rust/src/libsyntax/ext/base.rs

1063 lines
36 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::SyntaxExtension::*;
use ast::{self, Attribute, Name, PatKind, MetaItem};
use attr::HasAttrs;
use source_map::{self, SourceMap, Spanned, respan};
use syntax_pos::{Span, MultiSpan, DUMMY_SP};
use edition::Edition;
use errors::{DiagnosticBuilder, DiagnosticId};
use ext::expand::{self, AstFragment, Invocation};
use ext::hygiene::{self, Mark, SyntaxContext, Transparency};
use fold::{self, Folder};
use parse::{self, parser, DirectoryOwnership};
use parse::token;
use ptr::P;
use OneVector;
use symbol::{keywords, Ident, Symbol};
use ThinVec;
use std::collections::HashMap;
use std::iter;
use std::path::PathBuf;
use std::rc::Rc;
use rustc_data_structures::sync::{self, Lrc};
use std::default::Default;
use tokenstream::{self, TokenStream};
#[derive(Debug,Clone)]
pub enum Annotatable {
Item(P<ast::Item>),
TraitItem(P<ast::TraitItem>),
ImplItem(P<ast::ImplItem>),
ForeignItem(P<ast::ForeignItem>),
Stmt(P<ast::Stmt>),
Expr(P<ast::Expr>),
}
impl HasAttrs for Annotatable {
fn attrs(&self) -> &[Attribute] {
match *self {
Annotatable::Item(ref item) => &item.attrs,
Annotatable::TraitItem(ref trait_item) => &trait_item.attrs,
Annotatable::ImplItem(ref impl_item) => &impl_item.attrs,
Annotatable::ForeignItem(ref foreign_item) => &foreign_item.attrs,
Annotatable::Stmt(ref stmt) => stmt.attrs(),
Annotatable::Expr(ref expr) => &expr.attrs,
}
}
fn map_attrs<F: FnOnce(Vec<Attribute>) -> Vec<Attribute>>(self, f: F) -> Self {
match self {
Annotatable::Item(item) => Annotatable::Item(item.map_attrs(f)),
Annotatable::TraitItem(trait_item) => Annotatable::TraitItem(trait_item.map_attrs(f)),
Annotatable::ImplItem(impl_item) => Annotatable::ImplItem(impl_item.map_attrs(f)),
Annotatable::ForeignItem(foreign_item) =>
Annotatable::ForeignItem(foreign_item.map_attrs(f)),
Annotatable::Stmt(stmt) => Annotatable::Stmt(stmt.map_attrs(f)),
Annotatable::Expr(expr) => Annotatable::Expr(expr.map_attrs(f)),
}
}
}
impl Annotatable {
pub fn span(&self) -> Span {
match *self {
Annotatable::Item(ref item) => item.span,
Annotatable::TraitItem(ref trait_item) => trait_item.span,
Annotatable::ImplItem(ref impl_item) => impl_item.span,
Annotatable::ForeignItem(ref foreign_item) => foreign_item.span,
Annotatable::Stmt(ref stmt) => stmt.span,
Annotatable::Expr(ref expr) => expr.span,
}
}
pub fn expect_item(self) -> P<ast::Item> {
match self {
Annotatable::Item(i) => i,
_ => panic!("expected Item")
}
}
pub fn map_item_or<F, G>(self, mut f: F, mut or: G) -> Annotatable
where F: FnMut(P<ast::Item>) -> P<ast::Item>,
G: FnMut(Annotatable) -> Annotatable
{
match self {
Annotatable::Item(i) => Annotatable::Item(f(i)),
_ => or(self)
}
}
pub fn expect_trait_item(self) -> ast::TraitItem {
match self {
Annotatable::TraitItem(i) => i.into_inner(),
_ => panic!("expected Item")
}
}
pub fn expect_impl_item(self) -> ast::ImplItem {
match self {
Annotatable::ImplItem(i) => i.into_inner(),
_ => panic!("expected Item")
}
}
pub fn expect_foreign_item(self) -> ast::ForeignItem {
match self {
Annotatable::ForeignItem(i) => i.into_inner(),
_ => panic!("expected foreign item")
}
}
pub fn expect_stmt(self) -> ast::Stmt {
match self {
Annotatable::Stmt(stmt) => stmt.into_inner(),
_ => panic!("expected statement"),
}
}
pub fn expect_expr(self) -> P<ast::Expr> {
match self {
Annotatable::Expr(expr) => expr,
_ => panic!("expected expression"),
}
}
pub fn derive_allowed(&self) -> bool {
match *self {
Annotatable::Item(ref item) => match item.node {
ast::ItemKind::Struct(..) |
ast::ItemKind::Enum(..) |
ast::ItemKind::Union(..) => true,
_ => false,
},
_ => false,
}
}
}
// A more flexible ItemDecorator.
pub trait MultiItemDecorator {
fn expand(&self,
ecx: &mut ExtCtxt,
sp: Span,
meta_item: &ast::MetaItem,
item: &Annotatable,
push: &mut dyn FnMut(Annotatable));
}
impl<F> MultiItemDecorator for F
where F : Fn(&mut ExtCtxt, Span, &ast::MetaItem, &Annotatable, &mut dyn FnMut(Annotatable))
{
fn expand(&self,
ecx: &mut ExtCtxt,
sp: Span,
meta_item: &ast::MetaItem,
item: &Annotatable,
push: &mut dyn FnMut(Annotatable)) {
(*self)(ecx, sp, meta_item, item, push)
}
}
// `meta_item` is the annotation, and `item` is the item being modified.
// FIXME Decorators should follow the same pattern too.
pub trait MultiItemModifier {
fn expand(&self,
ecx: &mut ExtCtxt,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable)
-> Vec<Annotatable>;
}
impl<F, T> MultiItemModifier for F
where F: Fn(&mut ExtCtxt, Span, &ast::MetaItem, Annotatable) -> T,
T: Into<Vec<Annotatable>>,
{
fn expand(&self,
ecx: &mut ExtCtxt,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable)
-> Vec<Annotatable> {
(*self)(ecx, span, meta_item, item).into()
}
}
impl Into<Vec<Annotatable>> for Annotatable {
fn into(self) -> Vec<Annotatable> {
vec![self]
}
}
pub trait ProcMacro {
fn expand<'cx>(&self,
ecx: &'cx mut ExtCtxt,
span: Span,
ts: TokenStream)
-> TokenStream;
}
impl<F> ProcMacro for F
where F: Fn(TokenStream) -> TokenStream
{
fn expand<'cx>(&self,
_ecx: &'cx mut ExtCtxt,
_span: Span,
ts: TokenStream)
-> TokenStream {
// FIXME setup implicit context in TLS before calling self.
(*self)(ts)
}
}
pub trait AttrProcMacro {
fn expand<'cx>(&self,
ecx: &'cx mut ExtCtxt,
span: Span,
annotation: TokenStream,
annotated: TokenStream)
-> TokenStream;
}
impl<F> AttrProcMacro for F
where F: Fn(TokenStream, TokenStream) -> TokenStream
{
fn expand<'cx>(&self,
_ecx: &'cx mut ExtCtxt,
_span: Span,
annotation: TokenStream,
annotated: TokenStream)
-> TokenStream {
// FIXME setup implicit context in TLS before calling self.
(*self)(annotation, annotated)
}
}
/// Represents a thing that maps token trees to Macro Results
pub trait TTMacroExpander {
fn expand<'cx>(&self, ecx: &'cx mut ExtCtxt, span: Span, input: TokenStream)
-> Box<dyn MacResult+'cx>;
}
pub type MacroExpanderFn =
for<'cx> fn(&'cx mut ExtCtxt, Span, &[tokenstream::TokenTree])
-> Box<dyn MacResult+'cx>;
impl<F> TTMacroExpander for F
where F: for<'cx> Fn(&'cx mut ExtCtxt, Span, &[tokenstream::TokenTree])
-> Box<dyn MacResult+'cx>
{
fn expand<'cx>(&self, ecx: &'cx mut ExtCtxt, span: Span, input: TokenStream)
-> Box<dyn MacResult+'cx> {
struct AvoidInterpolatedIdents;
impl Folder for AvoidInterpolatedIdents {
fn fold_tt(&mut self, tt: tokenstream::TokenTree) -> tokenstream::TokenTree {
if let tokenstream::TokenTree::Token(_, token::Interpolated(ref nt)) = tt {
if let token::NtIdent(ident, is_raw) = nt.0 {
return tokenstream::TokenTree::Token(ident.span,
token::Ident(ident, is_raw));
}
}
fold::noop_fold_tt(tt, self)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
}
let input: Vec<_> =
input.trees().map(|tt| AvoidInterpolatedIdents.fold_tt(tt)).collect();
(*self)(ecx, span, &input)
}
}
pub trait IdentMacroExpander {
fn expand<'cx>(&self,
cx: &'cx mut ExtCtxt,
sp: Span,
ident: ast::Ident,
token_tree: Vec<tokenstream::TokenTree>)
-> Box<dyn MacResult+'cx>;
}
pub type IdentMacroExpanderFn =
for<'cx> fn(&'cx mut ExtCtxt, Span, ast::Ident, Vec<tokenstream::TokenTree>)
-> Box<dyn MacResult+'cx>;
impl<F> IdentMacroExpander for F
where F : for<'cx> Fn(&'cx mut ExtCtxt, Span, ast::Ident,
Vec<tokenstream::TokenTree>) -> Box<dyn MacResult+'cx>
{
fn expand<'cx>(&self,
cx: &'cx mut ExtCtxt,
sp: Span,
ident: ast::Ident,
token_tree: Vec<tokenstream::TokenTree>)
-> Box<dyn MacResult+'cx>
{
(*self)(cx, sp, ident, token_tree)
}
}
// Use a macro because forwarding to a simple function has type system issues
macro_rules! make_stmts_default {
($me:expr) => {
$me.make_expr().map(|e| smallvec![ast::Stmt {
id: ast::DUMMY_NODE_ID,
span: e.span,
node: ast::StmtKind::Expr(e),
}])
}
}
/// The result of a macro expansion. The return values of the various
/// methods are spliced into the AST at the callsite of the macro.
pub trait MacResult {
/// Create an expression.
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
None
}
/// Create zero or more items.
fn make_items(self: Box<Self>) -> Option<OneVector<P<ast::Item>>> {
None
}
/// Create zero or more impl items.
fn make_impl_items(self: Box<Self>) -> Option<OneVector<ast::ImplItem>> {
None
}
/// Create zero or more trait items.
fn make_trait_items(self: Box<Self>) -> Option<OneVector<ast::TraitItem>> {
None
}
/// Create zero or more items in an `extern {}` block
fn make_foreign_items(self: Box<Self>) -> Option<OneVector<ast::ForeignItem>> { None }
/// Create a pattern.
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
None
}
/// Create zero or more statements.
///
/// By default this attempts to create an expression statement,
/// returning None if that fails.
fn make_stmts(self: Box<Self>) -> Option<OneVector<ast::Stmt>> {
make_stmts_default!(self)
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
None
}
}
macro_rules! make_MacEager {
( $( $fld:ident: $t:ty, )* ) => {
/// `MacResult` implementation for the common case where you've already
/// built each form of AST that you might return.
#[derive(Default)]
pub struct MacEager {
$(
pub $fld: Option<$t>,
)*
}
impl MacEager {
$(
pub fn $fld(v: $t) -> Box<dyn MacResult> {
Box::new(MacEager {
$fld: Some(v),
..Default::default()
})
}
)*
}
}
}
make_MacEager! {
expr: P<ast::Expr>,
pat: P<ast::Pat>,
items: OneVector<P<ast::Item>>,
impl_items: OneVector<ast::ImplItem>,
trait_items: OneVector<ast::TraitItem>,
foreign_items: OneVector<ast::ForeignItem>,
stmts: OneVector<ast::Stmt>,
ty: P<ast::Ty>,
}
impl MacResult for MacEager {
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
self.expr
}
fn make_items(self: Box<Self>) -> Option<OneVector<P<ast::Item>>> {
self.items
}
fn make_impl_items(self: Box<Self>) -> Option<OneVector<ast::ImplItem>> {
self.impl_items
}
fn make_trait_items(self: Box<Self>) -> Option<OneVector<ast::TraitItem>> {
self.trait_items
}
fn make_foreign_items(self: Box<Self>) -> Option<OneVector<ast::ForeignItem>> {
self.foreign_items
}
fn make_stmts(self: Box<Self>) -> Option<OneVector<ast::Stmt>> {
match self.stmts.as_ref().map_or(0, |s| s.len()) {
0 => make_stmts_default!(self),
_ => self.stmts,
}
}
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
if let Some(p) = self.pat {
return Some(p);
}
if let Some(e) = self.expr {
if let ast::ExprKind::Lit(_) = e.node {
return Some(P(ast::Pat {
id: ast::DUMMY_NODE_ID,
span: e.span,
node: PatKind::Lit(e),
}));
}
}
None
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
self.ty
}
}
/// Fill-in macro expansion result, to allow compilation to continue
/// after hitting errors.
#[derive(Copy, Clone)]
pub struct DummyResult {
expr_only: bool,
span: Span
}
impl DummyResult {
/// Create a default MacResult that can be anything.
///
/// Use this as a return value after hitting any errors and
/// calling `span_err`.
pub fn any(sp: Span) -> Box<dyn MacResult+'static> {
Box::new(DummyResult { expr_only: false, span: sp })
}
/// Create a default MacResult that can only be an expression.
///
/// Use this for macros that must expand to an expression, so even
/// if an error is encountered internally, the user will receive
/// an error that they also used it in the wrong place.
pub fn expr(sp: Span) -> Box<dyn MacResult+'static> {
Box::new(DummyResult { expr_only: true, span: sp })
}
/// A plain dummy expression.
pub fn raw_expr(sp: Span) -> P<ast::Expr> {
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Lit(P(source_map::respan(sp, ast::LitKind::Bool(false)))),
span: sp,
attrs: ThinVec::new(),
})
}
/// A plain dummy pattern.
pub fn raw_pat(sp: Span) -> ast::Pat {
ast::Pat {
id: ast::DUMMY_NODE_ID,
node: PatKind::Wild,
span: sp,
}
}
pub fn raw_ty(sp: Span) -> P<ast::Ty> {
P(ast::Ty {
id: ast::DUMMY_NODE_ID,
node: ast::TyKind::Infer,
span: sp
})
}
}
impl MacResult for DummyResult {
fn make_expr(self: Box<DummyResult>) -> Option<P<ast::Expr>> {
Some(DummyResult::raw_expr(self.span))
}
fn make_pat(self: Box<DummyResult>) -> Option<P<ast::Pat>> {
Some(P(DummyResult::raw_pat(self.span)))
}
fn make_items(self: Box<DummyResult>) -> Option<OneVector<P<ast::Item>>> {
// this code needs a comment... why not always just return the Some() ?
if self.expr_only {
None
} else {
Some(OneVector::new())
}
}
fn make_impl_items(self: Box<DummyResult>) -> Option<OneVector<ast::ImplItem>> {
if self.expr_only {
None
} else {
Some(OneVector::new())
}
}
fn make_trait_items(self: Box<DummyResult>) -> Option<OneVector<ast::TraitItem>> {
if self.expr_only {
None
} else {
Some(OneVector::new())
}
}
fn make_foreign_items(self: Box<Self>) -> Option<OneVector<ast::ForeignItem>> {
if self.expr_only {
None
} else {
Some(OneVector::new())
}
}
fn make_stmts(self: Box<DummyResult>) -> Option<OneVector<ast::Stmt>> {
Some(smallvec![ast::Stmt {
id: ast::DUMMY_NODE_ID,
node: ast::StmtKind::Expr(DummyResult::raw_expr(self.span)),
span: self.span,
}])
}
fn make_ty(self: Box<DummyResult>) -> Option<P<ast::Ty>> {
Some(DummyResult::raw_ty(self.span))
}
}
pub type BuiltinDeriveFn =
for<'cx> fn(&'cx mut ExtCtxt, Span, &MetaItem, &Annotatable, &mut dyn FnMut(Annotatable));
/// Represents different kinds of macro invocations that can be resolved.
#[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum MacroKind {
/// A bang macro - foo!()
Bang,
/// An attribute macro - #[foo]
Attr,
/// A derive attribute macro - #[derive(Foo)]
Derive,
/// A view of a procedural macro from the same crate that defines it.
ProcMacroStub,
}
impl MacroKind {
pub fn descr(self) -> &'static str {
match self {
MacroKind::Bang => "macro",
MacroKind::Attr => "attribute macro",
MacroKind::Derive => "derive macro",
MacroKind::ProcMacroStub => "crate-local procedural macro",
}
}
}
/// An enum representing the different kinds of syntax extensions.
pub enum SyntaxExtension {
/// A trivial "extension" that does nothing, only keeps the attribute and marks it as known.
NonMacroAttr { mark_used: bool },
/// A syntax extension that is attached to an item and creates new items
/// based upon it.
///
/// `#[derive(...)]` is a `MultiItemDecorator`.
///
/// Prefer ProcMacro or MultiModifier since they are more flexible.
MultiDecorator(Box<dyn MultiItemDecorator + sync::Sync + sync::Send>),
/// A syntax extension that is attached to an item and modifies it
/// in-place. Also allows decoration, i.e., creating new items.
MultiModifier(Box<dyn MultiItemModifier + sync::Sync + sync::Send>),
/// A function-like procedural macro. TokenStream -> TokenStream.
ProcMacro {
expander: Box<dyn ProcMacro + sync::Sync + sync::Send>,
allow_internal_unstable: bool,
edition: Edition,
},
/// An attribute-like procedural macro. TokenStream, TokenStream -> TokenStream.
/// The first TokenSteam is the attribute, the second is the annotated item.
/// Allows modification of the input items and adding new items, similar to
/// MultiModifier, but uses TokenStreams, rather than AST nodes.
AttrProcMacro(Box<dyn AttrProcMacro + sync::Sync + sync::Send>, Edition),
/// A normal, function-like syntax extension.
///
/// `bytes!` is a `NormalTT`.
NormalTT {
expander: Box<dyn TTMacroExpander + sync::Sync + sync::Send>,
def_info: Option<(ast::NodeId, Span)>,
/// Whether the contents of the macro can
/// directly use `#[unstable]` things (true == yes).
allow_internal_unstable: bool,
/// Whether the contents of the macro can use `unsafe`
/// without triggering the `unsafe_code` lint.
allow_internal_unsafe: bool,
/// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`)
/// for a given macro.
local_inner_macros: bool,
/// The macro's feature name if it is unstable, and the stability feature
unstable_feature: Option<(Symbol, u32)>,
/// Edition of the crate in which the macro is defined
edition: Edition,
},
/// A function-like syntax extension that has an extra ident before
/// the block.
///
IdentTT(Box<dyn IdentMacroExpander + sync::Sync + sync::Send>, Option<Span>, bool),
/// An attribute-like procedural macro. TokenStream -> TokenStream.
/// The input is the annotated item.
/// Allows generating code to implement a Trait for a given struct
/// or enum item.
ProcMacroDerive(Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
Vec<Symbol> /* inert attribute names */, Edition),
/// An attribute-like procedural macro that derives a builtin trait.
BuiltinDerive(BuiltinDeriveFn),
/// A declarative macro, e.g. `macro m() {}`.
DeclMacro {
expander: Box<dyn TTMacroExpander + sync::Sync + sync::Send>,
def_info: Option<(ast::NodeId, Span)>,
is_transparent: bool,
edition: Edition,
}
}
impl SyntaxExtension {
/// Return which kind of macro calls this syntax extension.
pub fn kind(&self) -> MacroKind {
match *self {
SyntaxExtension::DeclMacro { .. } |
SyntaxExtension::NormalTT { .. } |
SyntaxExtension::IdentTT(..) |
SyntaxExtension::ProcMacro { .. } =>
MacroKind::Bang,
SyntaxExtension::NonMacroAttr { .. } |
SyntaxExtension::MultiDecorator(..) |
SyntaxExtension::MultiModifier(..) |
SyntaxExtension::AttrProcMacro(..) =>
MacroKind::Attr,
SyntaxExtension::ProcMacroDerive(..) |
SyntaxExtension::BuiltinDerive(..) =>
MacroKind::Derive,
}
}
pub fn default_transparency(&self) -> Transparency {
match *self {
SyntaxExtension::ProcMacro { .. } |
SyntaxExtension::AttrProcMacro(..) |
SyntaxExtension::ProcMacroDerive(..) |
SyntaxExtension::DeclMacro { is_transparent: false, .. } => Transparency::Opaque,
SyntaxExtension::DeclMacro { is_transparent: true, .. } => Transparency::Transparent,
_ => Transparency::SemiTransparent,
}
}
pub fn edition(&self) -> Edition {
match *self {
SyntaxExtension::NormalTT { edition, .. } |
SyntaxExtension::DeclMacro { edition, .. } |
SyntaxExtension::ProcMacro { edition, .. } |
SyntaxExtension::AttrProcMacro(.., edition) |
SyntaxExtension::ProcMacroDerive(.., edition) => edition,
// Unstable legacy stuff
SyntaxExtension::NonMacroAttr { .. } |
SyntaxExtension::IdentTT(..) |
SyntaxExtension::MultiDecorator(..) |
SyntaxExtension::MultiModifier(..) |
SyntaxExtension::BuiltinDerive(..) => hygiene::default_edition(),
}
}
}
pub type NamedSyntaxExtension = (Name, SyntaxExtension);
pub trait Resolver {
fn next_node_id(&mut self) -> ast::NodeId;
fn get_module_scope(&mut self, id: ast::NodeId) -> Mark;
fn eliminate_crate_var(&mut self, item: P<ast::Item>) -> P<ast::Item>;
fn is_whitelisted_legacy_custom_derive(&self, name: Name) -> bool;
fn visit_ast_fragment_with_placeholders(&mut self, mark: Mark, fragment: &AstFragment,
derives: &[Mark]);
fn add_builtin(&mut self, ident: ast::Ident, ext: Lrc<SyntaxExtension>);
fn resolve_imports(&mut self);
// Resolves attribute and derive legacy macros from `#![plugin(..)]`.
fn find_legacy_attr_invoc(&mut self, attrs: &mut Vec<Attribute>, allow_derive: bool)
-> Option<Attribute>;
fn resolve_macro_invocation(&mut self, invoc: &Invocation, scope: Mark, force: bool)
-> Result<Option<Lrc<SyntaxExtension>>, Determinacy>;
fn resolve_macro_path(&mut self, path: &ast::Path, kind: MacroKind, scope: Mark,
derives_in_scope: &[ast::Path], force: bool)
-> Result<Lrc<SyntaxExtension>, Determinacy>;
fn check_unused_macros(&self);
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum Determinacy {
Determined,
Undetermined,
}
impl Determinacy {
pub fn determined(determined: bool) -> Determinacy {
if determined { Determinacy::Determined } else { Determinacy::Undetermined }
}
}
pub struct DummyResolver;
impl Resolver for DummyResolver {
fn next_node_id(&mut self) -> ast::NodeId { ast::DUMMY_NODE_ID }
fn get_module_scope(&mut self, _id: ast::NodeId) -> Mark { Mark::root() }
fn eliminate_crate_var(&mut self, item: P<ast::Item>) -> P<ast::Item> { item }
fn is_whitelisted_legacy_custom_derive(&self, _name: Name) -> bool { false }
fn visit_ast_fragment_with_placeholders(&mut self, _invoc: Mark, _fragment: &AstFragment,
_derives: &[Mark]) {}
fn add_builtin(&mut self, _ident: ast::Ident, _ext: Lrc<SyntaxExtension>) {}
fn resolve_imports(&mut self) {}
fn find_legacy_attr_invoc(&mut self, _attrs: &mut Vec<Attribute>, _allow_derive: bool)
-> Option<Attribute> { None }
fn resolve_macro_invocation(&mut self, _invoc: &Invocation, _scope: Mark, _force: bool)
-> Result<Option<Lrc<SyntaxExtension>>, Determinacy> {
Err(Determinacy::Determined)
}
fn resolve_macro_path(&mut self, _path: &ast::Path, _kind: MacroKind, _scope: Mark,
_derives_in_scope: &[ast::Path], _force: bool)
-> Result<Lrc<SyntaxExtension>, Determinacy> {
Err(Determinacy::Determined)
}
fn check_unused_macros(&self) {}
}
#[derive(Clone)]
pub struct ModuleData {
pub mod_path: Vec<ast::Ident>,
pub directory: PathBuf,
}
#[derive(Clone)]
pub struct ExpansionData {
pub mark: Mark,
pub depth: usize,
pub module: Rc<ModuleData>,
pub directory_ownership: DirectoryOwnership,
pub crate_span: Option<Span>,
}
/// One of these is made during expansion and incrementally updated as we go;
/// when a macro expansion occurs, the resulting nodes have the `backtrace()
/// -> expn_info` of their expansion context stored into their span.
pub struct ExtCtxt<'a> {
pub parse_sess: &'a parse::ParseSess,
pub ecfg: expand::ExpansionConfig<'a>,
pub root_path: PathBuf,
pub resolver: &'a mut dyn Resolver,
pub resolve_err_count: usize,
pub current_expansion: ExpansionData,
pub expansions: HashMap<Span, Vec<String>>,
}
impl<'a> ExtCtxt<'a> {
pub fn new(parse_sess: &'a parse::ParseSess,
ecfg: expand::ExpansionConfig<'a>,
resolver: &'a mut dyn Resolver)
-> ExtCtxt<'a> {
ExtCtxt {
parse_sess,
ecfg,
root_path: PathBuf::new(),
resolver,
resolve_err_count: 0,
current_expansion: ExpansionData {
mark: Mark::root(),
depth: 0,
module: Rc::new(ModuleData { mod_path: Vec::new(), directory: PathBuf::new() }),
directory_ownership: DirectoryOwnership::Owned { relative: None },
crate_span: None,
},
expansions: HashMap::new(),
}
}
/// Returns a `Folder` for deeply expanding all macros in an AST node.
pub fn expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self, false)
}
/// Returns a `Folder` that deeply expands all macros and assigns all node ids in an AST node.
/// Once node ids are assigned, the node may not be expanded, removed, or otherwise modified.
pub fn monotonic_expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self, true)
}
pub fn new_parser_from_tts(&self, tts: &[tokenstream::TokenTree]) -> parser::Parser<'a> {
parse::stream_to_parser(self.parse_sess, tts.iter().cloned().collect())
}
pub fn source_map(&self) -> &'a SourceMap { self.parse_sess.source_map() }
pub fn parse_sess(&self) -> &'a parse::ParseSess { self.parse_sess }
pub fn cfg(&self) -> &ast::CrateConfig { &self.parse_sess.config }
pub fn call_site(&self) -> Span {
match self.current_expansion.mark.expn_info() {
Some(expn_info) => expn_info.call_site,
None => DUMMY_SP,
}
}
pub fn backtrace(&self) -> SyntaxContext {
SyntaxContext::empty().apply_mark(self.current_expansion.mark)
}
/// Returns span for the macro which originally caused the current expansion to happen.
///
/// Stops backtracing at include! boundary.
pub fn expansion_cause(&self) -> Option<Span> {
let mut ctxt = self.backtrace();
let mut last_macro = None;
loop {
if ctxt.outer().expn_info().map_or(None, |info| {
if info.format.name() == "include" {
// Stop going up the backtrace once include! is encountered
return None;
}
ctxt = info.call_site.ctxt();
last_macro = Some(info.call_site);
Some(())
}).is_none() {
break
}
}
last_macro
}
pub fn struct_span_warn<S: Into<MultiSpan>>(&self,
sp: S,
msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.struct_span_warn(sp, msg)
}
pub fn struct_span_err<S: Into<MultiSpan>>(&self,
sp: S,
msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.struct_span_err(sp, msg)
}
pub fn struct_span_fatal<S: Into<MultiSpan>>(&self,
sp: S,
msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.struct_span_fatal(sp, msg)
}
/// Emit `msg` attached to `sp`, and stop compilation immediately.
///
/// `span_err` should be strongly preferred where-ever possible:
/// this should *only* be used when:
///
/// - continuing has a high risk of flow-on errors (e.g. errors in
/// declaring a macro would cause all uses of that macro to
/// complain about "undefined macro"), or
/// - there is literally nothing else that can be done (however,
/// in most cases one can construct a dummy expression/item to
/// substitute; we never hit resolve/type-checking so the dummy
/// value doesn't have to match anything)
pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
self.parse_sess.span_diagnostic.span_fatal(sp, msg).raise();
}
/// Emit `msg` attached to `sp`, without immediately stopping
/// compilation.
///
/// Compilation will be stopped in the near future (at the end of
/// the macro expansion phase).
pub fn span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
self.parse_sess.span_diagnostic.span_err(sp, msg);
}
pub fn span_err_with_code<S: Into<MultiSpan>>(&self, sp: S, msg: &str, code: DiagnosticId) {
self.parse_sess.span_diagnostic.span_err_with_code(sp, msg, code);
}
pub fn mut_span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.mut_span_err(sp, msg)
}
pub fn span_warn<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
self.parse_sess.span_diagnostic.span_warn(sp, msg);
}
pub fn span_unimpl<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
self.parse_sess.span_diagnostic.span_unimpl(sp, msg);
}
pub fn span_bug<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
self.parse_sess.span_diagnostic.span_bug(sp, msg);
}
pub fn trace_macros_diag(&mut self) {
for (sp, notes) in self.expansions.iter() {
let mut db = self.parse_sess.span_diagnostic.span_note_diag(*sp, "trace_macro");
for note in notes {
db.note(note);
}
db.emit();
}
// Fixme: does this result in errors?
self.expansions.clear();
}
pub fn bug(&self, msg: &str) -> ! {
self.parse_sess.span_diagnostic.bug(msg);
}
pub fn trace_macros(&self) -> bool {
self.ecfg.trace_mac
}
pub fn set_trace_macros(&mut self, x: bool) {
self.ecfg.trace_mac = x
}
pub fn ident_of(&self, st: &str) -> ast::Ident {
ast::Ident::from_str(st)
}
pub fn std_path(&self, components: &[&str]) -> Vec<ast::Ident> {
let def_site = DUMMY_SP.apply_mark(self.current_expansion.mark);
iter::once(Ident::new(keywords::DollarCrate.name(), def_site))
.chain(components.iter().map(|s| self.ident_of(s)))
.collect()
}
pub fn name_of(&self, st: &str) -> ast::Name {
Symbol::intern(st)
}
pub fn check_unused_macros(&self) {
self.resolver.check_unused_macros();
}
}
/// Extract a string literal from the macro expanded version of `expr`,
/// emitting `err_msg` if `expr` is not a string literal. This does not stop
/// compilation on error, merely emits a non-fatal error and returns None.
pub fn expr_to_spanned_string<'a>(
cx: &'a mut ExtCtxt,
expr: P<ast::Expr>,
err_msg: &str,
) -> Result<Spanned<(Symbol, ast::StrStyle)>, DiagnosticBuilder<'a>> {
// Update `expr.span`'s ctxt now in case expr is an `include!` macro invocation.
let expr = expr.map(|mut expr| {
expr.span = expr.span.apply_mark(cx.current_expansion.mark);
expr
});
// we want to be able to handle e.g. `concat!("foo", "bar")`
let expr = cx.expander().fold_expr(expr);
Err(match expr.node {
ast::ExprKind::Lit(ref l) => match l.node {
ast::LitKind::Str(s, style) => return Ok(respan(expr.span, (s, style))),
_ => cx.struct_span_err(l.span, err_msg)
},
_ => cx.struct_span_err(expr.span, err_msg)
})
}
pub fn expr_to_string(cx: &mut ExtCtxt, expr: P<ast::Expr>, err_msg: &str)
-> Option<(Symbol, ast::StrStyle)> {
expr_to_spanned_string(cx, expr, err_msg)
.map_err(|mut err| err.emit())
.ok()
.map(|s| s.node)
}
/// Non-fatally assert that `tts` is empty. Note that this function
/// returns even when `tts` is non-empty, macros that *need* to stop
/// compilation should call
/// `cx.parse_sess.span_diagnostic.abort_if_errors()` (this should be
/// done as rarely as possible).
pub fn check_zero_tts(cx: &ExtCtxt,
sp: Span,
tts: &[tokenstream::TokenTree],
name: &str) {
if !tts.is_empty() {
cx.span_err(sp, &format!("{} takes no arguments", name));
}
}
/// Interpreting `tts` as a comma-separated sequence of expressions,
/// expect exactly one string literal, or emit an error and return None.
pub fn get_single_str_from_tts(cx: &mut ExtCtxt,
sp: Span,
tts: &[tokenstream::TokenTree],
name: &str)
-> Option<String> {
let mut p = cx.new_parser_from_tts(tts);
if p.token == token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
return None
}
let ret = panictry!(p.parse_expr());
let _ = p.eat(&token::Comma);
if p.token != token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
}
expr_to_string(cx, ret, "argument must be a string literal").map(|(s, _)| {
s.to_string()
})
}
/// Extract comma-separated expressions from `tts`. If there is a
/// parsing error, emit a non-fatal error and return None.
pub fn get_exprs_from_tts(cx: &mut ExtCtxt,
sp: Span,
tts: &[tokenstream::TokenTree]) -> Option<Vec<P<ast::Expr>>> {
let mut p = cx.new_parser_from_tts(tts);
let mut es = Vec::new();
while p.token != token::Eof {
es.push(cx.expander().fold_expr(panictry!(p.parse_expr())));
if p.eat(&token::Comma) {
continue;
}
if p.token != token::Eof {
cx.span_err(sp, "expected token: `,`");
return None;
}
}
Some(es)
}