rust/src/bootstrap/lib.rs

1120 lines
42 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Implementation of rustbuild, the Rust build system.
//!
//! This module, and its descendants, are the implementation of the Rust build
//! system. Most of this build system is backed by Cargo but the outer layer
//! here serves as the ability to orchestrate calling Cargo, sequencing Cargo
//! builds, building artifacts like LLVM, etc. The goals of rustbuild are:
//!
//! * To be an easily understandable, easily extensible, and maintainable build
//! system.
//! * Leverage standard tools in the Rust ecosystem to build the compiler, aka
//! crates.io and Cargo.
//! * A standard interface to build across all platforms, including MSVC
//!
//! ## Architecture
//!
//! Although this build system defers most of the complicated logic to Cargo
//! itself, it still needs to maintain a list of targets and dependencies which
//! it can itself perform. Rustbuild is made up of a list of rules with
//! dependencies amongst them (created in the `step` module) and then knows how
//! to execute each in sequence. Each time rustbuild is invoked, it will simply
//! iterate through this list of steps and execute each serially in turn. For
//! each step rustbuild relies on the step internally being incremental and
//! parallel. Note, though, that the `-j` parameter to rustbuild gets forwarded
//! to appropriate test harnesses and such.
//!
//! Most of the "meaty" steps that matter are backed by Cargo, which does indeed
//! have its own parallelism and incremental management. Later steps, like
//! tests, aren't incremental and simply run the entire suite currently.
//!
//! When you execute `x.py build`, the steps which are executed are:
//!
//! * First, the python script is run. This will automatically download the
//! stage0 rustc and cargo according to `src/stage0.txt`, or using the cached
//! versions if they're available. These are then used to compile rustbuild
//! itself (using Cargo). Finally, control is then transferred to rustbuild.
//!
//! * Rustbuild takes over, performs sanity checks, probes the environment,
//! reads configuration, builds up a list of steps, and then starts executing
//! them.
//!
//! * The stage0 libstd is compiled
//! * The stage0 libtest is compiled
//! * The stage0 librustc is compiled
//! * The stage1 compiler is assembled
//! * The stage1 libstd, libtest, librustc are compiled
//! * The stage2 compiler is assembled
//! * The stage2 libstd, libtest, librustc are compiled
//!
//! Each step is driven by a separate Cargo project and rustbuild orchestrates
//! copying files between steps and otherwise preparing for Cargo to run.
//!
//! ## Further information
//!
//! More documentation can be found in each respective module below, and you can
//! also check out the `src/bootstrap/README.md` file for more information.
#![deny(warnings)]
#[macro_use]
extern crate build_helper;
extern crate cmake;
extern crate filetime;
extern crate gcc;
extern crate getopts;
extern crate num_cpus;
extern crate rustc_serialize;
extern crate toml;
use std::cmp;
use std::collections::HashMap;
use std::env;
use std::ffi::OsString;
use std::fs::{self, File};
use std::io::Read;
use std::path::{Component, PathBuf, Path};
use std::process::Command;
use build_helper::{run_silent, run_suppressed, output, mtime};
use util::{exe, libdir, add_lib_path};
mod cc;
mod channel;
mod check;
mod clean;
mod compile;
mod metadata;
mod config;
mod dist;
mod doc;
mod flags;
mod install;
mod native;
mod sanity;
mod step;
pub mod util;
#[cfg(windows)]
mod job;
#[cfg(not(windows))]
mod job {
pub unsafe fn setup() {}
}
pub use config::Config;
pub use flags::{Flags, Subcommand};
/// A structure representing a Rust compiler.
///
/// Each compiler has a `stage` that it is associated with and a `host` that
/// corresponds to the platform the compiler runs on. This structure is used as
/// a parameter to many methods below.
#[derive(Eq, PartialEq, Clone, Copy, Hash, Debug)]
pub struct Compiler<'a> {
stage: u32,
host: &'a str,
}
/// Global configuration for the build system.
///
/// This structure transitively contains all configuration for the build system.
/// All filesystem-encoded configuration is in `config`, all flags are in
/// `flags`, and then parsed or probed information is listed in the keys below.
///
/// This structure is a parameter of almost all methods in the build system,
/// although most functions are implemented as free functions rather than
/// methods specifically on this structure itself (to make it easier to
/// organize).
pub struct Build {
// User-specified configuration via config.toml
config: Config,
// User-specified configuration via CLI flags
flags: Flags,
// Derived properties from the above two configurations
cargo: PathBuf,
rustc: PathBuf,
src: PathBuf,
out: PathBuf,
rust_info: channel::GitInfo,
cargo_info: channel::GitInfo,
rls_info: channel::GitInfo,
local_rebuild: bool,
// Probed tools at runtime
lldb_version: Option<String>,
lldb_python_dir: Option<String>,
// Runtime state filled in later on
cc: HashMap<String, (gcc::Tool, Option<PathBuf>)>,
cxx: HashMap<String, gcc::Tool>,
crates: HashMap<String, Crate>,
is_sudo: bool,
src_is_git: bool,
}
#[derive(Debug)]
struct Crate {
name: String,
version: String,
deps: Vec<String>,
path: PathBuf,
doc_step: String,
build_step: String,
test_step: String,
bench_step: String,
}
/// The various "modes" of invoking Cargo.
///
/// These entries currently correspond to the various output directories of the
/// build system, with each mod generating output in a different directory.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum Mode {
/// This cargo is going to build the standard library, placing output in the
/// "stageN-std" directory.
Libstd,
/// This cargo is going to build libtest, placing output in the
/// "stageN-test" directory.
Libtest,
/// This cargo is going to build librustc and compiler libraries, placing
/// output in the "stageN-rustc" directory.
Librustc,
/// This cargo is going to some build tool, placing output in the
/// "stageN-tools" directory.
Tool,
}
impl Build {
/// Creates a new set of build configuration from the `flags` on the command
/// line and the filesystem `config`.
///
/// By default all build output will be placed in the current directory.
pub fn new(flags: Flags, config: Config) -> Build {
let cwd = t!(env::current_dir());
let src = flags.src.clone().or_else(|| {
env::var_os("SRC").map(|x| x.into())
}).unwrap_or(cwd.clone());
let out = cwd.join("build");
let stage0_root = out.join(&config.build).join("stage0/bin");
let rustc = match config.rustc {
Some(ref s) => PathBuf::from(s),
None => stage0_root.join(exe("rustc", &config.build)),
};
let cargo = match config.cargo {
Some(ref s) => PathBuf::from(s),
None => stage0_root.join(exe("cargo", &config.build)),
};
let local_rebuild = config.local_rebuild;
let is_sudo = match env::var_os("SUDO_USER") {
Some(sudo_user) => {
match env::var_os("USER") {
Some(user) => user != sudo_user,
None => false,
}
}
None => false,
};
let rust_info = channel::GitInfo::new(&src);
let cargo_info = channel::GitInfo::new(&src.join("src/tools/cargo"));
let rls_info = channel::GitInfo::new(&src.join("src/tools/rls"));
let src_is_git = src.join(".git").exists();
Build {
flags: flags,
config: config,
cargo: cargo,
rustc: rustc,
src: src,
out: out,
rust_info: rust_info,
cargo_info: cargo_info,
rls_info: rls_info,
local_rebuild: local_rebuild,
cc: HashMap::new(),
cxx: HashMap::new(),
crates: HashMap::new(),
lldb_version: None,
lldb_python_dir: None,
is_sudo: is_sudo,
src_is_git: src_is_git,
}
}
/// Executes the entire build, as configured by the flags and configuration.
pub fn build(&mut self) {
unsafe {
job::setup();
}
if let Subcommand::Clean = self.flags.cmd {
return clean::clean(self);
}
self.verbose("finding compilers");
cc::find(self);
self.verbose("running sanity check");
sanity::check(self);
// If local-rust is the same major.minor as the current version, then force a local-rebuild
let local_version_verbose = output(
Command::new(&self.rustc).arg("--version").arg("--verbose"));
let local_release = local_version_verbose
.lines().filter(|x| x.starts_with("release:"))
.next().unwrap().trim_left_matches("release:").trim();
let my_version = channel::CFG_RELEASE_NUM;
if local_release.split('.').take(2).eq(my_version.split('.').take(2)) {
self.verbose(&format!("auto-detected local-rebuild {}", local_release));
self.local_rebuild = true;
}
self.verbose("updating submodules");
self.update_submodules();
self.verbose("learning about cargo");
metadata::build(self);
step::run(self);
}
/// Updates all git submodules that we have.
///
/// This will detect if any submodules are out of date an run the necessary
/// commands to sync them all with upstream.
fn update_submodules(&self) {
struct Submodule<'a> {
path: &'a Path,
state: State,
}
enum State {
// The submodule may have staged/unstaged changes
MaybeDirty,
// Or could be initialized but never updated
NotInitialized,
// The submodule, itself, has extra commits but those changes haven't been commited to
// the (outer) git repository
OutOfSync,
}
if !self.src_is_git || !self.config.submodules {
return
}
let git = || {
let mut cmd = Command::new("git");
cmd.current_dir(&self.src);
return cmd
};
let git_submodule = || {
let mut cmd = Command::new("git");
cmd.current_dir(&self.src).arg("submodule");
return cmd
};
// FIXME: this takes a seriously long time to execute on Windows and a
// nontrivial amount of time on Unix, we should have a better way
// of detecting whether we need to run all the submodule commands
// below.
let out = output(git_submodule().arg("status"));
let mut submodules = vec![];
for line in out.lines() {
// NOTE `git submodule status` output looks like this:
//
// -5066b7dcab7e700844b0e2ba71b8af9dc627a59b src/liblibc
// +b37ef24aa82d2be3a3cc0fe89bf82292f4ca181c src/compiler-rt (remotes/origin/..)
// e058ca661692a8d01f8cf9d35939dfe3105ce968 src/jemalloc (3.6.0-533-ge058ca6)
//
// The first character can be '-', '+' or ' ' and denotes the `State` of the submodule
// Right next to this character is the SHA-1 of the submodule HEAD
// And after that comes the path to the submodule
let path = Path::new(line[1..].split(' ').skip(1).next().unwrap());
let state = if line.starts_with('-') {
State::NotInitialized
} else if line.starts_with('+') {
State::OutOfSync
} else if line.starts_with(' ') {
State::MaybeDirty
} else {
panic!("unexpected git submodule state: {:?}", line.chars().next());
};
submodules.push(Submodule { path: path, state: state })
}
self.run(git_submodule().arg("sync"));
for submodule in submodules {
// If using llvm-root then don't touch the llvm submodule.
if submodule.path.components().any(|c| c == Component::Normal("llvm".as_ref())) &&
self.config.target_config.get(&self.config.build)
.and_then(|c| c.llvm_config.as_ref()).is_some()
{
continue
}
if submodule.path.components().any(|c| c == Component::Normal("jemalloc".as_ref())) &&
!self.config.use_jemalloc
{
continue
}
// `submodule.path` is the relative path to a submodule (from the repository root)
// `submodule_path` is the path to a submodule from the cwd
// use `submodule.path` when e.g. executing a submodule specific command from the
// repository root
// use `submodule_path` when e.g. executing a normal git command for the submodule
// (set via `current_dir`)
let submodule_path = self.src.join(submodule.path);
match submodule.state {
State::MaybeDirty => {
// drop staged changes
self.run(git().current_dir(&submodule_path)
.args(&["reset", "--hard"]));
// drops unstaged changes
self.run(git().current_dir(&submodule_path)
.args(&["clean", "-fdx"]));
},
State::NotInitialized => {
self.run(git_submodule().arg("init").arg(submodule.path));
self.run(git_submodule().arg("update").arg(submodule.path));
},
State::OutOfSync => {
// drops submodule commits that weren't reported to the (outer) git repository
self.run(git_submodule().arg("update").arg(submodule.path));
self.run(git().current_dir(&submodule_path)
.args(&["reset", "--hard"]));
self.run(git().current_dir(&submodule_path)
.args(&["clean", "-fdx"]));
},
}
}
}
/// Clear out `dir` if `input` is newer.
///
/// After this executes, it will also ensure that `dir` exists.
fn clear_if_dirty(&self, dir: &Path, input: &Path) {
let stamp = dir.join(".stamp");
if mtime(&stamp) < mtime(input) {
self.verbose(&format!("Dirty - {}", dir.display()));
let _ = fs::remove_dir_all(dir);
} else if stamp.exists() {
return
}
t!(fs::create_dir_all(dir));
t!(File::create(stamp));
}
/// Prepares an invocation of `cargo` to be run.
///
/// This will create a `Command` that represents a pending execution of
/// Cargo. This cargo will be configured to use `compiler` as the actual
/// rustc compiler, its output will be scoped by `mode`'s output directory,
/// it will pass the `--target` flag for the specified `target`, and will be
/// executing the Cargo command `cmd`.
fn cargo(&self,
compiler: &Compiler,
mode: Mode,
target: &str,
cmd: &str) -> Command {
let mut cargo = Command::new(&self.cargo);
let out_dir = self.stage_out(compiler, mode);
cargo.env("CARGO_TARGET_DIR", out_dir)
.arg(cmd)
.arg("-j").arg(self.jobs().to_string())
.arg("--target").arg(target);
// FIXME: Temporary fix for https://github.com/rust-lang/cargo/issues/3005
// Force cargo to output binaries with disambiguating hashes in the name
cargo.env("__CARGO_DEFAULT_LIB_METADATA", "1");
let stage;
if compiler.stage == 0 && self.local_rebuild {
// Assume the local-rebuild rustc already has stage1 features.
stage = 1;
} else {
stage = compiler.stage;
}
// Customize the compiler we're running. Specify the compiler to cargo
// as our shim and then pass it some various options used to configure
// how the actual compiler itself is called.
//
// These variables are primarily all read by
// src/bootstrap/bin/{rustc.rs,rustdoc.rs}
cargo.env("RUSTBUILD_NATIVE_DIR", self.native_dir(target))
.env("RUSTC", self.out.join("bootstrap/debug/rustc"))
.env("RUSTC_REAL", self.compiler_path(compiler))
.env("RUSTC_STAGE", stage.to_string())
.env("RUSTC_CODEGEN_UNITS",
self.config.rust_codegen_units.to_string())
.env("RUSTC_DEBUG_ASSERTIONS",
self.config.rust_debug_assertions.to_string())
.env("RUSTC_SYSROOT", self.sysroot(compiler))
.env("RUSTC_LIBDIR", self.rustc_libdir(compiler))
.env("RUSTC_RPATH", self.config.rust_rpath.to_string())
.env("RUSTDOC", self.out.join("bootstrap/debug/rustdoc"))
.env("RUSTDOC_REAL", self.rustdoc(compiler))
.env("RUSTC_FLAGS", self.rustc_flags(target).join(" "));
// Tools don't get debuginfo right now, e.g. cargo and rls don't get
// compiled with debuginfo.
if mode != Mode::Tool {
cargo.env("RUSTC_DEBUGINFO", self.config.rust_debuginfo.to_string())
.env("RUSTC_DEBUGINFO_LINES", self.config.rust_debuginfo_lines.to_string());
}
// Enable usage of unstable features
cargo.env("RUSTC_BOOTSTRAP", "1");
self.add_rust_test_threads(&mut cargo);
// Almost all of the crates that we compile as part of the bootstrap may
// have a build script, including the standard library. To compile a
// build script, however, it itself needs a standard library! This
// introduces a bit of a pickle when we're compiling the standard
// library itself.
//
// To work around this we actually end up using the snapshot compiler
// (stage0) for compiling build scripts of the standard library itself.
// The stage0 compiler is guaranteed to have a libstd available for use.
//
// For other crates, however, we know that we've already got a standard
// library up and running, so we can use the normal compiler to compile
// build scripts in that situation.
if mode == Mode::Libstd {
cargo.env("RUSTC_SNAPSHOT", &self.rustc)
.env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_snapshot_libdir());
} else {
cargo.env("RUSTC_SNAPSHOT", self.compiler_path(compiler))
.env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_libdir(compiler));
}
// There are two invariants we try must maintain:
// * stable crates cannot depend on unstable crates (general Rust rule),
// * crates that end up in the sysroot must be unstable (rustbuild rule).
//
// In order to do enforce the latter, we pass the env var
// `RUSTBUILD_UNSTABLE` down the line for any crates which will end up
// in the sysroot. We read this in bootstrap/bin/rustc.rs and if it is
// set, then we pass the `rustbuild` feature to rustc when building the
// the crate.
//
// In turn, crates that can be used here should recognise the `rustbuild`
// feature and opt-in to `rustc_private`.
//
// We can't always pass `rustbuild` because crates which are outside of
// the comipiler, libs, and tests are stable and we don't want to make
// their deps unstable (since this would break the first invariant
// above).
if mode != Mode::Tool {
cargo.env("RUSTBUILD_UNSTABLE", "1");
}
// Ignore incremental modes except for stage0, since we're
// not guaranteeing correctness acros builds if the compiler
// is changing under your feet.`
if self.flags.incremental && compiler.stage == 0 {
let incr_dir = self.incremental_dir(compiler);
cargo.env("RUSTC_INCREMENTAL", incr_dir);
}
if let Some(ref on_fail) = self.flags.on_fail {
cargo.env("RUSTC_ON_FAIL", on_fail);
}
let verbose = cmp::max(self.config.verbose, self.flags.verbose);
cargo.env("RUSTC_VERBOSE", format!("{}", verbose));
// Specify some various options for build scripts used throughout
// the build.
//
// FIXME: the guard against msvc shouldn't need to be here
if !target.contains("msvc") {
cargo.env(format!("CC_{}", target), self.cc(target))
.env(format!("AR_{}", target), self.ar(target).unwrap()) // only msvc is None
.env(format!("CFLAGS_{}", target), self.cflags(target).join(" "));
}
if self.config.extended && compiler.is_final_stage(self) {
cargo.env("RUSTC_SAVE_ANALYSIS", "api".to_string());
}
// When being built Cargo will at some point call `nmake.exe` on Windows
// MSVC. Unfortunately `nmake` will read these two environment variables
// below and try to intepret them. We're likely being run, however, from
// MSYS `make` which uses the same variables.
//
// As a result, to prevent confusion and errors, we remove these
// variables from our environment to prevent passing MSYS make flags to
// nmake, causing it to blow up.
if cfg!(target_env = "msvc") {
cargo.env_remove("MAKE");
cargo.env_remove("MAKEFLAGS");
}
// Environment variables *required* needed throughout the build
//
// FIXME: should update code to not require this env var
cargo.env("CFG_COMPILER_HOST_TRIPLE", target);
if self.config.verbose() || self.flags.verbose() {
cargo.arg("-v");
}
// FIXME: cargo bench does not accept `--release`
if self.config.rust_optimize && cmd != "bench" {
cargo.arg("--release");
}
if self.config.locked_deps {
cargo.arg("--locked");
}
if self.config.vendor || self.is_sudo {
cargo.arg("--frozen");
}
return cargo
}
/// Get a path to the compiler specified.
fn compiler_path(&self, compiler: &Compiler) -> PathBuf {
if compiler.is_snapshot(self) {
self.rustc.clone()
} else {
self.sysroot(compiler).join("bin").join(exe("rustc", compiler.host))
}
}
/// Get the specified tool built by the specified compiler
fn tool(&self, compiler: &Compiler, tool: &str) -> PathBuf {
self.cargo_out(compiler, Mode::Tool, compiler.host)
.join(exe(tool, compiler.host))
}
/// Get the `rustdoc` executable next to the specified compiler
fn rustdoc(&self, compiler: &Compiler) -> PathBuf {
let mut rustdoc = self.compiler_path(compiler);
rustdoc.pop();
rustdoc.push(exe("rustdoc", compiler.host));
return rustdoc
}
/// Get a `Command` which is ready to run `tool` in `stage` built for
/// `host`.
fn tool_cmd(&self, compiler: &Compiler, tool: &str) -> Command {
let mut cmd = Command::new(self.tool(&compiler, tool));
self.prepare_tool_cmd(compiler, &mut cmd);
return cmd
}
/// Prepares the `cmd` provided to be able to run the `compiler` provided.
///
/// Notably this munges the dynamic library lookup path to point to the
/// right location to run `compiler`.
fn prepare_tool_cmd(&self, compiler: &Compiler, cmd: &mut Command) {
let host = compiler.host;
let mut paths = vec![
self.sysroot_libdir(compiler, compiler.host),
self.cargo_out(compiler, Mode::Tool, host).join("deps"),
];
// On MSVC a tool may invoke a C compiler (e.g. compiletest in run-make
// mode) and that C compiler may need some extra PATH modification. Do
// so here.
if compiler.host.contains("msvc") {
let curpaths = env::var_os("PATH").unwrap_or(OsString::new());
let curpaths = env::split_paths(&curpaths).collect::<Vec<_>>();
for &(ref k, ref v) in self.cc[compiler.host].0.env() {
if k != "PATH" {
continue
}
for path in env::split_paths(v) {
if !curpaths.contains(&path) {
paths.push(path);
}
}
}
}
add_lib_path(paths, cmd);
}
/// Get the space-separated set of activated features for the standard
/// library.
fn std_features(&self) -> String {
let mut features = "panic-unwind".to_string();
if self.config.debug_jemalloc {
features.push_str(" debug-jemalloc");
}
if self.config.use_jemalloc {
features.push_str(" jemalloc");
}
if self.config.backtrace {
features.push_str(" backtrace");
}
if self.config.profiler {
features.push_str(" profiler");
}
return features
}
/// Get the space-separated set of activated features for the compiler.
fn rustc_features(&self) -> String {
let mut features = String::new();
if self.config.use_jemalloc {
features.push_str(" jemalloc");
}
return features
}
/// Component directory that Cargo will produce output into (e.g.
/// release/debug)
fn cargo_dir(&self) -> &'static str {
if self.config.rust_optimize {"release"} else {"debug"}
}
/// Returns the sysroot for the `compiler` specified that *this build system
/// generates*.
///
/// That is, the sysroot for the stage0 compiler is not what the compiler
/// thinks it is by default, but it's the same as the default for stages
/// 1-3.
fn sysroot(&self, compiler: &Compiler) -> PathBuf {
if compiler.stage == 0 {
self.out.join(compiler.host).join("stage0-sysroot")
} else {
self.out.join(compiler.host).join(format!("stage{}", compiler.stage))
}
}
/// Get the directory for incremental by-products when using the
/// given compiler.
fn incremental_dir(&self, compiler: &Compiler) -> PathBuf {
self.out.join(compiler.host).join(format!("stage{}-incremental", compiler.stage))
}
/// Returns the libdir where the standard library and other artifacts are
/// found for a compiler's sysroot.
fn sysroot_libdir(&self, compiler: &Compiler, target: &str) -> PathBuf {
self.sysroot(compiler).join("lib").join("rustlib")
.join(target).join("lib")
}
/// Returns the root directory for all output generated in a particular
/// stage when running with a particular host compiler.
///
/// The mode indicates what the root directory is for.
fn stage_out(&self, compiler: &Compiler, mode: Mode) -> PathBuf {
let suffix = match mode {
Mode::Libstd => "-std",
Mode::Libtest => "-test",
Mode::Tool => "-tools",
Mode::Librustc => "-rustc",
};
self.out.join(compiler.host)
.join(format!("stage{}{}", compiler.stage, suffix))
}
/// Returns the root output directory for all Cargo output in a given stage,
/// running a particular comipler, wehther or not we're building the
/// standard library, and targeting the specified architecture.
fn cargo_out(&self,
compiler: &Compiler,
mode: Mode,
target: &str) -> PathBuf {
self.stage_out(compiler, mode).join(target).join(self.cargo_dir())
}
/// Root output directory for LLVM compiled for `target`
///
/// Note that if LLVM is configured externally then the directory returned
/// will likely be empty.
fn llvm_out(&self, target: &str) -> PathBuf {
self.out.join(target).join("llvm")
}
/// Output directory for all documentation for a target
fn doc_out(&self, target: &str) -> PathBuf {
self.out.join(target).join("doc")
}
/// Output directory for all crate documentation for a target (temporary)
///
/// The artifacts here are then copied into `doc_out` above.
fn crate_doc_out(&self, target: &str) -> PathBuf {
self.out.join(target).join("crate-docs")
}
/// Returns true if no custom `llvm-config` is set for the specified target.
///
/// If no custom `llvm-config` was specified then Rust's llvm will be used.
fn is_rust_llvm(&self, target: &str) -> bool {
match self.config.target_config.get(target) {
Some(ref c) => c.llvm_config.is_none(),
None => true
}
}
/// Returns the path to `llvm-config` for the specified target.
///
/// If a custom `llvm-config` was specified for target then that's returned
/// instead.
fn llvm_config(&self, target: &str) -> PathBuf {
let target_config = self.config.target_config.get(target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
s.clone()
} else {
self.llvm_out(&self.config.build).join("bin")
.join(exe("llvm-config", target))
}
}
/// Returns the path to `FileCheck` binary for the specified target
fn llvm_filecheck(&self, target: &str) -> PathBuf {
let target_config = self.config.target_config.get(target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
let llvm_bindir = output(Command::new(s).arg("--bindir"));
Path::new(llvm_bindir.trim()).join(exe("FileCheck", target))
} else {
let base = self.llvm_out(&self.config.build).join("build");
let exe = exe("FileCheck", target);
if !self.config.ninja && self.config.build.contains("msvc") {
base.join("Release/bin").join(exe)
} else {
base.join("bin").join(exe)
}
}
}
/// Directory for libraries built from C/C++ code and shared between stages.
fn native_dir(&self, target: &str) -> PathBuf {
self.out.join(target).join("native")
}
/// Root output directory for rust_test_helpers library compiled for
/// `target`
fn test_helpers_out(&self, target: &str) -> PathBuf {
self.native_dir(target).join("rust-test-helpers")
}
/// Adds the compiler's directory of dynamic libraries to `cmd`'s dynamic
/// library lookup path.
fn add_rustc_lib_path(&self, compiler: &Compiler, cmd: &mut Command) {
// Windows doesn't need dylib path munging because the dlls for the
// compiler live next to the compiler and the system will find them
// automatically.
if cfg!(windows) {
return
}
add_lib_path(vec![self.rustc_libdir(compiler)], cmd);
}
/// Adds the `RUST_TEST_THREADS` env var if necessary
fn add_rust_test_threads(&self, cmd: &mut Command) {
if env::var_os("RUST_TEST_THREADS").is_none() {
cmd.env("RUST_TEST_THREADS", self.jobs().to_string());
}
}
/// Returns the compiler's libdir where it stores the dynamic libraries that
/// it itself links against.
///
/// For example this returns `<sysroot>/lib` on Unix and `<sysroot>/bin` on
/// Windows.
fn rustc_libdir(&self, compiler: &Compiler) -> PathBuf {
if compiler.is_snapshot(self) {
self.rustc_snapshot_libdir()
} else {
self.sysroot(compiler).join(libdir(compiler.host))
}
}
/// Returns the libdir of the snapshot compiler.
fn rustc_snapshot_libdir(&self) -> PathBuf {
self.rustc.parent().unwrap().parent().unwrap()
.join(libdir(&self.config.build))
}
/// Runs a command, printing out nice contextual information if it fails.
fn run(&self, cmd: &mut Command) {
self.verbose(&format!("running: {:?}", cmd));
run_silent(cmd)
}
/// Runs a command, printing out nice contextual information if it fails.
fn run_quiet(&self, cmd: &mut Command) {
self.verbose(&format!("running: {:?}", cmd));
run_suppressed(cmd)
}
/// Prints a message if this build is configured in verbose mode.
fn verbose(&self, msg: &str) {
if self.flags.verbose() || self.config.verbose() {
println!("{}", msg);
}
}
/// Returns the number of parallel jobs that have been configured for this
/// build.
fn jobs(&self) -> u32 {
self.flags.jobs.unwrap_or(num_cpus::get() as u32)
}
/// Returns the path to the C compiler for the target specified.
fn cc(&self, target: &str) -> &Path {
self.cc[target].0.path()
}
/// Returns a list of flags to pass to the C compiler for the target
/// specified.
fn cflags(&self, target: &str) -> Vec<String> {
// Filter out -O and /O (the optimization flags) that we picked up from
// gcc-rs because the build scripts will determine that for themselves.
let mut base = self.cc[target].0.args().iter()
.map(|s| s.to_string_lossy().into_owned())
.filter(|s| !s.starts_with("-O") && !s.starts_with("/O"))
.collect::<Vec<_>>();
// If we're compiling on macOS then we add a few unconditional flags
// indicating that we want libc++ (more filled out than libstdc++) and
// we want to compile for 10.7. This way we can ensure that
// LLVM/jemalloc/etc are all properly compiled.
if target.contains("apple-darwin") {
base.push("-stdlib=libc++".into());
}
// Work around an apparently bad MinGW / GCC optimization,
// See: http://lists.llvm.org/pipermail/cfe-dev/2016-December/051980.html
// See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78936
if target == "i686-pc-windows-gnu" {
base.push("-fno-omit-frame-pointer".into());
}
return base
}
/// Returns the path to the `ar` archive utility for the target specified.
fn ar(&self, target: &str) -> Option<&Path> {
self.cc[target].1.as_ref().map(|p| &**p)
}
/// Returns the path to the C++ compiler for the target specified, may panic
/// if no C++ compiler was configured for the target.
fn cxx(&self, target: &str) -> &Path {
match self.cxx.get(target) {
Some(p) => p.path(),
None => panic!("\n\ntarget `{}` is not configured as a host,
only as a target\n\n", target),
}
}
/// Returns flags to pass to the compiler to generate code for `target`.
fn rustc_flags(&self, target: &str) -> Vec<String> {
// New flags should be added here with great caution!
//
// It's quite unfortunate to **require** flags to generate code for a
// target, so it should only be passed here if absolutely necessary!
// Most default configuration should be done through target specs rather
// than an entry here.
let mut base = Vec::new();
if target != self.config.build && !target.contains("msvc") &&
!target.contains("emscripten") {
base.push(format!("-Clinker={}", self.cc(target).display()));
}
return base
}
/// Returns the "musl root" for this `target`, if defined
fn musl_root(&self, target: &str) -> Option<&Path> {
self.config.target_config.get(target)
.and_then(|t| t.musl_root.as_ref())
.or(self.config.musl_root.as_ref())
.map(|p| &**p)
}
/// Returns whether the target will be tested using the `remote-test-client`
/// and `remote-test-server` binaries.
fn remote_tested(&self, target: &str) -> bool {
self.qemu_rootfs(target).is_some() || target.contains("android")
}
/// Returns the root of the "rootfs" image that this target will be using,
/// if one was configured.
///
/// If `Some` is returned then that means that tests for this target are
/// emulated with QEMU and binaries will need to be shipped to the emulator.
fn qemu_rootfs(&self, target: &str) -> Option<&Path> {
self.config.target_config.get(target)
.and_then(|t| t.qemu_rootfs.as_ref())
.map(|p| &**p)
}
/// Path to the python interpreter to use
fn python(&self) -> &Path {
self.config.python.as_ref().unwrap()
}
/// Tests whether the `compiler` compiling for `target` should be forced to
/// use a stage1 compiler instead.
///
/// Currently, by default, the build system does not perform a "full
/// bootstrap" by default where we compile the compiler three times.
/// Instead, we compile the compiler two times. The final stage (stage2)
/// just copies the libraries from the previous stage, which is what this
/// method detects.
///
/// Here we return `true` if:
///
/// * The build isn't performing a full bootstrap
/// * The `compiler` is in the final stage, 2
/// * We're not cross-compiling, so the artifacts are already available in
/// stage1
///
/// When all of these conditions are met the build will lift artifacts from
/// the previous stage forward.
fn force_use_stage1(&self, compiler: &Compiler, target: &str) -> bool {
!self.config.full_bootstrap &&
compiler.stage >= 2 &&
self.config.host.iter().any(|h| h == target)
}
/// Returns the directory that OpenSSL artifacts are compiled into if
/// configured to do so.
fn openssl_dir(&self, target: &str) -> Option<PathBuf> {
// OpenSSL not used on Windows
if target.contains("windows") {
None
} else if self.config.openssl_static {
Some(self.out.join(target).join("openssl"))
} else {
None
}
}
/// Returns the directory that OpenSSL artifacts are installed into if
/// configured as such.
fn openssl_install_dir(&self, target: &str) -> Option<PathBuf> {
self.openssl_dir(target).map(|p| p.join("install"))
}
/// Given `num` in the form "a.b.c" return a "release string" which
/// describes the release version number.
///
/// For example on nightly this returns "a.b.c-nightly", on beta it returns
/// "a.b.c-beta.1" and on stable it just returns "a.b.c".
fn release(&self, num: &str) -> String {
match &self.config.channel[..] {
"stable" => num.to_string(),
"beta" => format!("{}-beta{}", num, channel::CFG_PRERELEASE_VERSION),
"nightly" => format!("{}-nightly", num),
_ => format!("{}-dev", num),
}
}
/// Returns the value of `release` above for Rust itself.
fn rust_release(&self) -> String {
self.release(channel::CFG_RELEASE_NUM)
}
/// Returns the "package version" for a component given the `num` release
/// number.
///
/// The package version is typically what shows up in the names of tarballs.
/// For channels like beta/nightly it's just the channel name, otherwise
/// it's the `num` provided.
fn package_vers(&self, num: &str) -> String {
match &self.config.channel[..] {
"stable" => num.to_string(),
"beta" => "beta".to_string(),
"nightly" => "nightly".to_string(),
_ => format!("{}-dev", num),
}
}
/// Returns the value of `package_vers` above for Rust itself.
fn rust_package_vers(&self) -> String {
self.package_vers(channel::CFG_RELEASE_NUM)
}
/// Returns the value of `package_vers` above for Cargo
fn cargo_package_vers(&self) -> String {
self.package_vers(&self.release_num("cargo"))
}
/// Returns the value of `package_vers` above for rls
fn rls_package_vers(&self) -> String {
self.package_vers(&self.release_num("rls"))
}
/// Returns the `version` string associated with this compiler for Rust
/// itself.
///
/// Note that this is a descriptive string which includes the commit date,
/// sha, version, etc.
fn rust_version(&self) -> String {
self.rust_info.version(self, channel::CFG_RELEASE_NUM)
}
/// Returns the `a.b.c` version that the given package is at.
fn release_num(&self, package: &str) -> String {
let mut toml = String::new();
let toml_file_name = self.src.join(&format!("src/tools/{}/Cargo.toml", package));
t!(t!(File::open(toml_file_name)).read_to_string(&mut toml));
for line in toml.lines() {
let prefix = "version = \"";
let suffix = "\"";
if line.starts_with(prefix) && line.ends_with(suffix) {
return line[prefix.len()..line.len() - suffix.len()].to_string()
}
}
panic!("failed to find version in {}'s Cargo.toml", package)
}
/// Returns whether unstable features should be enabled for the compiler
/// we're building.
fn unstable_features(&self) -> bool {
match &self.config.channel[..] {
"stable" | "beta" => false,
"nightly" | _ => true,
}
}
}
impl<'a> Compiler<'a> {
/// Creates a new complier for the specified stage/host
fn new(stage: u32, host: &'a str) -> Compiler<'a> {
Compiler { stage: stage, host: host }
}
/// Returns whether this is a snapshot compiler for `build`'s configuration
fn is_snapshot(&self, build: &Build) -> bool {
self.stage == 0 && self.host == build.config.build
}
/// Returns if this compiler should be treated as a final stage one in the
/// current build session.
/// This takes into account whether we're performing a full bootstrap or
/// not; don't directly compare the stage with `2`!
fn is_final_stage(&self, build: &Build) -> bool {
let final_stage = if build.config.full_bootstrap { 2 } else { 1 };
self.stage >= final_stage
}
}