rust/src/librustc_resolve/macros.rs

1105 lines
50 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use {AmbiguityError, CrateLint, Resolver, ResolutionError, is_known_tool, resolve_error};
use {Module, ModuleKind, NameBinding, NameBindingKind, PathResult, ToNameBinding};
use ModuleOrUniformRoot;
use Namespace::{self, TypeNS, MacroNS};
use build_reduced_graph::{BuildReducedGraphVisitor, IsMacroExport};
use resolve_imports::ImportResolver;
use rustc::hir::def_id::{DefId, BUILTIN_MACROS_CRATE, CRATE_DEF_INDEX, DefIndex,
DefIndexAddressSpace};
use rustc::hir::def::{Def, NonMacroAttrKind};
use rustc::hir::map::{self, DefCollector};
use rustc::{ty, lint};
use rustc::middle::cstore::CrateStore;
use syntax::ast::{self, Name, Ident};
use syntax::attr;
use syntax::errors::DiagnosticBuilder;
use syntax::ext::base::{self, Determinacy, MultiModifier, MultiDecorator};
use syntax::ext::base::{MacroKind, SyntaxExtension, Resolver as SyntaxResolver};
use syntax::ext::expand::{AstFragment, Invocation, InvocationKind};
use syntax::ext::hygiene::{self, Mark};
use syntax::ext::tt::macro_rules;
use syntax::feature_gate::{self, feature_err, emit_feature_err, is_builtin_attr_name, GateIssue};
use syntax::feature_gate::EXPLAIN_DERIVE_UNDERSCORE;
use syntax::fold::{self, Folder};
use syntax::parse::parser::PathStyle;
use syntax::parse::token::{self, Token};
use syntax::ptr::P;
use syntax::symbol::{Symbol, keywords};
use syntax::tokenstream::{TokenStream, TokenTree, Delimited};
use syntax::util::lev_distance::find_best_match_for_name;
use syntax_pos::{Span, DUMMY_SP};
use errors::Applicability;
use std::cell::Cell;
use std::mem;
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::small_vec::ExpectOne;
crate struct FromPrelude(bool);
crate struct FromExpansion(bool);
#[derive(Clone)]
pub struct InvocationData<'a> {
pub module: Cell<Module<'a>>,
pub def_index: DefIndex,
// The scope in which the invocation path is resolved.
pub legacy_scope: Cell<LegacyScope<'a>>,
// The smallest scope that includes this invocation's expansion,
// or `Empty` if this invocation has not been expanded yet.
pub expansion: Cell<LegacyScope<'a>>,
}
impl<'a> InvocationData<'a> {
pub fn root(graph_root: Module<'a>) -> Self {
InvocationData {
module: Cell::new(graph_root),
def_index: CRATE_DEF_INDEX,
legacy_scope: Cell::new(LegacyScope::Empty),
expansion: Cell::new(LegacyScope::Empty),
}
}
}
#[derive(Copy, Clone)]
pub enum LegacyScope<'a> {
Empty,
Invocation(&'a InvocationData<'a>), // The scope of the invocation, not including its expansion
Expansion(&'a InvocationData<'a>), // The scope of the invocation, including its expansion
Binding(&'a LegacyBinding<'a>),
}
pub struct LegacyBinding<'a> {
pub parent: Cell<LegacyScope<'a>>,
pub ident: Ident,
def_id: DefId,
pub span: Span,
}
impl<'a> LegacyBinding<'a> {
fn def(&self) -> Def {
Def::Macro(self.def_id, MacroKind::Bang)
}
}
pub struct ProcMacError {
crate_name: Symbol,
name: Symbol,
module: ast::NodeId,
use_span: Span,
warn_msg: &'static str,
}
impl<'a, 'crateloader: 'a> base::Resolver for Resolver<'a, 'crateloader> {
fn next_node_id(&mut self) -> ast::NodeId {
self.session.next_node_id()
}
fn get_module_scope(&mut self, id: ast::NodeId) -> Mark {
let mark = Mark::fresh(Mark::root());
let module = self.module_map[&self.definitions.local_def_id(id)];
self.invocations.insert(mark, self.arenas.alloc_invocation_data(InvocationData {
module: Cell::new(module),
def_index: module.def_id().unwrap().index,
legacy_scope: Cell::new(LegacyScope::Empty),
expansion: Cell::new(LegacyScope::Empty),
}));
mark
}
fn eliminate_crate_var(&mut self, item: P<ast::Item>) -> P<ast::Item> {
struct EliminateCrateVar<'b, 'a: 'b, 'crateloader: 'a>(
&'b mut Resolver<'a, 'crateloader>, Span
);
impl<'a, 'b, 'crateloader> Folder for EliminateCrateVar<'a, 'b, 'crateloader> {
fn fold_path(&mut self, path: ast::Path) -> ast::Path {
match self.fold_qpath(None, path) {
(None, path) => path,
_ => unreachable!(),
}
}
fn fold_qpath(&mut self, mut qself: Option<ast::QSelf>, mut path: ast::Path)
-> (Option<ast::QSelf>, ast::Path) {
qself = qself.map(|ast::QSelf { ty, path_span, position }| {
ast::QSelf {
ty: self.fold_ty(ty),
path_span: self.new_span(path_span),
position,
}
});
if path.segments[0].ident.name == keywords::DollarCrate.name() {
let module = self.0.resolve_crate_root(path.segments[0].ident);
path.segments[0].ident.name = keywords::CrateRoot.name();
if !module.is_local() {
let span = path.segments[0].ident.span;
path.segments.insert(1, match module.kind {
ModuleKind::Def(_, name) => ast::PathSegment::from_ident(
ast::Ident::with_empty_ctxt(name).with_span_pos(span)
),
_ => unreachable!(),
});
if let Some(qself) = &mut qself {
qself.position += 1;
}
}
}
(qself, path)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
}
EliminateCrateVar(self, item.span).fold_item(item).expect_one("")
}
fn is_whitelisted_legacy_custom_derive(&self, name: Name) -> bool {
self.whitelisted_legacy_custom_derives.contains(&name)
}
fn visit_ast_fragment_with_placeholders(&mut self, mark: Mark, fragment: &AstFragment,
derives: &[Mark]) {
let invocation = self.invocations[&mark];
self.collect_def_ids(mark, invocation, fragment);
self.current_module = invocation.module.get();
self.current_module.unresolved_invocations.borrow_mut().remove(&mark);
self.current_module.unresolved_invocations.borrow_mut().extend(derives);
for &derive in derives {
self.invocations.insert(derive, invocation);
}
let mut visitor = BuildReducedGraphVisitor {
resolver: self,
legacy_scope: LegacyScope::Invocation(invocation),
expansion: mark,
};
fragment.visit_with(&mut visitor);
invocation.expansion.set(visitor.legacy_scope);
}
fn add_builtin(&mut self, ident: ast::Ident, ext: Lrc<SyntaxExtension>) {
let def_id = DefId {
krate: BUILTIN_MACROS_CRATE,
index: DefIndex::from_array_index(self.macro_map.len(),
DefIndexAddressSpace::Low),
};
let kind = ext.kind();
self.macro_map.insert(def_id, ext);
let binding = self.arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Def(Def::Macro(def_id, kind), false),
span: DUMMY_SP,
vis: ty::Visibility::Invisible,
expansion: Mark::root(),
});
self.macro_prelude.insert(ident.name, binding);
}
fn resolve_imports(&mut self) {
ImportResolver { resolver: self }.resolve_imports()
}
// Resolves attribute and derive legacy macros from `#![plugin(..)]`.
fn find_legacy_attr_invoc(&mut self, attrs: &mut Vec<ast::Attribute>, allow_derive: bool)
-> Option<ast::Attribute> {
for i in 0..attrs.len() {
let name = attrs[i].name();
if self.session.plugin_attributes.borrow().iter()
.any(|&(ref attr_nm, _)| name == &**attr_nm) {
attr::mark_known(&attrs[i]);
}
match self.macro_prelude.get(&name).cloned() {
Some(binding) => match *binding.get_macro(self) {
MultiModifier(..) | MultiDecorator(..) | SyntaxExtension::AttrProcMacro(..) => {
return Some(attrs.remove(i))
}
_ => {}
},
None => {}
}
}
if !allow_derive { return None }
// Check for legacy derives
for i in 0..attrs.len() {
let name = attrs[i].name();
if name == "derive" {
let result = attrs[i].parse_list(&self.session.parse_sess, |parser| {
parser.parse_path_allowing_meta(PathStyle::Mod)
});
let mut traits = match result {
Ok(traits) => traits,
Err(mut e) => {
e.cancel();
continue
}
};
for j in 0..traits.len() {
if traits[j].segments.len() > 1 {
continue
}
let trait_name = traits[j].segments[0].ident.name;
let legacy_name = Symbol::intern(&format!("derive_{}", trait_name));
if !self.macro_prelude.contains_key(&legacy_name) {
continue
}
let span = traits.remove(j).span;
self.gate_legacy_custom_derive(legacy_name, span);
if traits.is_empty() {
attrs.remove(i);
} else {
let mut tokens = Vec::new();
for (j, path) in traits.iter().enumerate() {
if j > 0 {
tokens.push(TokenTree::Token(attrs[i].span, Token::Comma).into());
}
for (k, segment) in path.segments.iter().enumerate() {
if k > 0 {
tokens.push(TokenTree::Token(path.span, Token::ModSep).into());
}
let tok = Token::from_ast_ident(segment.ident);
tokens.push(TokenTree::Token(path.span, tok).into());
}
}
attrs[i].tokens = TokenTree::Delimited(attrs[i].span, Delimited {
delim: token::Paren,
tts: TokenStream::concat(tokens).into(),
}).into();
}
return Some(ast::Attribute {
path: ast::Path::from_ident(Ident::new(legacy_name, span)),
tokens: TokenStream::empty(),
id: attr::mk_attr_id(),
style: ast::AttrStyle::Outer,
is_sugared_doc: false,
span,
});
}
}
}
None
}
fn resolve_macro_invocation(&mut self, invoc: &Invocation, scope: Mark, force: bool)
-> Result<Option<Lrc<SyntaxExtension>>, Determinacy> {
let (path, kind, derives_in_scope) = match invoc.kind {
InvocationKind::Attr { attr: None, .. } =>
return Ok(None),
InvocationKind::Attr { attr: Some(ref attr), ref traits, .. } =>
(&attr.path, MacroKind::Attr, &traits[..]),
InvocationKind::Bang { ref mac, .. } =>
(&mac.node.path, MacroKind::Bang, &[][..]),
InvocationKind::Derive { ref path, .. } =>
(path, MacroKind::Derive, &[][..]),
};
let (def, ext) = self.resolve_macro_to_def(path, kind, scope, derives_in_scope, force)?;
if let Def::Macro(def_id, _) = def {
self.macro_defs.insert(invoc.expansion_data.mark, def_id);
let normal_module_def_id =
self.macro_def_scope(invoc.expansion_data.mark).normal_ancestor_id;
self.definitions.add_parent_module_of_macro_def(invoc.expansion_data.mark,
normal_module_def_id);
invoc.expansion_data.mark.set_default_transparency(ext.default_transparency());
invoc.expansion_data.mark.set_is_builtin(def_id.krate == BUILTIN_MACROS_CRATE);
}
Ok(Some(ext))
}
fn resolve_macro_path(&mut self, path: &ast::Path, kind: MacroKind, scope: Mark,
derives_in_scope: &[ast::Path], force: bool)
-> Result<Lrc<SyntaxExtension>, Determinacy> {
Ok(self.resolve_macro_to_def(path, kind, scope, derives_in_scope, force)?.1)
}
fn check_unused_macros(&self) {
for did in self.unused_macros.iter() {
let id_span = match *self.macro_map[did] {
SyntaxExtension::NormalTT { def_info, .. } |
SyntaxExtension::DeclMacro { def_info, .. } => def_info,
_ => None,
};
if let Some((id, span)) = id_span {
let lint = lint::builtin::UNUSED_MACROS;
let msg = "unused macro definition";
self.session.buffer_lint(lint, id, span, msg);
} else {
bug!("attempted to create unused macro error, but span not available");
}
}
}
}
impl<'a, 'cl> Resolver<'a, 'cl> {
fn resolve_macro_to_def(&mut self, path: &ast::Path, kind: MacroKind, scope: Mark,
derives_in_scope: &[ast::Path], force: bool)
-> Result<(Def, Lrc<SyntaxExtension>), Determinacy> {
let def = self.resolve_macro_to_def_inner(path, kind, scope, derives_in_scope, force);
// Report errors and enforce feature gates for the resolved macro.
if def != Err(Determinacy::Undetermined) {
// Do not report duplicated errors on every undetermined resolution.
for segment in &path.segments {
if let Some(args) = &segment.args {
self.session.span_err(args.span(), "generic arguments in macro path");
}
}
}
let def = def?;
if path.segments.len() > 1 {
if kind != MacroKind::Bang {
if def != Def::NonMacroAttr(NonMacroAttrKind::Tool) &&
!self.session.features_untracked().proc_macro_path_invoc {
let msg = format!("non-ident {} paths are unstable", kind.descr());
emit_feature_err(&self.session.parse_sess, "proc_macro_path_invoc",
path.span, GateIssue::Language, &msg);
}
}
}
match def {
Def::Macro(def_id, macro_kind) => {
self.unused_macros.remove(&def_id);
if macro_kind == MacroKind::ProcMacroStub {
let msg = "can't use a procedural macro from the same crate that defines it";
self.session.span_err(path.span, msg);
return Err(Determinacy::Determined);
}
}
Def::NonMacroAttr(attr_kind) => {
if kind == MacroKind::Attr {
let features = self.session.features_untracked();
if attr_kind == NonMacroAttrKind::Tool && !features.tool_attributes {
feature_err(&self.session.parse_sess, "tool_attributes", path.span,
GateIssue::Language, "tool attributes are unstable").emit();
}
if attr_kind == NonMacroAttrKind::Custom {
assert!(path.segments.len() == 1);
let name = path.segments[0].ident.name.as_str();
if name.starts_with("rustc_") {
if !features.rustc_attrs {
let msg = "unless otherwise specified, attributes with the prefix \
`rustc_` are reserved for internal compiler diagnostics";
feature_err(&self.session.parse_sess, "rustc_attrs", path.span,
GateIssue::Language, &msg).emit();
}
} else if name.starts_with("derive_") {
if !features.custom_derive {
feature_err(&self.session.parse_sess, "custom_derive", path.span,
GateIssue::Language, EXPLAIN_DERIVE_UNDERSCORE).emit();
}
} else if !features.custom_attribute {
let msg = format!("The attribute `{}` is currently unknown to the \
compiler and may have meaning added to it in the \
future", path);
feature_err(&self.session.parse_sess, "custom_attribute", path.span,
GateIssue::Language, &msg).emit();
}
}
} else {
// Not only attributes, but anything in macro namespace can result in
// `Def::NonMacroAttr` definition (e.g. `inline!()`), so we must report
// an error for those cases.
let msg = format!("expected a macro, found {}", def.kind_name());
self.session.span_err(path.span, &msg);
return Err(Determinacy::Determined);
}
}
_ => panic!("expected `Def::Macro` or `Def::NonMacroAttr`"),
}
Ok((def, self.get_macro(def)))
}
pub fn resolve_macro_to_def_inner(&mut self, path: &ast::Path, kind: MacroKind, scope: Mark,
derives_in_scope: &[ast::Path], force: bool)
-> Result<Def, Determinacy> {
let ast::Path { ref segments, span } = *path;
let mut path: Vec<_> = segments.iter().map(|seg| seg.ident).collect();
let invocation = self.invocations[&scope];
let module = invocation.module.get();
self.current_module = if module.is_trait() { module.parent.unwrap() } else { module };
// Possibly apply the macro helper hack
if kind == MacroKind::Bang && path.len() == 1 &&
path[0].span.ctxt().outer().expn_info().map_or(false, |info| info.local_inner_macros) {
let root = Ident::new(keywords::DollarCrate.name(), path[0].span);
path.insert(0, root);
}
if path.len() > 1 {
let res = self.resolve_path(None, &path, Some(MacroNS), false, span, CrateLint::No);
let def = match res {
PathResult::NonModule(path_res) => match path_res.base_def() {
Def::Err => Err(Determinacy::Determined),
def @ _ => {
if path_res.unresolved_segments() > 0 {
self.found_unresolved_macro = true;
self.session.span_err(span, "fail to resolve non-ident macro path");
Err(Determinacy::Determined)
} else {
Ok(def)
}
}
},
PathResult::Module(..) => unreachable!(),
PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined),
_ => {
self.found_unresolved_macro = true;
Err(Determinacy::Determined)
},
};
self.current_module.nearest_item_scope().macro_resolutions.borrow_mut()
.push((path.into_boxed_slice(), span));
return def;
}
let legacy_resolution = self.resolve_legacy_scope(&invocation.legacy_scope, path[0], false);
let result = if let Some((legacy_binding, _)) = legacy_resolution {
Ok(legacy_binding.def())
} else {
match self.resolve_lexical_macro_path_segment(path[0], MacroNS, false, force,
kind == MacroKind::Attr, span) {
Ok((binding, _)) => Ok(binding.def_ignoring_ambiguity()),
Err(Determinacy::Undetermined) => return Err(Determinacy::Undetermined),
Err(Determinacy::Determined) => {
self.found_unresolved_macro = true;
Err(Determinacy::Determined)
}
}
};
self.current_module.nearest_item_scope().legacy_macro_resolutions.borrow_mut()
.push((scope, path[0], kind, result.ok()));
if let Ok(Def::NonMacroAttr(NonMacroAttrKind::Custom)) = result {} else {
return result;
}
// At this point we've found that the `attr` is determinately unresolved and thus can be
// interpreted as a custom attribute. Normally custom attributes are feature gated, but
// it may be a custom attribute whitelisted by a derive macro and they do not require
// a feature gate.
//
// So here we look through all of the derive annotations in scope and try to resolve them.
// If they themselves successfully resolve *and* one of the resolved derive macros
// whitelists this attribute's name, then this is a registered attribute and we can convert
// it from a "generic custom attrite" into a "known derive helper attribute".
assert!(kind == MacroKind::Attr);
enum ConvertToDeriveHelper { Yes, No, DontKnow }
let mut convert_to_derive_helper = ConvertToDeriveHelper::No;
for derive in derives_in_scope {
match self.resolve_macro_path(derive, MacroKind::Derive, scope, &[], force) {
Ok(ext) => if let SyntaxExtension::ProcMacroDerive(_, ref inert_attrs, _) = *ext {
if inert_attrs.contains(&path[0].name) {
convert_to_derive_helper = ConvertToDeriveHelper::Yes;
break
}
},
Err(Determinacy::Undetermined) =>
convert_to_derive_helper = ConvertToDeriveHelper::DontKnow,
Err(Determinacy::Determined) => {}
}
}
match convert_to_derive_helper {
ConvertToDeriveHelper::Yes => Ok(Def::NonMacroAttr(NonMacroAttrKind::DeriveHelper)),
ConvertToDeriveHelper::No => result,
ConvertToDeriveHelper::DontKnow => Err(Determinacy::determined(force)),
}
}
// Resolve the initial segment of a non-global macro path
// (e.g. `foo` in `foo::bar!(); or `foo!();`).
// This is a variation of `fn resolve_ident_in_lexical_scope` that can be run during
// expansion and import resolution (perhaps they can be merged in the future).
crate fn resolve_lexical_macro_path_segment(
&mut self,
mut ident: Ident,
ns: Namespace,
record_used: bool,
force: bool,
is_attr: bool,
path_span: Span
) -> Result<(&'a NameBinding<'a>, FromPrelude), Determinacy> {
// General principles:
// 1. Not controlled (user-defined) names should have higher priority than controlled names
// built into the language or standard library. This way we can add new names into the
// language or standard library without breaking user code.
// 2. "Closed set" below means new names can appear after the current resolution attempt.
// Places to search (in order of decreasing priority):
// (Type NS)
// 1. FIXME: Ribs (type parameters), there's no necessary infrastructure yet
// (open set, not controlled).
// 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled).
// 3. Extern prelude (closed, not controlled).
// 4. Tool modules (closed, controlled right now, but not in the future).
// 5. Standard library prelude (de-facto closed, controlled).
// 6. Language prelude (closed, controlled).
// (Macro NS)
// 1. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents
// (open, not controlled).
// 2. Macro prelude (language, standard library, user-defined legacy plugins lumped into
// one set) (open, the open part is from macro expansions, not controlled).
// 2a. User-defined prelude from macro-use
// (open, the open part is from macro expansions, not controlled).
// 2b. Standard library prelude, currently just a macro-use (closed, controlled)
// 2c. Language prelude, perhaps including builtin attributes
// (closed, controlled, except for legacy plugins).
// 3. Builtin attributes (closed, controlled).
assert!(ns == TypeNS || ns == MacroNS);
assert!(force || !record_used); // `record_used` implies `force`
ident = ident.modern();
// Names from inner scope that can't shadow names from outer scopes, e.g.
// mod m { ... }
// {
// use prefix::*; // if this imports another `m`, then it can't shadow the outer `m`
// // and we have and ambiguity error
// m::mac!();
// }
// This includes names from globs and from macro expansions.
let mut potentially_ambiguous_result: Option<(&NameBinding, FromPrelude)> = None;
enum WhereToResolve<'a> {
Module(Module<'a>),
MacroPrelude,
BuiltinAttrs,
ExternPrelude,
ToolPrelude,
StdLibPrelude,
PrimitiveTypes,
}
// Go through all the scopes and try to resolve the name.
let mut where_to_resolve = WhereToResolve::Module(self.current_module);
let mut use_prelude = !self.current_module.no_implicit_prelude;
loop {
let result = match where_to_resolve {
WhereToResolve::Module(module) => {
let orig_current_module = mem::replace(&mut self.current_module, module);
let binding = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(module),
ident,
ns,
true,
record_used,
path_span,
);
self.current_module = orig_current_module;
binding.map(|binding| (binding, FromPrelude(false)))
}
WhereToResolve::MacroPrelude => {
match self.macro_prelude.get(&ident.name).cloned() {
Some(binding) => Ok((binding, FromPrelude(true))),
None => Err(Determinacy::Determined),
}
}
WhereToResolve::BuiltinAttrs => {
// FIXME: Only built-in attributes are not considered as candidates for
// non-attributes to fight off regressions on stable channel (#53205).
// We need to come up with some more principled approach instead.
if is_attr && is_builtin_attr_name(ident.name) {
let binding = (Def::NonMacroAttr(NonMacroAttrKind::Builtin),
ty::Visibility::Public, ident.span, Mark::root())
.to_name_binding(self.arenas);
Ok((binding, FromPrelude(true)))
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::ExternPrelude => {
if use_prelude && self.extern_prelude.contains(&ident.name) {
if !self.session.features_untracked().extern_prelude &&
!self.ignore_extern_prelude_feature {
feature_err(&self.session.parse_sess, "extern_prelude",
ident.span, GateIssue::Language,
"access to extern crates through prelude is experimental")
.emit();
}
let crate_id =
self.crate_loader.process_path_extern(ident.name, ident.span);
let crate_root =
self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
self.populate_module_if_necessary(crate_root);
let binding = (crate_root, ty::Visibility::Public,
ident.span, Mark::root()).to_name_binding(self.arenas);
Ok((binding, FromPrelude(true)))
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::ToolPrelude => {
if use_prelude && is_known_tool(ident.name) {
let binding = (Def::ToolMod, ty::Visibility::Public,
ident.span, Mark::root()).to_name_binding(self.arenas);
Ok((binding, FromPrelude(true)))
} else {
Err(Determinacy::Determined)
}
}
WhereToResolve::StdLibPrelude => {
let mut result = Err(Determinacy::Determined);
if use_prelude {
if let Some(prelude) = self.prelude {
if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(prelude),
ident,
ns,
false,
false,
path_span,
) {
result = Ok((binding, FromPrelude(true)));
}
}
}
result
}
WhereToResolve::PrimitiveTypes => {
if let Some(prim_ty) =
self.primitive_type_table.primitive_types.get(&ident.name).cloned() {
let binding = (Def::PrimTy(prim_ty), ty::Visibility::Public,
ident.span, Mark::root()).to_name_binding(self.arenas);
Ok((binding, FromPrelude(true)))
} else {
Err(Determinacy::Determined)
}
}
};
macro_rules! continue_search { () => {
where_to_resolve = match where_to_resolve {
WhereToResolve::Module(module) => {
match self.hygienic_lexical_parent(module, &mut ident.span) {
Some(parent_module) => WhereToResolve::Module(parent_module),
None => {
use_prelude = !module.no_implicit_prelude;
if ns == MacroNS {
WhereToResolve::MacroPrelude
} else {
WhereToResolve::ExternPrelude
}
}
}
}
WhereToResolve::MacroPrelude => WhereToResolve::BuiltinAttrs,
WhereToResolve::BuiltinAttrs => break, // nowhere else to search
WhereToResolve::ExternPrelude => WhereToResolve::ToolPrelude,
WhereToResolve::ToolPrelude => WhereToResolve::StdLibPrelude,
WhereToResolve::StdLibPrelude => WhereToResolve::PrimitiveTypes,
WhereToResolve::PrimitiveTypes => break, // nowhere else to search
};
continue;
}}
match result {
Ok(result) => {
if !record_used {
return Ok(result);
}
// Found a solution that is ambiguous with a previously found solution.
// Push an ambiguity error for later reporting and
// return something for better recovery.
if let Some(previous_result) = potentially_ambiguous_result {
if result.0.def() != previous_result.0.def() {
self.ambiguity_errors.push(AmbiguityError {
span: path_span,
name: ident.name,
b1: previous_result.0,
b2: result.0,
lexical: true,
});
return Ok(previous_result);
}
}
// Found a solution that's not an ambiguity yet, but is "suspicious" and
// can participate in ambiguities later on.
// Remember it and go search for other solutions in outer scopes.
if result.0.is_glob_import() || result.0.expansion != Mark::root() {
potentially_ambiguous_result = Some(result);
continue_search!();
}
// Found a solution that can't be ambiguous, great success.
return Ok(result);
},
Err(Determinacy::Determined) => {
continue_search!();
}
Err(Determinacy::Undetermined) => return Err(Determinacy::determined(force)),
}
}
// Previously found potentially ambiguous result turned out to not be ambiguous after all.
if let Some(previous_result) = potentially_ambiguous_result {
return Ok(previous_result);
}
let determinacy = Determinacy::determined(force);
if determinacy == Determinacy::Determined && is_attr {
// For single-segment attributes interpret determinate "no resolution" as a custom
// attribute. (Lexical resolution implies the first segment and is_attr should imply
// the last segment, so we are certainly working with a single-segment attribute here.)
assert!(ns == MacroNS);
let binding = (Def::NonMacroAttr(NonMacroAttrKind::Custom),
ty::Visibility::Public, ident.span, Mark::root())
.to_name_binding(self.arenas);
Ok((binding, FromPrelude(true)))
} else {
Err(determinacy)
}
}
crate fn resolve_legacy_scope(&mut self,
mut scope: &'a Cell<LegacyScope<'a>>,
ident: Ident,
record_used: bool)
-> Option<(&'a LegacyBinding<'a>, FromExpansion)> {
let ident = ident.modern();
let mut relative_depth: u32 = 0;
loop {
match scope.get() {
LegacyScope::Empty => break,
LegacyScope::Expansion(invocation) => {
match invocation.expansion.get() {
LegacyScope::Invocation(_) => scope.set(invocation.legacy_scope.get()),
LegacyScope::Empty => {
scope = &invocation.legacy_scope;
}
_ => {
relative_depth += 1;
scope = &invocation.expansion;
}
}
}
LegacyScope::Invocation(invocation) => {
relative_depth = relative_depth.saturating_sub(1);
scope = &invocation.legacy_scope;
}
LegacyScope::Binding(potential_binding) => {
if potential_binding.ident == ident {
if record_used && relative_depth > 0 {
self.disallowed_shadowing.push(potential_binding);
}
return Some((potential_binding, FromExpansion(relative_depth > 0)));
}
scope = &potential_binding.parent;
}
};
}
None
}
pub fn finalize_current_module_macro_resolutions(&mut self) {
let module = self.current_module;
for &(ref path, span) in module.macro_resolutions.borrow().iter() {
match self.resolve_path(None, &path, Some(MacroNS), true, span, CrateLint::No) {
PathResult::NonModule(_) => {},
PathResult::Failed(span, msg, _) => {
resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
}
_ => unreachable!(),
}
}
for &(mark, ident, kind, def) in module.legacy_macro_resolutions.borrow().iter() {
let span = ident.span;
let legacy_scope = &self.invocations[&mark].legacy_scope;
let legacy_resolution = self.resolve_legacy_scope(legacy_scope, ident, true);
let resolution = self.resolve_lexical_macro_path_segment(ident, MacroNS, true, true,
kind == MacroKind::Attr, span);
let check_consistency = |this: &Self, new_def: Def| {
if let Some(def) = def {
if this.ambiguity_errors.is_empty() && this.disallowed_shadowing.is_empty() &&
new_def != def && new_def != Def::Err {
// Make sure compilation does not succeed if preferred macro resolution
// has changed after the macro had been expanded. In theory all such
// situations should be reported as ambiguity errors, so this is span-bug.
span_bug!(span, "inconsistent resolution for a macro");
}
} else {
// It's possible that the macro was unresolved (indeterminate) and silently
// expanded into a dummy fragment for recovery during expansion.
// Now, post-expansion, the resolution may succeed, but we can't change the
// past and need to report an error.
let msg =
format!("cannot determine resolution for the {} `{}`", kind.descr(), ident);
let msg_note = "import resolution is stuck, try simplifying macro imports";
this.session.struct_span_err(span, &msg).note(msg_note).emit();
}
};
match (legacy_resolution, resolution) {
(None, Err(_)) => {
assert!(def.is_none());
let bang = if kind == MacroKind::Bang { "!" } else { "" };
let msg =
format!("cannot find {} `{}{}` in this scope", kind.descr(), ident, bang);
let mut err = self.session.struct_span_err(span, &msg);
self.suggest_macro_name(&ident.as_str(), kind, &mut err, span);
err.emit();
},
(Some((legacy_binding, FromExpansion(from_expansion))),
Ok((binding, FromPrelude(false)))) |
(Some((legacy_binding, FromExpansion(from_expansion @ true))),
Ok((binding, FromPrelude(true)))) => {
if legacy_binding.def() != binding.def_ignoring_ambiguity() {
self.report_ambiguity_error(
ident.name, span, true,
legacy_binding.def(), false, false,
from_expansion, legacy_binding.span,
binding.def(), binding.is_import(), binding.is_glob_import(),
binding.expansion != Mark::root(), binding.span,
);
}
},
// OK, non-macro-expanded legacy wins over macro prelude even if defs are different
(Some((legacy_binding, FromExpansion(false))), Ok((_, FromPrelude(true)))) |
// OK, unambiguous resolution
(Some((legacy_binding, _)), Err(_)) => {
check_consistency(self, legacy_binding.def());
}
// OK, unambiguous resolution
(None, Ok((binding, FromPrelude(from_prelude)))) => {
check_consistency(self, binding.def_ignoring_ambiguity());
if from_prelude {
self.record_use(ident, MacroNS, binding, span);
self.err_if_macro_use_proc_macro(ident.name, span, binding);
}
}
};
}
}
fn suggest_macro_name(&mut self, name: &str, kind: MacroKind,
err: &mut DiagnosticBuilder<'a>, span: Span) {
// First check if this is a locally-defined bang macro.
let suggestion = if let MacroKind::Bang = kind {
find_best_match_for_name(self.macro_names.iter().map(|ident| &ident.name), name, None)
} else {
None
// Then check global macros.
}.or_else(|| {
// FIXME: get_macro needs an &mut Resolver, can we do it without cloning?
let macro_prelude = self.macro_prelude.clone();
let names = macro_prelude.iter().filter_map(|(name, binding)| {
if binding.get_macro(self).kind() == kind {
Some(name)
} else {
None
}
});
find_best_match_for_name(names, name, None)
// Then check modules.
}).or_else(|| {
let is_macro = |def| {
if let Def::Macro(_, def_kind) = def {
def_kind == kind
} else {
false
}
};
let ident = Ident::new(Symbol::intern(name), span);
self.lookup_typo_candidate(&[ident], MacroNS, is_macro, span)
});
if let Some(suggestion) = suggestion {
if suggestion != name {
if let MacroKind::Bang = kind {
err.span_suggestion_with_applicability(
span,
"you could try the macro",
suggestion.to_string(),
Applicability::MaybeIncorrect
);
} else {
err.span_suggestion_with_applicability(
span,
"try",
suggestion.to_string(),
Applicability::MaybeIncorrect
);
}
} else {
err.help("have you added the `#[macro_use]` on the module/import?");
}
}
}
fn collect_def_ids(&mut self,
mark: Mark,
invocation: &'a InvocationData<'a>,
fragment: &AstFragment) {
let Resolver { ref mut invocations, arenas, graph_root, .. } = *self;
let InvocationData { def_index, .. } = *invocation;
let visit_macro_invoc = &mut |invoc: map::MacroInvocationData| {
invocations.entry(invoc.mark).or_insert_with(|| {
arenas.alloc_invocation_data(InvocationData {
def_index: invoc.def_index,
module: Cell::new(graph_root),
expansion: Cell::new(LegacyScope::Empty),
legacy_scope: Cell::new(LegacyScope::Empty),
})
});
};
let mut def_collector = DefCollector::new(&mut self.definitions, mark);
def_collector.visit_macro_invoc = Some(visit_macro_invoc);
def_collector.with_parent(def_index, |def_collector| {
fragment.visit_with(def_collector)
});
}
pub fn define_macro(&mut self,
item: &ast::Item,
expansion: Mark,
legacy_scope: &mut LegacyScope<'a>) {
self.local_macro_def_scopes.insert(item.id, self.current_module);
let ident = item.ident;
if ident.name == "macro_rules" {
self.session.span_err(item.span, "user-defined macros may not be named `macro_rules`");
}
let def_id = self.definitions.local_def_id(item.id);
let ext = Lrc::new(macro_rules::compile(&self.session.parse_sess,
&self.session.features_untracked(),
item, hygiene::default_edition()));
self.macro_map.insert(def_id, ext);
let def = match item.node { ast::ItemKind::MacroDef(ref def) => def, _ => unreachable!() };
if def.legacy {
let ident = ident.modern();
self.macro_names.insert(ident);
*legacy_scope = LegacyScope::Binding(self.arenas.alloc_legacy_binding(LegacyBinding {
parent: Cell::new(*legacy_scope), ident: ident, def_id: def_id, span: item.span,
}));
let def = Def::Macro(def_id, MacroKind::Bang);
self.all_macros.insert(ident.name, def);
if attr::contains_name(&item.attrs, "macro_export") {
let module = self.graph_root;
let vis = ty::Visibility::Public;
self.define(module, ident, MacroNS,
(def, vis, item.span, expansion, IsMacroExport));
} else {
self.unused_macros.insert(def_id);
}
} else {
let module = self.current_module;
let def = Def::Macro(def_id, MacroKind::Bang);
let vis = self.resolve_visibility(&item.vis);
if vis != ty::Visibility::Public {
self.unused_macros.insert(def_id);
}
self.define(module, ident, MacroNS, (def, vis, item.span, expansion));
}
}
/// Error if `ext` is a Macros 1.1 procedural macro being imported by `#[macro_use]`
fn err_if_macro_use_proc_macro(&mut self, name: Name, use_span: Span,
binding: &NameBinding<'a>) {
let krate = match binding.def() {
Def::NonMacroAttr(..) | Def::Err => return,
Def::Macro(def_id, _) => def_id.krate,
_ => unreachable!(),
};
// Plugin-based syntax extensions are exempt from this check
if krate == BUILTIN_MACROS_CRATE { return; }
let ext = binding.get_macro(self);
match *ext {
// If `ext` is a procedural macro, check if we've already warned about it
SyntaxExtension::AttrProcMacro(..) | SyntaxExtension::ProcMacro { .. } =>
if !self.warned_proc_macros.insert(name) { return; },
_ => return,
}
let warn_msg = match *ext {
SyntaxExtension::AttrProcMacro(..) =>
"attribute procedural macros cannot be imported with `#[macro_use]`",
SyntaxExtension::ProcMacro { .. } =>
"procedural macros cannot be imported with `#[macro_use]`",
_ => return,
};
let def_id = self.current_module.normal_ancestor_id;
let node_id = self.definitions.as_local_node_id(def_id).unwrap();
self.proc_mac_errors.push(ProcMacError {
crate_name: self.cstore.crate_name_untracked(krate),
name,
module: node_id,
use_span,
warn_msg,
});
}
pub fn report_proc_macro_import(&mut self, krate: &ast::Crate) {
for err in self.proc_mac_errors.drain(..) {
let (span, found_use) = ::UsePlacementFinder::check(krate, err.module);
if let Some(span) = span {
let found_use = if found_use { "" } else { "\n" };
self.session.struct_span_err(err.use_span, err.warn_msg)
.span_suggestion_with_applicability(
span,
"instead, import the procedural macro like any other item",
format!("use {}::{};{}", err.crate_name, err.name, found_use),
Applicability::MachineApplicable
).emit();
} else {
self.session.struct_span_err(err.use_span, err.warn_msg)
.help(&format!("instead, import the procedural macro like any other item: \
`use {}::{};`", err.crate_name, err.name))
.emit();
}
}
}
fn gate_legacy_custom_derive(&mut self, name: Symbol, span: Span) {
if !self.session.features_untracked().custom_derive {
let sess = &self.session.parse_sess;
let explain = feature_gate::EXPLAIN_CUSTOM_DERIVE;
emit_feature_err(sess, "custom_derive", span, GateIssue::Language, explain);
} else if !self.is_whitelisted_legacy_custom_derive(name) {
self.session.span_warn(span, feature_gate::EXPLAIN_DEPR_CUSTOM_DERIVE);
}
}
}