rust/src/librustc/mir/tcx.rs

379 lines
14 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Methods for the various MIR types. These are intended for use after
* building is complete.
*/
use mir::*;
use ty::subst::{Subst, Substs};
use ty::{self, AdtDef, Ty, TyCtxt};
use ty::layout::VariantIdx;
use hir;
use ty::util::IntTypeExt;
#[derive(Copy, Clone, Debug)]
pub enum PlaceTy<'tcx> {
/// Normal type.
Ty { ty: Ty<'tcx> },
/// Downcast to a particular variant of an enum.
Downcast { adt_def: &'tcx AdtDef,
substs: &'tcx Substs<'tcx>,
variant_index: VariantIdx },
}
static_assert!(PLACE_TY_IS_3_PTRS_LARGE:
mem::size_of::<PlaceTy<'_>>() <= 24
);
impl<'a, 'gcx, 'tcx> PlaceTy<'tcx> {
pub fn from_ty(ty: Ty<'tcx>) -> PlaceTy<'tcx> {
PlaceTy::Ty { ty }
}
pub fn to_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
match *self {
PlaceTy::Ty { ty } =>
ty,
PlaceTy::Downcast { adt_def, substs, variant_index: _ } =>
tcx.mk_adt(adt_def, substs),
}
}
/// `place_ty.field_ty(tcx, f)` computes the type at a given field
/// of a record or enum-variant. (Most clients of `PlaceTy` can
/// instead just extract the relevant type directly from their
/// `PlaceElem`, but some instances of `ProjectionElem<V, T>` do
/// not carry a `Ty` for `T`.)
///
/// Note that the resulting type has not been normalized.
pub fn field_ty(self, tcx: TyCtxt<'a, 'gcx, 'tcx>, f: &Field) -> Ty<'tcx>
{
// Pass `0` here so it can be used as a "default" variant_index in first arm below
let answer = match (self, VariantIdx::new(0)) {
(PlaceTy::Ty {
ty: &ty::TyS { sty: ty::TyKind::Adt(adt_def, substs), .. } }, variant_index) |
(PlaceTy::Downcast { adt_def, substs, variant_index }, _) => {
let variant_def = &adt_def.variants[variant_index];
let field_def = &variant_def.fields[f.index()];
field_def.ty(tcx, substs)
}
(PlaceTy::Ty { ty }, _) => {
match ty.sty {
ty::Tuple(ref tys) => tys[f.index()],
_ => bug!("extracting field of non-tuple non-adt: {:?}", self),
}
}
};
debug!("field_ty self: {:?} f: {:?} yields: {:?}", self, f, answer);
answer
}
/// Convenience wrapper around `projection_ty_core` for
/// `PlaceElem`, where we can just use the `Ty` that is already
/// stored inline on field projection elems.
pub fn projection_ty(self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
elem: &PlaceElem<'tcx>)
-> PlaceTy<'tcx>
{
self.projection_ty_core(tcx, elem, |_, _, ty| -> Result<Ty<'tcx>, ()> { Ok(ty) })
.unwrap()
}
/// `place_ty.projection_ty_core(tcx, elem, |...| { ... })`
/// projects `place_ty` onto `elem`, returning the appropriate
/// `Ty` or downcast variant corresponding to that projection.
/// The `handle_field` callback must map a `Field` to its `Ty`,
/// (which should be trivial when `T` = `Ty`).
pub fn projection_ty_core<V, T, E>(
self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
elem: &ProjectionElem<'tcx, V, T>,
mut handle_field: impl FnMut(&Self, &Field, &T) -> Result<Ty<'tcx>, E>)
-> Result<PlaceTy<'tcx>, E>
where
V: ::std::fmt::Debug, T: ::std::fmt::Debug
{
let answer = match *elem {
ProjectionElem::Deref => {
let ty = self.to_ty(tcx)
.builtin_deref(true)
.unwrap_or_else(|| {
bug!("deref projection of non-dereferencable ty {:?}", self)
})
.ty;
PlaceTy::Ty {
ty,
}
}
ProjectionElem::Index(_) | ProjectionElem::ConstantIndex { .. } =>
PlaceTy::Ty {
ty: self.to_ty(tcx).builtin_index().unwrap()
},
ProjectionElem::Subslice { from, to } => {
let ty = self.to_ty(tcx);
PlaceTy::Ty {
ty: match ty.sty {
ty::Array(inner, size) => {
let size = size.unwrap_usize(tcx);
let len = size - (from as u64) - (to as u64);
tcx.mk_array(inner, len)
}
ty::Slice(..) => ty,
_ => {
bug!("cannot subslice non-array type: `{:?}`", self)
}
}
}
}
ProjectionElem::Downcast(adt_def1, index) =>
match self.to_ty(tcx).sty {
ty::Adt(adt_def, substs) => {
assert!(adt_def.is_enum());
assert!(index.as_usize() < adt_def.variants.len());
assert_eq!(adt_def, adt_def1);
PlaceTy::Downcast { adt_def,
substs,
variant_index: index }
}
_ => {
bug!("cannot downcast non-ADT type: `{:?}`", self)
}
},
ProjectionElem::Field(ref f, ref fty) =>
PlaceTy::Ty { ty: handle_field(&self, f, fty)? },
};
debug!("projection_ty self: {:?} elem: {:?} yields: {:?}", self, elem, answer);
Ok(answer)
}
}
EnumTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for PlaceTy<'tcx> {
(PlaceTy::Ty) { ty },
(PlaceTy::Downcast) { adt_def, substs, variant_index },
}
}
impl<'tcx> Place<'tcx> {
pub fn ty<'a, 'gcx, D>(&self, local_decls: &D, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> PlaceTy<'tcx>
where D: HasLocalDecls<'tcx>
{
match *self {
Place::Local(index) =>
PlaceTy::Ty { ty: local_decls.local_decls()[index].ty },
Place::Promoted(ref data) => PlaceTy::Ty { ty: data.1 },
Place::Static(ref data) =>
PlaceTy::Ty { ty: data.ty },
Place::Projection(ref proj) =>
proj.base.ty(local_decls, tcx).projection_ty(tcx, &proj.elem),
}
}
/// If this is a field projection, and the field is being projected from a closure type,
/// then returns the index of the field being projected. Note that this closure will always
/// be `self` in the current MIR, because that is the only time we directly access the fields
/// of a closure type.
pub fn is_upvar_field_projection<'cx, 'gcx>(&self, mir: &'cx Mir<'tcx>,
tcx: &TyCtxt<'cx, 'gcx, 'tcx>) -> Option<Field> {
let (place, by_ref) = if let Place::Projection(ref proj) = self {
if let ProjectionElem::Deref = proj.elem {
(&proj.base, true)
} else {
(self, false)
}
} else {
(self, false)
};
match place {
Place::Projection(ref proj) => match proj.elem {
ProjectionElem::Field(field, _ty) => {
let base_ty = proj.base.ty(mir, *tcx).to_ty(*tcx);
if (base_ty.is_closure() || base_ty.is_generator()) &&
(!by_ref || mir.upvar_decls[field.index()].by_ref)
{
Some(field)
} else {
None
}
},
_ => None,
}
_ => None,
}
}
}
pub enum RvalueInitializationState {
Shallow,
Deep
}
impl<'tcx> Rvalue<'tcx> {
pub fn ty<'a, 'gcx, D>(&self, local_decls: &D, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx>
where D: HasLocalDecls<'tcx>
{
match *self {
Rvalue::Use(ref operand) => operand.ty(local_decls, tcx),
Rvalue::Repeat(ref operand, count) => {
tcx.mk_array(operand.ty(local_decls, tcx), count)
}
Rvalue::Ref(reg, bk, ref place) => {
let place_ty = place.ty(local_decls, tcx).to_ty(tcx);
tcx.mk_ref(reg,
ty::TypeAndMut {
ty: place_ty,
mutbl: bk.to_mutbl_lossy()
}
)
}
Rvalue::Len(..) => tcx.types.usize,
Rvalue::Cast(.., ty) => ty,
Rvalue::BinaryOp(op, ref lhs, ref rhs) => {
let lhs_ty = lhs.ty(local_decls, tcx);
let rhs_ty = rhs.ty(local_decls, tcx);
op.ty(tcx, lhs_ty, rhs_ty)
}
Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => {
let lhs_ty = lhs.ty(local_decls, tcx);
let rhs_ty = rhs.ty(local_decls, tcx);
let ty = op.ty(tcx, lhs_ty, rhs_ty);
tcx.intern_tup(&[ty, tcx.types.bool])
}
Rvalue::UnaryOp(UnOp::Not, ref operand) |
Rvalue::UnaryOp(UnOp::Neg, ref operand) => {
operand.ty(local_decls, tcx)
}
Rvalue::Discriminant(ref place) => {
let ty = place.ty(local_decls, tcx).to_ty(tcx);
if let ty::Adt(adt_def, _) = ty.sty {
adt_def.repr.discr_type().to_ty(tcx)
} else {
// This can only be `0`, for now, so `u8` will suffice.
tcx.types.u8
}
}
Rvalue::NullaryOp(NullOp::Box, t) => tcx.mk_box(t),
Rvalue::NullaryOp(NullOp::SizeOf, _) => tcx.types.usize,
Rvalue::Aggregate(ref ak, ref ops) => {
match **ak {
AggregateKind::Array(ty) => {
tcx.mk_array(ty, ops.len() as u64)
}
AggregateKind::Tuple => {
tcx.mk_tup(ops.iter().map(|op| op.ty(local_decls, tcx)))
}
AggregateKind::Adt(def, _, substs, _, _) => {
tcx.type_of(def.did).subst(tcx, substs)
}
AggregateKind::Closure(did, substs) => {
tcx.mk_closure(did, substs)
}
AggregateKind::Generator(did, substs, movability) => {
tcx.mk_generator(did, substs, movability)
}
}
}
}
}
#[inline]
/// Returns whether this rvalue is deeply initialized (most rvalues) or
/// whether its only shallowly initialized (`Rvalue::Box`).
pub fn initialization_state(&self) -> RvalueInitializationState {
match *self {
Rvalue::NullaryOp(NullOp::Box, _) => RvalueInitializationState::Shallow,
_ => RvalueInitializationState::Deep
}
}
}
impl<'tcx> Operand<'tcx> {
pub fn ty<'a, 'gcx, D>(&self, local_decls: &D, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx>
where D: HasLocalDecls<'tcx>
{
match self {
&Operand::Copy(ref l) |
&Operand::Move(ref l) => l.ty(local_decls, tcx).to_ty(tcx),
&Operand::Constant(ref c) => c.ty,
}
}
}
impl<'tcx> BinOp {
pub fn ty<'a, 'gcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
lhs_ty: Ty<'tcx>,
rhs_ty: Ty<'tcx>)
-> Ty<'tcx> {
// FIXME: handle SIMD correctly
match self {
&BinOp::Add | &BinOp::Sub | &BinOp::Mul | &BinOp::Div | &BinOp::Rem |
&BinOp::BitXor | &BinOp::BitAnd | &BinOp::BitOr => {
// these should be integers or floats of the same size.
assert_eq!(lhs_ty, rhs_ty);
lhs_ty
}
&BinOp::Shl | &BinOp::Shr | &BinOp::Offset => {
lhs_ty // lhs_ty can be != rhs_ty
}
&BinOp::Eq | &BinOp::Lt | &BinOp::Le |
&BinOp::Ne | &BinOp::Ge | &BinOp::Gt => {
tcx.types.bool
}
}
}
}
impl BorrowKind {
pub fn to_mutbl_lossy(self) -> hir::Mutability {
match self {
BorrowKind::Mut { .. } => hir::MutMutable,
BorrowKind::Shared => hir::MutImmutable,
// We have no type corresponding to a unique imm borrow, so
// use `&mut`. It gives all the capabilities of an `&uniq`
// and hence is a safe "over approximation".
BorrowKind::Unique => hir::MutMutable,
// We have no type corresponding to a shallow borrow, so use
// `&` as an approximation.
BorrowKind::Shallow => hir::MutImmutable,
}
}
}
impl BinOp {
pub fn to_hir_binop(self) -> hir::BinOpKind {
match self {
BinOp::Add => hir::BinOpKind::Add,
BinOp::Sub => hir::BinOpKind::Sub,
BinOp::Mul => hir::BinOpKind::Mul,
BinOp::Div => hir::BinOpKind::Div,
BinOp::Rem => hir::BinOpKind::Rem,
BinOp::BitXor => hir::BinOpKind::BitXor,
BinOp::BitAnd => hir::BinOpKind::BitAnd,
BinOp::BitOr => hir::BinOpKind::BitOr,
BinOp::Shl => hir::BinOpKind::Shl,
BinOp::Shr => hir::BinOpKind::Shr,
BinOp::Eq => hir::BinOpKind::Eq,
BinOp::Ne => hir::BinOpKind::Ne,
BinOp::Lt => hir::BinOpKind::Lt,
BinOp::Gt => hir::BinOpKind::Gt,
BinOp::Le => hir::BinOpKind::Le,
BinOp::Ge => hir::BinOpKind::Ge,
BinOp::Offset => unreachable!()
}
}
}