholderRegion),
/// Empty lifetime is for data that is never accessed. We tag the
/// empty lifetime with a universe -- the idea is that we don't
/// want `exists<'a> { forall<'b> { 'b: 'a } }` to be satisfiable.
/// Therefore, the `'empty` in a universe `U` is less than all
/// regions visible from `U`, but not less than regions not visible
/// from `U`.
ReEmpty(ty::UniverseIndex),
/// Erased region, used by trait selection, in MIR and during codegen.
ReErased,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, Debug, PartialOrd, Ord)]
pub struct EarlyBoundRegion {
pub def_id: DefId,
pub index: u32,
pub name: Symbol,
}
/// A **`const`** **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
pub struct ConstVid<'tcx> {
pub index: u32,
pub phantom: PhantomData<&'tcx ()>,
}
rustc_index::newtype_index! {
/// A **region** (lifetime) **v**ariable **ID**.
pub struct RegionVid {
DEBUG_FORMAT = custom,
}
}
impl Atom for RegionVid {
fn index(self) -> usize {
Idx::index(self)
}
}
rustc_index::newtype_index! {
pub struct BoundVar { .. }
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct BoundTy {
pub var: BoundVar,
pub kind: BoundTyKind,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum BoundTyKind {
Anon,
Param(Symbol),
}
impl From<BoundVar> for BoundTy {
fn from(var: BoundVar) -> Self {
BoundTy { var, kind: BoundTyKind::Anon }
}
}
/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ExistentialProjection<'tcx> {
pub item_def_id: DefId,
pub substs: SubstsRef<'tcx>,
pub ty: Ty<'tcx>,
}
pub type PolyExistentialProjection<'tcx> = Binder<ExistentialProjection<'tcx>>;
impl<'tcx> ExistentialProjection<'tcx> {
/// Extracts the underlying existential trait reference from this projection.
/// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
/// then this function would return a `exists T. T: Iterator` existential trait
/// reference.
pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::ExistentialTraitRef<'tcx> {
let def_id = tcx.associated_item(self.item_def_id).container.id();
let subst_count = tcx.generics_of(def_id).count() - 1;
let substs = tcx.intern_substs(&self.substs[..subst_count]);
ty::ExistentialTraitRef { def_id, substs }
}
pub fn with_self_ty(
&self,
tcx: TyCtxt<'tcx>,
self_ty: Ty<'tcx>,
) -> ty::ProjectionPredicate<'tcx> {
// otherwise the escaping regions would be captured by the binders
debug_assert!(!self_ty.has_escaping_bound_vars());
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
item_def_id: self.item_def_id,
substs: tcx.mk_substs_trait(self_ty, self.substs),
},
ty: self.ty,
}
}
pub fn erase_self_ty(
tcx: TyCtxt<'tcx>,
projection_predicate: ty::ProjectionPredicate<'tcx>,
) -> Self {
// Assert there is a Self.
projection_predicate.projection_ty.substs.type_at(0);
Self {
item_def_id: projection_predicate.projection_ty.item_def_id,
substs: tcx.intern_substs(&projection_predicate.projection_ty.substs[1..]),
ty: projection_predicate.ty,
}
}
}
impl<'tcx> PolyExistentialProjection<'tcx> {
pub fn with_self_ty(
&self,
tcx: TyCtxt<'tcx>,
self_ty: Ty<'tcx>,
) -> ty::PolyProjectionPredicate<'tcx> {
self.map_bound(|p| p.with_self_ty(tcx, self_ty))
}
pub fn item_def_id(&self) -> DefId {
self.skip_binder().item_def_id
}
}
/// Region utilities
impl RegionKind {
/// Is this region named by the user?
pub fn has_name(&self) -> bool {
match *self {
RegionKind::ReEarlyBound(ebr) => ebr.has_name(),
RegionKind::ReLateBound(_, br) => br.kind.is_named(),
RegionKind::ReFree(fr) => fr.bound_region.is_named(),
RegionKind::ReStatic => true,
RegionKind::ReVar(..) => false,
RegionKind::RePlaceholder(placeholder) => placeholder.name.is_named(),
RegionKind::ReEmpty(_) => false,
RegionKind::ReErased => false,
}
}
#[inline]
pub fn is_late_bound(&self) -> bool {
matches!(*self, ty::ReLateBound(..))
}
#[inline]
pub fn is_placeholder(&self) -> bool {
matches!(*self, ty::RePlaceholder(..))
}
#[inline]
pub fn bound_at_or_above_binder(&self, index: ty::DebruijnIndex) -> bool {
match *self {
ty::ReLateBound(debruijn, _) => debruijn >= index,
_ => false,
}
}
/// Adjusts any De Bruijn indices so as to make `to_binder` the
/// innermost binder. That is, if we have something bound at `to_binder`,
/// it will now be bound at INNERMOST. This is an appropriate thing to do
/// when moving a region out from inside binders:
///
/// ```
/// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
/// // Binder: D3 D2 D1 ^^
/// ```
///
/// Here, the region `'a` would have the De Bruijn index D3,
/// because it is the bound 3 binders out. However, if we wanted
/// to refer to that region `'a` in the second argument (the `_`),
/// those two binders would not be in scope. In that case, we
/// might invoke `shift_out_to_binder(D3)`. This would adjust the
/// De Bruijn index of `'a` to D1 (the innermost binder).
///
/// If we invoke `shift_out_to_binder` and the region is in fact
/// bound by one of the binders we are shifting out of, that is an
/// error (and should fail an assertion failure).
pub fn shifted_out_to_binder(&self, to_binder: ty::DebruijnIndex) -> RegionKind {
match *self {
ty::ReLateBound(debruijn, r) => {
ty::ReLateBound(debruijn.shifted_out_to_binder(to_binder), r)
}
r => r,
}
}
pub fn type_flags(&self) -> TypeFlags {
let mut flags = TypeFlags::empty();
match *self {
ty::ReVar(..) => {
flags = flags | TypeFlags::HAS_FREE_REGIONS;
flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
flags = flags | TypeFlags::HAS_RE_INFER;
}
ty::RePlaceholder(..) => {
flags = flags | TypeFlags::HAS_FREE_REGIONS;
flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
flags = flags | TypeFlags::HAS_RE_PLACEHOLDER;
}
ty::ReEarlyBound(..) => {
flags = flags | TypeFlags::HAS_FREE_REGIONS;
flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
flags = flags | TypeFlags::HAS_RE_PARAM;
}
ty::ReFree { .. } => {
flags = flags | TypeFlags::HAS_FREE_REGIONS;
flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
}
ty::ReEmpty(_) | ty::ReStatic => {
flags = flags | TypeFlags::HAS_FREE_REGIONS;
}
ty::ReLateBound(..) => {
flags = flags | TypeFlags::HAS_RE_LATE_BOUND;
}
ty::ReErased => {
flags = flags | TypeFlags::HAS_RE_ERASED;
}
}
debug!("type_flags({:?}) = {:?}", self, flags);
flags
}
/// Given an early-bound or free region, returns the `DefId` where it was bound.
/// For example, consider the regions in this snippet of code:
///
/// ```
/// impl<'a> Foo {
/// ^^ -- early bound, declared on an impl
///
/// fn bar<'b, 'c>(x: &self, y: &'b u32, z: &'c u64) where 'static: 'c
/// ^^ ^^ ^ anonymous, late-bound
/// | early-bound, appears in where-clauses
/// late-bound, appears only in fn args
/// {..}
/// }
/// ```
///
/// Here, `free_region_binding_scope('a)` would return the `DefId`
/// of the impl, and for all the other highlighted regions, it
/// would return the `DefId` of the function. In other cases (not shown), this
/// function might return the `DefId` of a closure.
pub fn free_region_binding_scope(&self, tcx: TyCtxt<'_>) -> DefId {
match self {
ty::ReEarlyBound(br) => tcx.parent(br.def_id).unwrap(),
ty::ReFree(fr) => fr.scope,
_ => bug!("free_region_binding_scope invoked on inappropriate region: {:?}", self),
}
}
}
/// Type utilities
impl<'tcx> TyS<'tcx> {
#[inline(always)]
pub fn kind(&self) -> &TyKind<'tcx> {
&self.kind
}
#[inline(always)]
pub fn flags(&self) -> TypeFlags {
self.flags
}
#[inline]
pub fn is_unit(&self) -> bool {
match self.kind() {
Tuple(ref tys) => tys.is_empty(),
_ => false,
}
}
#[inline]
pub fn is_never(&self) -> bool {
matches!(self.kind(), Never)
}
#[inline]
pub fn is_primitive(&self) -> bool {
self.kind().is_primitive()
}
#[inline]
pub fn is_adt(&self) -> bool {
matches!(self.kind(), Adt(..))
}
#[inline]
pub fn is_ref(&self) -> bool {
matches!(self.kind(), Ref(..))
}
#[inline]
pub fn is_ty_var(&self) -> bool {
matches!(self.kind(), Infer(TyVar(_)))
}
#[inline]
pub fn is_ty_infer(&self) -> bool {
matches!(self.kind(), Infer(_))
}
#[inline]
pub fn is_phantom_data(&self) -> bool {
if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
}
#[inline]
pub fn is_bool(&self) -> bool {
*self.kind() == Bool
}
/// Returns `true` if this type is a `str`.
#[inline]
pub fn is_str(&self) -> bool {
*self.kind() == Str
}
#[inline]
pub fn is_param(&self, index: u32) -> bool {
match self.kind() {
ty::Param(ref data) => data.index == index,
_ => false,
}
}
#[inline]
pub fn is_slice(&self) -> bool {
match self.kind() {
RawPtr(TypeAndMut { ty, .. }) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_) | Str),
_ => false,
}
}
#[inline]
pub fn is_array(&self) -> bool {
matches!(self.kind(), Array(..))
}
#[inline]
pub fn is_simd(&self) -> bool {
match self.kind() {
Adt(def, _) => def.repr.simd(),
_ => false,
}
}
pub fn sequence_element_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.kind() {
Array(ty, _) | Slice(ty) => ty,
Str => tcx.mk_mach_uint(ty::UintTy::U8),
_ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
}
}
pub fn simd_size_and_type(&self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
match self.kind() {
Adt(def, substs) => {
let variant = def.non_enum_variant();
let f0_ty = variant.fields[0].ty(tcx, substs);
match f0_ty.kind() {
Array(f0_elem_ty, f0_len) => {
// FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
// The way we evaluate the `N` in `[T; N]` here only works since we use
// `simd_size_and_type` post-monomorphization. It will probably start to ICE
// if we use it in generic code. See the `simd-array-trait` ui test.
(f0_len.eval_usize(tcx, ParamEnv::empty()) as u64, f0_elem_ty)
}
_ => (variant.fields.len() as u64, f0_ty),
}
}
_ => bug!("`simd_size_and_type` called on invalid type"),
}
}
#[inline]
pub fn is_region_ptr(&self) -> bool {
matches!(self.kind(), Ref(..))
}
#[inline]
pub fn is_mutable_ptr(&self) -> bool {
matches!(
self.kind(),
RawPtr(TypeAndMut { mutbl: hir::Mutability::Mut, .. })
| Ref(_, _, hir::Mutability::Mut)
)
}
/// Get the mutability of the reference or `None` when not a reference
#[inline]
pub fn ref_mutability(&self) -> Option<hir::Mutability> {
match self.kind() {
Ref(_, _, mutability) => Some(*mutability),
_ => None,
}
}
#[inline]
pub fn is_unsafe_ptr(&self) -> bool {
matches!(self.kind(), RawPtr(_))
}
/// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
#[inline]
pub fn is_any_ptr(&self) -> bool {
self.is_region_ptr() || self.is_unsafe_ptr() || self.is_fn_ptr()
}
#[inline]
pub fn is_box(&self) -> bool {
match self.kind() {
Adt(def, _) => def.is_box(),
_ => false,
}
}
/// Panics if called on any type other than `Box<T>`.
pub fn boxed_ty(&self) -> Ty<'tcx> {
match self.kind() {
Adt(def, substs) if def.is_box() => substs.type_at(0),
_ => bug!("`boxed_ty` is called on non-box type {:?}", self),
}
}
/// A scalar type is one that denotes an atomic datum, with no sub-components.
/// (A RawPtr is scalar because it represents a non-managed pointer, so its
/// contents are abstract to rustc.)
#[inline]
pub fn is_scalar(&self) -> bool {
matches!(
self.kind(),
Bool | Char
| Int(_)
| Float(_)
| Uint(_)
| FnDef(..)
| FnPtr(_)
| RawPtr(_)
| Infer(IntVar(_) | FloatVar(_))
)
}
/// Returns `true` if this type is a floating point type.
#[inline]
pub fn is_floating_point(&self) -> bool {
matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
}
#[inline]
pub fn is_trait(&self) -> bool {
matches!(self.kind(), Dynamic(..))
}
#[inline]
pub fn is_enum(&self) -> bool {
match self.kind() {
Adt(adt_def, _) => adt_def.is_enum(),
_ => false,
}
}
#[inline]
pub fn is_closure(&self) -> bool {
matches!(self.kind(), Closure(..))
}
#[inline]
pub fn is_generator(&self) -> bool {
matches!(self.kind(), Generator(..))
}
#[inline]
pub fn is_integral(&self) -> bool {
matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
}
#[inline]
pub fn is_fresh_ty(&self) -> bool {
matches!(self.kind(), Infer(FreshTy(_)))
}
#[inline]
pub fn is_fresh(&self) -> bool {
matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
}
#[inline]
pub fn is_char(&self) -> bool {
matches!(self.kind(), Char)
}
#[inline]
pub fn is_numeric(&self) -> bool {
self.is_integral() || self.is_floating_point()
}
#[inline]
pub fn is_signed(&self) -> bool {
matches!(self.kind(), Int(_))
}
#[inline]
pub fn is_ptr_sized_integral(&self) -> bool {
matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
}
#[inline]
pub fn is_machine(&self) -> bool {
matches!(self.kind(), Int(..) | Uint(..) | Float(..))
}
#[inline]
pub fn has_concrete_skeleton(&self) -> bool {
!matches!(self.kind(), Param(_) | Infer(_) | Error(_))
}
/// Returns the type and mutability of `*ty`.
///
/// The parameter `explicit` indicates if this is an *explicit* dereference.
/// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
pub fn builtin_deref(&self, explicit: bool) -> Option<TypeAndMut<'tcx>> {
match self.kind() {
Adt(def, _) if def.is_box() => {
Some(TypeAndMut { ty: self.boxed_ty(), mutbl: hir::Mutability::Not })
}
Ref(_, ty, mutbl) => Some(TypeAndMut { ty, mutbl: *mutbl }),
RawPtr(mt) if explicit => Some(*mt),
_ => None,
}
}
/// Returns the type of `ty[i]`.
pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
match self.kind() {
Array(ty, _) | Slice(ty) => Some(ty),
_ => None,
}
}
pub fn fn_sig(&self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
match self.kind() {
FnDef(def_id, substs) => tcx.fn_sig(*def_id).subst(tcx, substs),
FnPtr(f) => *f,
Error(_) => {
// ignore errors (#54954)
ty::Binder::dummy(FnSig::fake())
}
Closure(..) => bug!(
"to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
),
_ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
}
}
#[inline]
pub fn is_fn(&self) -> bool {
matches!(self.kind(), FnDef(..) | FnPtr(_))
}
#[inline]
pub fn is_fn_ptr(&self) -> bool {
matches!(self.kind(), FnPtr(_))
}
#[inline]
pub fn is_impl_trait(&self) -> bool {
matches!(self.kind(), Opaque(..))
}
#[inline]
pub fn ty_adt_def(&self) -> Option<&'tcx AdtDef> {
match self.kind() {
Adt(adt, _) => Some(adt),
_ => None,
}
}
/// Iterates over tuple fields.
/// Panics when called on anything but a tuple.
pub fn tuple_fields(&self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> {
match self.kind() {
Tuple(substs) => substs.iter().map(|field| field.expect_ty()),
_ => bug!("tuple_fields called on non-tuple"),
}
}
/// Get the `i`-th element of a tuple.
/// Panics when called on anything but a tuple.
pub fn tuple_element_ty(&self, i: usize) -> Option<Ty<'tcx>> {
match self.kind() {
Tuple(substs) => substs.iter().nth(i).map(|field| field.expect_ty()),
_ => bug!("tuple_fields called on non-tuple"),
}
}
/// If the type contains variants, returns the valid range of variant indices.
//
// FIXME: This requires the optimized MIR in the case of generators.
#[inline]
pub fn variant_range(&self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
match self.kind() {
TyKind::Adt(adt, _) => Some(adt.variant_range()),
TyKind::Generator(def_id, substs, _) => {
Some(substs.as_generator().variant_range(*def_id, tcx))
}
_ => None,
}
}
/// If the type contains variants, returns the variant for `variant_index`.
/// Panics if `variant_index` is out of range.
//
// FIXME: This requires the optimized MIR in the case of generators.
#[inline]
pub fn discriminant_for_variant(
&self,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Option<Discr<'tcx>> {
match self.kind() {
TyKind::Adt(adt, _) if adt.variants.is_empty() => {
bug!("discriminant_for_variant called on zero variant enum");
}
TyKind::Adt(adt, _) if adt.is_enum() => {
Some(adt.discriminant_for_variant(tcx, variant_index))
}
TyKind::Generator(def_id, substs, _) => {
Some(substs.as_generator().discriminant_for_variant(*def_id, tcx, variant_index))
}
_ => None,
}
}
/// Returns the type of the discriminant of this type.
pub fn discriminant_ty(&'tcx self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.kind() {
ty::Adt(adt, _) if adt.is_enum() => adt.repr.discr_type().to_ty(tcx),
ty::Generator(_, substs, _) => substs.as_generator().discr_ty(tcx),
ty::Param(_) | ty::Projection(_) | ty::Opaque(..) | ty::Infer(ty::TyVar(_)) => {
let assoc_items =
tcx.associated_items(tcx.lang_items().discriminant_kind_trait().unwrap());
let discriminant_def_id = assoc_items.in_definition_order().next().unwrap().def_id;
tcx.mk_projection(discriminant_def_id, tcx.mk_substs([self.into()].iter()))
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Foreign(_)
| ty::Str
| ty::Array(..)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::GeneratorWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Error(_)
| ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
ty::Bound(..)
| ty::Placeholder(_)
| ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
}
}
}
/// Returns the type of metadata for (potentially fat) pointers to this type.
pub fn ptr_metadata_ty(&'tcx self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
// FIXME: should this normalize?
let tail = tcx.struct_tail_without_normalization(self);
match tail.kind() {
// Sized types
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::Never
| ty::Error(_)
| ty::Foreign(..)
// If returned by `struct_tail_without_normalization` this is a unit struct
// without any fields, or not a struct, and therefore is Sized.
| ty::Adt(..)
// If returned by `struct_tail_without_normalization` this is the empty tuple,
// a.k.a. unit type, which is Sized
| ty::Tuple(..) => tcx.types.unit,
ty::Str | ty::Slice(_) => tcx.types.usize,
ty::Dynamic(..) => {
let dyn_metadata = tcx.lang_items().dyn_metadata().unwrap();
tcx.type_of(dyn_metadata).subst(tcx, &[tail.into()])
},
ty::Projection(_)
| ty::Param(_)
| ty::Opaque(..)
| ty::Infer(ty::TyVar(_))
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`ptr_metadata_ty` applied to unexpected type: {:?}", tail)
}
}
}
/// When we create a closure, we record its kind (i.e., what trait
/// it implements) into its `ClosureSubsts` using a type
/// parameter. This is kind of a phantom type, except that the
/// most convenient thing for us to are the integral types. This
/// function converts such a special type into the closure
/// kind. To go the other way, use
/// `tcx.closure_kind_ty(closure_kind)`.
///
/// Note that during type checking, we use an inference variable
/// to represent the closure kind, because it has not yet been
/// inferred. Once upvar inference (in `src/librustc_typeck/check/upvar.rs`)
/// is complete, that type variable will be unified.
pub fn to_opt_closure_kind(&self) -> Option<ty::ClosureKind> {
match self.kind() {
Int(int_ty) => match int_ty {
ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
_ => bug!("cannot convert type `{:?}` to a closure kind", self),
},
// "Bound" types appear in canonical queries when the
// closure type is not yet known
Bound(..) | Infer(_) => None,
Error(_) => Some(ty::ClosureKind::Fn),
_ => bug!("cannot convert type `{:?}` to a closure kind", self),
}
}
/// Fast path helper for testing if a type is `Sized`.
///
/// Returning true means the type is known to be sized. Returning
/// `false` means nothing -- could be sized, might not be.
///
/// Note that we could never rely on the fact that a type such as `[_]` is
/// trivially `!Sized` because we could be in a type environment with a
/// bound such as `[_]: Copy`. A function with such a bound obviously never
/// can be called, but that doesn't mean it shouldn't typecheck. This is why
/// this method doesn't return `Option<bool>`.
pub fn is_trivially_sized(&self, tcx: TyCtxt<'tcx>) -> bool {
match self.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::Never
| ty::Error(_) => true,
ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => false,
ty::Tuple(tys) => tys.iter().all(|ty| ty.expect_ty().is_trivially_sized(tcx)),
ty::Adt(def, _substs) => def.sized_constraint(tcx).is_empty(),
ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => false,
ty::Infer(ty::TyVar(_)) => false,
ty::Bound(..)
| ty::Placeholder(..)
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
}
}
}
}