rust/src/librustc_hir/hir.rs

2721 lines
88 KiB
Rust

use crate::def::{DefKind, Namespace, Res};
use crate::def_id::DefId;
crate use crate::hir_id::HirId;
use crate::itemlikevisit;
use crate::print;
crate use BlockCheckMode::*;
crate use FnRetTy::*;
crate use UnsafeSource::*;
use rustc_ast::ast::{self, AsmDialect, CrateSugar, Ident, Name};
use rustc_ast::ast::{AttrVec, Attribute, FloatTy, IntTy, Label, LitKind, StrStyle, UintTy};
pub use rustc_ast::ast::{BorrowKind, ImplPolarity, IsAuto};
pub use rustc_ast::ast::{CaptureBy, Movability, Mutability};
use rustc_ast::node_id::NodeMap;
use rustc_ast::tokenstream::TokenStream;
use rustc_ast::util::parser::ExprPrecedence;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::sync::{par_for_each_in, Send, Sync};
use rustc_errors::FatalError;
use rustc_macros::HashStable_Generic;
use rustc_span::source_map::{SourceMap, Spanned};
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_span::{MultiSpan, Span, DUMMY_SP};
use rustc_target::spec::abi::Abi;
use smallvec::SmallVec;
use std::collections::{BTreeMap, BTreeSet};
use std::fmt;
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, HashStable_Generic)]
pub struct Lifetime {
pub hir_id: HirId,
pub span: Span,
/// Either "`'a`", referring to a named lifetime definition,
/// or "``" (i.e., `kw::Invalid`), for elision placeholders.
///
/// HIR lowering inserts these placeholders in type paths that
/// refer to type definitions needing lifetime parameters,
/// `&T` and `&mut T`, and trait objects without `... + 'a`.
pub name: LifetimeName,
}
#[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
#[derive(HashStable_Generic)]
pub enum ParamName {
/// Some user-given name like `T` or `'x`.
Plain(Ident),
/// Synthetic name generated when user elided a lifetime in an impl header.
///
/// E.g., the lifetimes in cases like these:
///
/// impl Foo for &u32
/// impl Foo<'_> for u32
///
/// in that case, we rewrite to
///
/// impl<'f> Foo for &'f u32
/// impl<'f> Foo<'f> for u32
///
/// where `'f` is something like `Fresh(0)`. The indices are
/// unique per impl, but not necessarily continuous.
Fresh(usize),
/// Indicates an illegal name was given and an error has been
/// reported (so we should squelch other derived errors). Occurs
/// when, e.g., `'_` is used in the wrong place.
Error,
}
impl ParamName {
pub fn ident(&self) -> Ident {
match *self {
ParamName::Plain(ident) => ident,
ParamName::Fresh(_) | ParamName::Error => {
Ident::with_dummy_span(kw::UnderscoreLifetime)
}
}
}
pub fn modern(&self) -> ParamName {
match *self {
ParamName::Plain(ident) => ParamName::Plain(ident.modern()),
param_name => param_name,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
#[derive(HashStable_Generic)]
pub enum LifetimeName {
/// User-given names or fresh (synthetic) names.
Param(ParamName),
/// User wrote nothing (e.g., the lifetime in `&u32`).
Implicit,
/// Implicit lifetime in a context like `dyn Foo`. This is
/// distinguished from implicit lifetimes elsewhere because the
/// lifetime that they default to must appear elsewhere within the
/// enclosing type. This means that, in an `impl Trait` context, we
/// don't have to create a parameter for them. That is, `impl
/// Trait<Item = &u32>` expands to an opaque type like `type
/// Foo<'a> = impl Trait<Item = &'a u32>`, but `impl Trait<item =
/// dyn Bar>` expands to `type Foo = impl Trait<Item = dyn Bar +
/// 'static>`. The latter uses `ImplicitObjectLifetimeDefault` so
/// that surrounding code knows not to create a lifetime
/// parameter.
ImplicitObjectLifetimeDefault,
/// Indicates an error during lowering (usually `'_` in wrong place)
/// that was already reported.
Error,
/// User wrote specifies `'_`.
Underscore,
/// User wrote `'static`.
Static,
}
impl LifetimeName {
pub fn ident(&self) -> Ident {
match *self {
LifetimeName::ImplicitObjectLifetimeDefault
| LifetimeName::Implicit
| LifetimeName::Error => Ident::invalid(),
LifetimeName::Underscore => Ident::with_dummy_span(kw::UnderscoreLifetime),
LifetimeName::Static => Ident::with_dummy_span(kw::StaticLifetime),
LifetimeName::Param(param_name) => param_name.ident(),
}
}
pub fn is_elided(&self) -> bool {
match self {
LifetimeName::ImplicitObjectLifetimeDefault
| LifetimeName::Implicit
| LifetimeName::Underscore => true,
// It might seem surprising that `Fresh(_)` counts as
// *not* elided -- but this is because, as far as the code
// in the compiler is concerned -- `Fresh(_)` variants act
// equivalently to "some fresh name". They correspond to
// early-bound regions on an impl, in other words.
LifetimeName::Error | LifetimeName::Param(_) | LifetimeName::Static => false,
}
}
fn is_static(&self) -> bool {
self == &LifetimeName::Static
}
pub fn modern(&self) -> LifetimeName {
match *self {
LifetimeName::Param(param_name) => LifetimeName::Param(param_name.modern()),
lifetime_name => lifetime_name,
}
}
}
impl fmt::Display for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.name.ident().fmt(f)
}
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"lifetime({}: {})",
self.hir_id,
print::to_string(print::NO_ANN, |s| s.print_lifetime(self))
)
}
}
impl Lifetime {
pub fn is_elided(&self) -> bool {
self.name.is_elided()
}
pub fn is_static(&self) -> bool {
self.name.is_static()
}
}
/// A `Path` is essentially Rust's notion of a name; for instance,
/// `std::cmp::PartialEq`. It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[derive(RustcEncodable, RustcDecodable, HashStable_Generic)]
pub struct Path<'hir> {
pub span: Span,
/// The resolution for the path.
pub res: Res,
/// The segments in the path: the things separated by `::`.
pub segments: &'hir [PathSegment<'hir>],
}
impl Path<'_> {
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
}
}
impl fmt::Debug for Path<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "path({})", self)
}
}
impl fmt::Display for Path<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", print::to_string(print::NO_ANN, |s| s.print_path(self, false)))
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct PathSegment<'hir> {
/// The identifier portion of this path segment.
#[stable_hasher(project(name))]
pub ident: Ident,
// `id` and `res` are optional. We currently only use these in save-analysis,
// any path segments without these will not have save-analysis info and
// therefore will not have 'jump to def' in IDEs, but otherwise will not be
// affected. (In general, we don't bother to get the defs for synthesized
// segments, only for segments which have come from the AST).
pub hir_id: Option<HirId>,
pub res: Option<Res>,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
/// this is more than just simple syntactic sugar; the use of
/// parens affects the region binding rules, so we preserve the
/// distinction.
pub args: Option<&'hir GenericArgs<'hir>>,
/// Whether to infer remaining type parameters, if any.
/// This only applies to expression and pattern paths, and
/// out of those only the segments with no type parameters
/// to begin with, e.g., `Vec::new` is `<Vec<..>>::new::<..>`.
pub infer_args: bool,
}
impl<'hir> PathSegment<'hir> {
/// Converts an identifier to the corresponding segment.
pub fn from_ident(ident: Ident) -> PathSegment<'hir> {
PathSegment { ident, hir_id: None, res: None, infer_args: true, args: None }
}
pub fn generic_args(&self) -> &GenericArgs<'hir> {
if let Some(ref args) = self.args {
args
} else {
const DUMMY: &GenericArgs<'_> = &GenericArgs::none();
DUMMY
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct ConstArg {
pub value: AnonConst,
pub span: Span,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum GenericArg<'hir> {
Lifetime(Lifetime),
Type(Ty<'hir>),
Const(ConstArg),
}
impl GenericArg<'_> {
pub fn span(&self) -> Span {
match self {
GenericArg::Lifetime(l) => l.span,
GenericArg::Type(t) => t.span,
GenericArg::Const(c) => c.span,
}
}
pub fn id(&self) -> HirId {
match self {
GenericArg::Lifetime(l) => l.hir_id,
GenericArg::Type(t) => t.hir_id,
GenericArg::Const(c) => c.value.hir_id,
}
}
pub fn is_const(&self) -> bool {
match self {
GenericArg::Const(_) => true,
_ => false,
}
}
pub fn descr(&self) -> &'static str {
match self {
GenericArg::Lifetime(_) => "lifetime",
GenericArg::Type(_) => "type",
GenericArg::Const(_) => "constant",
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct GenericArgs<'hir> {
/// The generic arguments for this path segment.
pub args: &'hir [GenericArg<'hir>],
/// Bindings (equality constraints) on associated types, if present.
/// E.g., `Foo<A = Bar>`.
pub bindings: &'hir [TypeBinding<'hir>],
/// Were arguments written in parenthesized form `Fn(T) -> U`?
/// This is required mostly for pretty-printing and diagnostics,
/// but also for changing lifetime elision rules to be "function-like".
pub parenthesized: bool,
}
impl GenericArgs<'_> {
pub const fn none() -> Self {
Self { args: &[], bindings: &[], parenthesized: false }
}
pub fn is_empty(&self) -> bool {
self.args.is_empty() && self.bindings.is_empty() && !self.parenthesized
}
pub fn inputs(&self) -> &[Ty<'_>] {
if self.parenthesized {
for arg in self.args {
match arg {
GenericArg::Lifetime(_) => {}
GenericArg::Type(ref ty) => {
if let TyKind::Tup(ref tys) = ty.kind {
return tys;
}
break;
}
GenericArg::Const(_) => {}
}
}
}
panic!("GenericArgs::inputs: not a `Fn(T) -> U`");
}
pub fn own_counts(&self) -> GenericParamCount {
// We could cache this as a property of `GenericParamCount`, but
// the aim is to refactor this away entirely eventually and the
// presence of this method will be a constant reminder.
let mut own_counts: GenericParamCount = Default::default();
for arg in self.args {
match arg {
GenericArg::Lifetime(_) => own_counts.lifetimes += 1,
GenericArg::Type(_) => own_counts.types += 1,
GenericArg::Const(_) => own_counts.consts += 1,
};
}
own_counts
}
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum TraitBoundModifier {
None,
Maybe,
MaybeConst,
}
/// The AST represents all type param bounds as types.
/// `typeck::collect::compute_bounds` matches these against
/// the "special" built-in traits (see `middle::lang_items`) and
/// detects `Copy`, `Send` and `Sync`.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum GenericBound<'hir> {
Trait(PolyTraitRef<'hir>, TraitBoundModifier),
Outlives(Lifetime),
}
impl GenericBound<'_> {
pub fn trait_def_id(&self) -> Option<DefId> {
match self {
GenericBound::Trait(data, _) => Some(data.trait_ref.trait_def_id()),
_ => None,
}
}
pub fn span(&self) -> Span {
match self {
&GenericBound::Trait(ref t, ..) => t.span,
&GenericBound::Outlives(ref l) => l.span,
}
}
}
pub type GenericBounds<'hir> = &'hir [GenericBound<'hir>];
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum LifetimeParamKind {
// Indicates that the lifetime definition was explicitly declared (e.g., in
// `fn foo<'a>(x: &'a u8) -> &'a u8 { x }`).
Explicit,
// Indicates that the lifetime definition was synthetically added
// as a result of an in-band lifetime usage (e.g., in
// `fn foo(x: &'a u8) -> &'a u8 { x }`).
InBand,
// Indication that the lifetime was elided (e.g., in both cases in
// `fn foo(x: &u8) -> &'_ u8 { x }`).
Elided,
// Indication that the lifetime name was somehow in error.
Error,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum GenericParamKind<'hir> {
/// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
Lifetime {
kind: LifetimeParamKind,
},
Type {
default: Option<&'hir Ty<'hir>>,
synthetic: Option<SyntheticTyParamKind>,
},
Const {
ty: &'hir Ty<'hir>,
},
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct GenericParam<'hir> {
pub hir_id: HirId,
pub name: ParamName,
pub attrs: &'hir [Attribute],
pub bounds: GenericBounds<'hir>,
pub span: Span,
pub pure_wrt_drop: bool,
pub kind: GenericParamKind<'hir>,
}
impl GenericParam<'hir> {
pub fn bounds_span(&self) -> Option<Span> {
self.bounds.iter().fold(None, |span, bound| {
let span = span.map(|s| s.to(bound.span())).unwrap_or_else(|| bound.span());
Some(span)
})
}
}
#[derive(Default)]
pub struct GenericParamCount {
pub lifetimes: usize,
pub types: usize,
pub consts: usize,
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Generics<'hir> {
pub params: &'hir [GenericParam<'hir>],
pub where_clause: WhereClause<'hir>,
pub span: Span,
}
impl Generics<'hir> {
pub const fn empty() -> Generics<'hir> {
Generics {
params: &[],
where_clause: WhereClause { predicates: &[], span: DUMMY_SP },
span: DUMMY_SP,
}
}
pub fn own_counts(&self) -> GenericParamCount {
// We could cache this as a property of `GenericParamCount`, but
// the aim is to refactor this away entirely eventually and the
// presence of this method will be a constant reminder.
let mut own_counts: GenericParamCount = Default::default();
for param in self.params {
match param.kind {
GenericParamKind::Lifetime { .. } => own_counts.lifetimes += 1,
GenericParamKind::Type { .. } => own_counts.types += 1,
GenericParamKind::Const { .. } => own_counts.consts += 1,
};
}
own_counts
}
pub fn get_named(&self, name: Symbol) -> Option<&GenericParam<'_>> {
for param in self.params {
if name == param.name.ident().name {
return Some(param);
}
}
None
}
pub fn spans(&self) -> MultiSpan {
if self.params.is_empty() {
self.span.into()
} else {
self.params.iter().map(|p| p.span).collect::<Vec<Span>>().into()
}
}
}
/// Synthetic type parameters are converted to another form during lowering; this allows
/// us to track the original form they had, and is useful for error messages.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum SyntheticTyParamKind {
ImplTrait,
}
/// A where-clause in a definition.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct WhereClause<'hir> {
pub predicates: &'hir [WherePredicate<'hir>],
// Only valid if predicates aren't empty.
pub span: Span,
}
impl WhereClause<'_> {
pub fn span(&self) -> Option<Span> {
if self.predicates.is_empty() { None } else { Some(self.span) }
}
/// The `WhereClause` under normal circumstances points at either the predicates or the empty
/// space where the `where` clause should be. Only of use for diagnostic suggestions.
pub fn span_for_predicates_or_empty_place(&self) -> Span {
self.span
}
}
/// A single predicate in a where-clause.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum WherePredicate<'hir> {
/// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`).
BoundPredicate(WhereBoundPredicate<'hir>),
/// A lifetime predicate (e.g., `'a: 'b + 'c`).
RegionPredicate(WhereRegionPredicate<'hir>),
/// An equality predicate (unsupported).
EqPredicate(WhereEqPredicate<'hir>),
}
impl WherePredicate<'_> {
pub fn span(&self) -> Span {
match self {
&WherePredicate::BoundPredicate(ref p) => p.span,
&WherePredicate::RegionPredicate(ref p) => p.span,
&WherePredicate::EqPredicate(ref p) => p.span,
}
}
}
/// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`).
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct WhereBoundPredicate<'hir> {
pub span: Span,
/// Any generics from a `for` binding.
pub bound_generic_params: &'hir [GenericParam<'hir>],
/// The type being bounded.
pub bounded_ty: &'hir Ty<'hir>,
/// Trait and lifetime bounds (e.g., `Clone + Send + 'static`).
pub bounds: GenericBounds<'hir>,
}
/// A lifetime predicate (e.g., `'a: 'b + 'c`).
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct WhereRegionPredicate<'hir> {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: GenericBounds<'hir>,
}
/// An equality predicate (e.g., `T = int`); currently unsupported.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct WhereEqPredicate<'hir> {
pub hir_id: HirId,
pub span: Span,
pub lhs_ty: &'hir Ty<'hir>,
pub rhs_ty: &'hir Ty<'hir>,
}
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct ModuleItems {
// Use BTreeSets here so items are in the same order as in the
// list of all items in Crate
pub items: BTreeSet<HirId>,
pub trait_items: BTreeSet<TraitItemId>,
pub impl_items: BTreeSet<ImplItemId>,
}
/// The top-level data structure that stores the entire contents of
/// the crate currently being compiled.
///
/// For more details, see the [rustc guide].
///
/// [rustc guide]: https://rust-lang.github.io/rustc-guide/hir.html
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct Crate<'hir> {
pub module: Mod<'hir>,
pub attrs: &'hir [Attribute],
pub span: Span,
pub exported_macros: &'hir [MacroDef<'hir>],
// Attributes from non-exported macros, kept only for collecting the library feature list.
pub non_exported_macro_attrs: &'hir [Attribute],
// N.B., we use a `BTreeMap` here so that `visit_all_items` iterates
// over the ids in increasing order. In principle it should not
// matter what order we visit things in, but in *practice* it
// does, because it can affect the order in which errors are
// detected, which in turn can make compile-fail tests yield
// slightly different results.
pub items: BTreeMap<HirId, Item<'hir>>,
pub trait_items: BTreeMap<TraitItemId, TraitItem<'hir>>,
pub impl_items: BTreeMap<ImplItemId, ImplItem<'hir>>,
pub bodies: BTreeMap<BodyId, Body<'hir>>,
pub trait_impls: BTreeMap<DefId, Vec<HirId>>,
/// A list of the body ids written out in the order in which they
/// appear in the crate. If you're going to process all the bodies
/// in the crate, you should iterate over this list rather than the keys
/// of bodies.
pub body_ids: Vec<BodyId>,
/// A list of modules written out in the order in which they
/// appear in the crate. This includes the main crate module.
pub modules: BTreeMap<HirId, ModuleItems>,
/// A list of proc macro HirIds, written out in the order in which
/// they are declared in the static array generated by proc_macro_harness.
pub proc_macros: Vec<HirId>,
}
impl Crate<'hir> {
pub fn item(&self, id: HirId) -> &Item<'hir> {
&self.items[&id]
}
pub fn trait_item(&self, id: TraitItemId) -> &TraitItem<'hir> {
&self.trait_items[&id]
}
pub fn impl_item(&self, id: ImplItemId) -> &ImplItem<'hir> {
&self.impl_items[&id]
}
pub fn body(&self, id: BodyId) -> &Body<'hir> {
&self.bodies[&id]
}
}
impl Crate<'_> {
/// Visits all items in the crate in some deterministic (but
/// unspecified) order. If you just need to process every item,
/// but don't care about nesting, this method is the best choice.
///
/// If you do care about nesting -- usually because your algorithm
/// follows lexical scoping rules -- then you want a different
/// approach. You should override `visit_nested_item` in your
/// visitor and then call `intravisit::walk_crate` instead.
pub fn visit_all_item_likes<'hir, V>(&'hir self, visitor: &mut V)
where
V: itemlikevisit::ItemLikeVisitor<'hir>,
{
for item in self.items.values() {
visitor.visit_item(item);
}
for trait_item in self.trait_items.values() {
visitor.visit_trait_item(trait_item);
}
for impl_item in self.impl_items.values() {
visitor.visit_impl_item(impl_item);
}
}
/// A parallel version of `visit_all_item_likes`.
pub fn par_visit_all_item_likes<'hir, V>(&'hir self, visitor: &V)
where
V: itemlikevisit::ParItemLikeVisitor<'hir> + Sync + Send,
{
parallel!(
{
par_for_each_in(&self.items, |(_, item)| {
visitor.visit_item(item);
});
},
{
par_for_each_in(&self.trait_items, |(_, trait_item)| {
visitor.visit_trait_item(trait_item);
});
},
{
par_for_each_in(&self.impl_items, |(_, impl_item)| {
visitor.visit_impl_item(impl_item);
});
}
);
}
}
/// A macro definition, in this crate or imported from another.
///
/// Not parsed directly, but created on macro import or `macro_rules!` expansion.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct MacroDef<'hir> {
pub name: Name,
pub vis: Visibility<'hir>,
pub attrs: &'hir [Attribute],
pub hir_id: HirId,
pub span: Span,
pub body: TokenStream,
pub legacy: bool,
}
/// A block of statements `{ .. }`, which may have a label (in this case the
/// `targeted_by_break` field will be `true`) and may be `unsafe` by means of
/// the `rules` being anything but `DefaultBlock`.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Block<'hir> {
/// Statements in a block.
pub stmts: &'hir [Stmt<'hir>],
/// An expression at the end of the block
/// without a semicolon, if any.
pub expr: Option<&'hir Expr<'hir>>,
#[stable_hasher(ignore)]
pub hir_id: HirId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`.
pub rules: BlockCheckMode,
pub span: Span,
/// If true, then there may exist `break 'a` values that aim to
/// break out of this block early.
/// Used by `'label: {}` blocks and by `try {}` blocks.
pub targeted_by_break: bool,
}
#[derive(RustcEncodable, RustcDecodable, HashStable_Generic)]
pub struct Pat<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
pub kind: PatKind<'hir>,
pub span: Span,
}
impl fmt::Debug for Pat<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"pat({}: {})",
self.hir_id,
print::to_string(print::NO_ANN, |s| s.print_pat(self))
)
}
}
impl Pat<'_> {
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_short_(&self, it: &mut impl FnMut(&Pat<'_>) -> bool) -> bool {
if !it(self) {
return false;
}
use PatKind::*;
match &self.kind {
Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => true,
Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_short_(it),
Struct(_, fields, _) => fields.iter().all(|field| field.pat.walk_short_(it)),
TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().all(|p| p.walk_short_(it)),
Slice(before, slice, after) => {
before.iter().chain(slice.iter()).chain(after.iter()).all(|p| p.walk_short_(it))
}
}
}
/// Walk the pattern in left-to-right order,
/// short circuiting (with `.all(..)`) if `false` is returned.
///
/// Note that when visiting e.g. `Tuple(ps)`,
/// if visiting `ps[0]` returns `false`,
/// then `ps[1]` will not be visited.
pub fn walk_short(&self, mut it: impl FnMut(&Pat<'_>) -> bool) -> bool {
self.walk_short_(&mut it)
}
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_(&self, it: &mut impl FnMut(&Pat<'_>) -> bool) {
if !it(self) {
return;
}
use PatKind::*;
match &self.kind {
Wild | Lit(_) | Range(..) | Binding(.., None) | Path(_) => {}
Box(s) | Ref(s, _) | Binding(.., Some(s)) => s.walk_(it),
Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk_(it)),
TupleStruct(_, s, _) | Tuple(s, _) | Or(s) => s.iter().for_each(|p| p.walk_(it)),
Slice(before, slice, after) => {
before.iter().chain(slice.iter()).chain(after.iter()).for_each(|p| p.walk_(it))
}
}
}
/// Walk the pattern in left-to-right order.
///
/// If `it(pat)` returns `false`, the children are not visited.
pub fn walk(&self, mut it: impl FnMut(&Pat<'_>) -> bool) {
self.walk_(&mut it)
}
/// Walk the pattern in left-to-right order.
///
/// If you always want to recurse, prefer this method over `walk`.
pub fn walk_always(&self, mut it: impl FnMut(&Pat<'_>)) {
self.walk(|p| {
it(p);
true
})
}
}
/// A single field in a struct pattern.
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except `is_shorthand` is true.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct FieldPat<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
/// The identifier for the field.
#[stable_hasher(project(name))]
pub ident: Ident,
/// The pattern the field is destructured to.
pub pat: &'hir Pat<'hir>,
pub is_shorthand: bool,
pub span: Span,
}
/// Explicit binding annotations given in the HIR for a binding. Note
/// that this is not the final binding *mode* that we infer after type
/// inference.
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum BindingAnnotation {
/// No binding annotation given: this means that the final binding mode
/// will depend on whether we have skipped through a `&` reference
/// when matching. For example, the `x` in `Some(x)` will have binding
/// mode `None`; if you do `let Some(x) = &Some(22)`, it will
/// ultimately be inferred to be by-reference.
///
/// Note that implicit reference skipping is not implemented yet (#42640).
Unannotated,
/// Annotated with `mut x` -- could be either ref or not, similar to `None`.
Mutable,
/// Annotated as `ref`, like `ref x`
Ref,
/// Annotated as `ref mut x`.
RefMut,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum RangeEnd {
Included,
Excluded,
}
impl fmt::Display for RangeEnd {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
RangeEnd::Included => "..=",
RangeEnd::Excluded => "..",
})
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum PatKind<'hir> {
/// Represents a wildcard pattern (i.e., `_`).
Wild,
/// A fresh binding `ref mut binding @ OPT_SUBPATTERN`.
/// The `HirId` is the canonical ID for the variable being bound,
/// (e.g., in `Ok(x) | Err(x)`, both `x` use the same canonical ID),
/// which is the pattern ID of the first `x`.
Binding(BindingAnnotation, HirId, Ident, Option<&'hir Pat<'hir>>),
/// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
/// The `bool` is `true` in the presence of a `..`.
Struct(QPath<'hir>, &'hir [FieldPat<'hir>], bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// `0 <= position <= subpats.len()`
TupleStruct(QPath<'hir>, &'hir [&'hir Pat<'hir>], Option<usize>),
/// An or-pattern `A | B | C`.
/// Invariant: `pats.len() >= 2`.
Or(&'hir [&'hir Pat<'hir>]),
/// A path pattern for an unit struct/variant or a (maybe-associated) constant.
Path(QPath<'hir>),
/// A tuple pattern (e.g., `(a, b)`).
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// `0 <= position <= subpats.len()`
Tuple(&'hir [&'hir Pat<'hir>], Option<usize>),
/// A `box` pattern.
Box(&'hir Pat<'hir>),
/// A reference pattern (e.g., `&mut (a, b)`).
Ref(&'hir Pat<'hir>, Mutability),
/// A literal.
Lit(&'hir Expr<'hir>),
/// A range pattern (e.g., `1..=2` or `1..2`).
Range(Option<&'hir Expr<'hir>>, Option<&'hir Expr<'hir>>, RangeEnd),
/// A slice pattern, `[before_0, ..., before_n, (slice, after_0, ..., after_n)?]`.
///
/// Here, `slice` is lowered from the syntax `($binding_mode $ident @)? ..`.
/// If `slice` exists, then `after` can be non-empty.
///
/// The representation for e.g., `[a, b, .., c, d]` is:
/// ```
/// PatKind::Slice([Binding(a), Binding(b)], Some(Wild), [Binding(c), Binding(d)])
/// ```
Slice(&'hir [&'hir Pat<'hir>], Option<&'hir Pat<'hir>>, &'hir [&'hir Pat<'hir>]),
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum BinOpKind {
/// The `+` operator (addition).
Add,
/// The `-` operator (subtraction).
Sub,
/// The `*` operator (multiplication).
Mul,
/// The `/` operator (division).
Div,
/// The `%` operator (modulus).
Rem,
/// The `&&` operator (logical and).
And,
/// The `||` operator (logical or).
Or,
/// The `^` operator (bitwise xor).
BitXor,
/// The `&` operator (bitwise and).
BitAnd,
/// The `|` operator (bitwise or).
BitOr,
/// The `<<` operator (shift left).
Shl,
/// The `>>` operator (shift right).
Shr,
/// The `==` operator (equality).
Eq,
/// The `<` operator (less than).
Lt,
/// The `<=` operator (less than or equal to).
Le,
/// The `!=` operator (not equal to).
Ne,
/// The `>=` operator (greater than or equal to).
Ge,
/// The `>` operator (greater than).
Gt,
}
impl BinOpKind {
pub fn as_str(self) -> &'static str {
match self {
BinOpKind::Add => "+",
BinOpKind::Sub => "-",
BinOpKind::Mul => "*",
BinOpKind::Div => "/",
BinOpKind::Rem => "%",
BinOpKind::And => "&&",
BinOpKind::Or => "||",
BinOpKind::BitXor => "^",
BinOpKind::BitAnd => "&",
BinOpKind::BitOr => "|",
BinOpKind::Shl => "<<",
BinOpKind::Shr => ">>",
BinOpKind::Eq => "==",
BinOpKind::Lt => "<",
BinOpKind::Le => "<=",
BinOpKind::Ne => "!=",
BinOpKind::Ge => ">=",
BinOpKind::Gt => ">",
}
}
pub fn is_lazy(self) -> bool {
match self {
BinOpKind::And | BinOpKind::Or => true,
_ => false,
}
}
pub fn is_shift(self) -> bool {
match self {
BinOpKind::Shl | BinOpKind::Shr => true,
_ => false,
}
}
pub fn is_comparison(self) -> bool {
match self {
BinOpKind::Eq
| BinOpKind::Lt
| BinOpKind::Le
| BinOpKind::Ne
| BinOpKind::Gt
| BinOpKind::Ge => true,
BinOpKind::And
| BinOpKind::Or
| BinOpKind::Add
| BinOpKind::Sub
| BinOpKind::Mul
| BinOpKind::Div
| BinOpKind::Rem
| BinOpKind::BitXor
| BinOpKind::BitAnd
| BinOpKind::BitOr
| BinOpKind::Shl
| BinOpKind::Shr => false,
}
}
/// Returns `true` if the binary operator takes its arguments by value.
pub fn is_by_value(self) -> bool {
!self.is_comparison()
}
}
impl Into<ast::BinOpKind> for BinOpKind {
fn into(self) -> ast::BinOpKind {
match self {
BinOpKind::Add => ast::BinOpKind::Add,
BinOpKind::Sub => ast::BinOpKind::Sub,
BinOpKind::Mul => ast::BinOpKind::Mul,
BinOpKind::Div => ast::BinOpKind::Div,
BinOpKind::Rem => ast::BinOpKind::Rem,
BinOpKind::And => ast::BinOpKind::And,
BinOpKind::Or => ast::BinOpKind::Or,
BinOpKind::BitXor => ast::BinOpKind::BitXor,
BinOpKind::BitAnd => ast::BinOpKind::BitAnd,
BinOpKind::BitOr => ast::BinOpKind::BitOr,
BinOpKind::Shl => ast::BinOpKind::Shl,
BinOpKind::Shr => ast::BinOpKind::Shr,
BinOpKind::Eq => ast::BinOpKind::Eq,
BinOpKind::Lt => ast::BinOpKind::Lt,
BinOpKind::Le => ast::BinOpKind::Le,
BinOpKind::Ne => ast::BinOpKind::Ne,
BinOpKind::Ge => ast::BinOpKind::Ge,
BinOpKind::Gt => ast::BinOpKind::Gt,
}
}
}
pub type BinOp = Spanned<BinOpKind>;
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum UnOp {
/// The `*` operator (deferencing).
UnDeref,
/// The `!` operator (logical negation).
UnNot,
/// The `-` operator (negation).
UnNeg,
}
impl UnOp {
pub fn as_str(self) -> &'static str {
match self {
Self::UnDeref => "*",
Self::UnNot => "!",
Self::UnNeg => "-",
}
}
/// Returns `true` if the unary operator takes its argument by value.
pub fn is_by_value(self) -> bool {
match self {
Self::UnNeg | Self::UnNot => true,
_ => false,
}
}
}
/// A statement.
#[derive(RustcEncodable, RustcDecodable, HashStable_Generic)]
pub struct Stmt<'hir> {
pub hir_id: HirId,
pub kind: StmtKind<'hir>,
pub span: Span,
}
impl fmt::Debug for Stmt<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"stmt({}: {})",
self.hir_id,
print::to_string(print::NO_ANN, |s| s.print_stmt(self))
)
}
}
/// The contents of a statement.
#[derive(RustcEncodable, RustcDecodable, HashStable_Generic)]
pub enum StmtKind<'hir> {
/// A local (`let`) binding.
Local(&'hir Local<'hir>),
/// An item binding.
Item(ItemId),
/// An expression without a trailing semi-colon (must have unit type).
Expr(&'hir Expr<'hir>),
/// An expression with a trailing semi-colon (may have any type).
Semi(&'hir Expr<'hir>),
}
impl StmtKind<'hir> {
pub fn attrs(&self) -> &'hir [Attribute] {
match *self {
StmtKind::Local(ref l) => &l.attrs,
StmtKind::Item(_) => &[],
StmtKind::Expr(ref e) | StmtKind::Semi(ref e) => &e.attrs,
}
}
}
/// Represents a `let` statement (i.e., `let <pat>:<ty> = <expr>;`).
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Local<'hir> {
pub pat: &'hir Pat<'hir>,
/// Type annotation, if any (otherwise the type will be inferred).
pub ty: Option<&'hir Ty<'hir>>,
/// Initializer expression to set the value, if any.
pub init: Option<&'hir Expr<'hir>>,
pub hir_id: HirId,
pub span: Span,
pub attrs: AttrVec,
/// Can be `ForLoopDesugar` if the `let` statement is part of a `for` loop
/// desugaring. Otherwise will be `Normal`.
pub source: LocalSource,
}
/// Represents a single arm of a `match` expression, e.g.
/// `<pat> (if <guard>) => <body>`.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Arm<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
pub span: Span,
pub attrs: &'hir [Attribute],
/// If this pattern and the optional guard matches, then `body` is evaluated.
pub pat: &'hir Pat<'hir>,
/// Optional guard clause.
pub guard: Option<Guard<'hir>>,
/// The expression the arm evaluates to if this arm matches.
pub body: &'hir Expr<'hir>,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum Guard<'hir> {
If(&'hir Expr<'hir>),
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Field<'hir> {
#[stable_hasher(ignore)]
pub hir_id: HirId,
pub ident: Ident,
pub expr: &'hir Expr<'hir>,
pub span: Span,
pub is_shorthand: bool,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
PushUnsafeBlock(UnsafeSource),
PopUnsafeBlock(UnsafeSource),
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct BodyId {
pub hir_id: HirId,
}
/// The body of a function, closure, or constant value. In the case of
/// a function, the body contains not only the function body itself
/// (which is an expression), but also the argument patterns, since
/// those are something that the caller doesn't really care about.
///
/// # Examples
///
/// ```
/// fn foo((x, y): (u32, u32)) -> u32 {
/// x + y
/// }
/// ```
///
/// Here, the `Body` associated with `foo()` would contain:
///
/// - an `params` array containing the `(x, y)` pattern
/// - a `value` containing the `x + y` expression (maybe wrapped in a block)
/// - `generator_kind` would be `None`
///
/// All bodies have an **owner**, which can be accessed via the HIR
/// map using `body_owner_def_id()`.
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct Body<'hir> {
pub params: &'hir [Param<'hir>],
pub value: Expr<'hir>,
pub generator_kind: Option<GeneratorKind>,
}
impl Body<'hir> {
pub fn id(&self) -> BodyId {
BodyId { hir_id: self.value.hir_id }
}
pub fn generator_kind(&self) -> Option<GeneratorKind> {
self.generator_kind
}
}
/// The type of source expression that caused this generator to be created.
#[derive(Clone, PartialEq, Eq, HashStable_Generic, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum GeneratorKind {
/// An explicit `async` block or the body of an async function.
Async(AsyncGeneratorKind),
/// A generator literal created via a `yield` inside a closure.
Gen,
}
impl fmt::Display for GeneratorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
GeneratorKind::Async(k) => fmt::Display::fmt(k, f),
GeneratorKind::Gen => f.write_str("generator"),
}
}
}
/// In the case of a generator created as part of an async construct,
/// which kind of async construct caused it to be created?
///
/// This helps error messages but is also used to drive coercions in
/// type-checking (see #60424).
#[derive(Clone, PartialEq, Eq, HashStable_Generic, RustcEncodable, RustcDecodable, Debug, Copy)]
pub enum AsyncGeneratorKind {
/// An explicit `async` block written by the user.
Block,
/// An explicit `async` block written by the user.
Closure,
/// The `async` block generated as the body of an async function.
Fn,
}
impl fmt::Display for AsyncGeneratorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
AsyncGeneratorKind::Block => "`async` block",
AsyncGeneratorKind::Closure => "`async` closure body",
AsyncGeneratorKind::Fn => "`async fn` body",
})
}
}
#[derive(Copy, Clone, Debug)]
pub enum BodyOwnerKind {
/// Functions and methods.
Fn,
/// Closures
Closure,
/// Constants and associated constants.
Const,
/// Initializer of a `static` item.
Static(Mutability),
}
impl BodyOwnerKind {
pub fn is_fn_or_closure(self) -> bool {
match self {
BodyOwnerKind::Fn | BodyOwnerKind::Closure => true,
BodyOwnerKind::Const | BodyOwnerKind::Static(_) => false,
}
}
}
/// A literal.
pub type Lit = Spanned<LitKind>;
/// A constant (expression) that's not an item or associated item,
/// but needs its own `DefId` for type-checking, const-eval, etc.
/// These are usually found nested inside types (e.g., array lengths)
/// or expressions (e.g., repeat counts), and also used to define
/// explicit discriminant values for enum variants.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct AnonConst {
pub hir_id: HirId,
pub body: BodyId,
}
/// An expression.
#[derive(RustcEncodable, RustcDecodable)]
pub struct Expr<'hir> {
pub hir_id: HirId,
pub kind: ExprKind<'hir>,
pub attrs: AttrVec,
pub span: Span,
}
// `Expr` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
rustc_data_structures::static_assert_size!(Expr<'static>, 64);
impl Expr<'_> {
pub fn precedence(&self) -> ExprPrecedence {
match self.kind {
ExprKind::Box(_) => ExprPrecedence::Box,
ExprKind::Array(_) => ExprPrecedence::Array,
ExprKind::Call(..) => ExprPrecedence::Call,
ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
ExprKind::Tup(_) => ExprPrecedence::Tup,
ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node.into()),
ExprKind::Unary(..) => ExprPrecedence::Unary,
ExprKind::Lit(_) => ExprPrecedence::Lit,
ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
ExprKind::DropTemps(ref expr, ..) => expr.precedence(),
ExprKind::Loop(..) => ExprPrecedence::Loop,
ExprKind::Match(..) => ExprPrecedence::Match,
ExprKind::Closure(..) => ExprPrecedence::Closure,
ExprKind::Block(..) => ExprPrecedence::Block,
ExprKind::Assign(..) => ExprPrecedence::Assign,
ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
ExprKind::Field(..) => ExprPrecedence::Field,
ExprKind::Index(..) => ExprPrecedence::Index,
ExprKind::Path(..) => ExprPrecedence::Path,
ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
ExprKind::Break(..) => ExprPrecedence::Break,
ExprKind::Continue(..) => ExprPrecedence::Continue,
ExprKind::Ret(..) => ExprPrecedence::Ret,
ExprKind::InlineAsm(..) => ExprPrecedence::InlineAsm,
ExprKind::Struct(..) => ExprPrecedence::Struct,
ExprKind::Repeat(..) => ExprPrecedence::Repeat,
ExprKind::Yield(..) => ExprPrecedence::Yield,
ExprKind::Err => ExprPrecedence::Err,
}
}
// Whether this looks like a place expr, without checking for deref
// adjustments.
// This will return `true` in some potentially surprising cases such as
// `CONSTANT.field`.
pub fn is_syntactic_place_expr(&self) -> bool {
self.is_place_expr(|_| true)
}
// Whether this is a place expression.
// `allow_projections_from` should return `true` if indexing a field or
// index expression based on the given expression should be considered a
// place expression.
pub fn is_place_expr(&self, mut allow_projections_from: impl FnMut(&Self) -> bool) -> bool {
match self.kind {
ExprKind::Path(QPath::Resolved(_, ref path)) => match path.res {
Res::Local(..) | Res::Def(DefKind::Static, _) | Res::Err => true,
_ => false,
},
// Type ascription inherits its place expression kind from its
// operand. See:
// https://github.com/rust-lang/rfcs/blob/master/text/0803-type-ascription.md#type-ascription-and-temporaries
ExprKind::Type(ref e, _) => e.is_place_expr(allow_projections_from),
ExprKind::Unary(UnOp::UnDeref, _) => true,
ExprKind::Field(ref base, _) | ExprKind::Index(ref base, _) => {
allow_projections_from(base) || base.is_place_expr(allow_projections_from)
}
// Partially qualified paths in expressions can only legally
// refer to associated items which are always rvalues.
ExprKind::Path(QPath::TypeRelative(..))
| ExprKind::Call(..)
| ExprKind::MethodCall(..)
| ExprKind::Struct(..)
| ExprKind::Tup(..)
| ExprKind::Match(..)
| ExprKind::Closure(..)
| ExprKind::Block(..)
| ExprKind::Repeat(..)
| ExprKind::Array(..)
| ExprKind::Break(..)
| ExprKind::Continue(..)
| ExprKind::Ret(..)
| ExprKind::Loop(..)
| ExprKind::Assign(..)
| ExprKind::InlineAsm(..)
| ExprKind::AssignOp(..)
| ExprKind::Lit(_)
| ExprKind::Unary(..)
| ExprKind::Box(..)
| ExprKind::AddrOf(..)
| ExprKind::Binary(..)
| ExprKind::Yield(..)
| ExprKind::Cast(..)
| ExprKind::DropTemps(..)
| ExprKind::Err => false,
}
}
/// If `Self.kind` is `ExprKind::DropTemps(expr)`, drill down until we get a non-`DropTemps`
/// `Expr`. This is used in suggestions to ignore this `ExprKind` as it is semantically
/// silent, only signaling the ownership system. By doing this, suggestions that check the
/// `ExprKind` of any given `Expr` for presentation don't have to care about `DropTemps`
/// beyond remembering to call this function before doing analysis on it.
pub fn peel_drop_temps(&self) -> &Self {
let mut expr = self;
while let ExprKind::DropTemps(inner) = &expr.kind {
expr = inner;
}
expr
}
}
impl fmt::Debug for Expr<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"expr({}: {})",
self.hir_id,
print::to_string(print::NO_ANN, |s| s.print_expr(self))
)
}
}
/// Checks if the specified expression is a built-in range literal.
/// (See: `LoweringContext::lower_expr()`).
///
/// FIXME(#60607): This function is a hack. If and when we have `QPath::Lang(...)`,
/// we can use that instead as simpler, more reliable mechanism, as opposed to using `SourceMap`.
pub fn is_range_literal(sm: &SourceMap, expr: &Expr<'_>) -> bool {
// Returns whether the given path represents a (desugared) range,
// either in std or core, i.e. has either a `::std::ops::Range` or
// `::core::ops::Range` prefix.
fn is_range_path(path: &Path<'_>) -> bool {
let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.to_string()).collect();
let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
// "{{root}}" is the equivalent of `::` prefix in `Path`.
if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
(*std_core == "std" || *std_core == "core") && range.starts_with("Range")
} else {
false
}
};
// Check whether a span corresponding to a range expression is a
// range literal, rather than an explicit struct or `new()` call.
fn is_lit(sm: &SourceMap, span: &Span) -> bool {
let end_point = sm.end_point(*span);
if let Ok(end_string) = sm.span_to_snippet(end_point) {
!(end_string.ends_with('}') || end_string.ends_with(')'))
} else {
false
}
};
match expr.kind {
// All built-in range literals but `..=` and `..` desugar to `Struct`s.
ExprKind::Struct(ref qpath, _, _) => {
if let QPath::Resolved(None, ref path) = **qpath {
return is_range_path(&path) && is_lit(sm, &expr.span);
}
}
// `..` desugars to its struct path.
ExprKind::Path(QPath::Resolved(None, ref path)) => {
return is_range_path(&path) && is_lit(sm, &expr.span);
}
// `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
ExprKind::Call(ref func, _) => {
if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.kind {
if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.kind {
let new_call = segment.ident.name == sym::new;
return is_range_path(&path) && is_lit(sm, &expr.span) && new_call;
}
}
}
_ => {}
}
false
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum ExprKind<'hir> {
/// A `box x` expression.
Box(&'hir Expr<'hir>),
/// An array (e.g., `[a, b, c, d]`).
Array(&'hir [Expr<'hir>]),
/// A function call.
///
/// The first field resolves to the function itself (usually an `ExprKind::Path`),
/// and the second field is the list of arguments.
/// This also represents calling the constructor of
/// tuple-like ADTs such as tuple structs and enum variants.
Call(&'hir Expr<'hir>, &'hir [Expr<'hir>]),
/// A method call (e.g., `x.foo::<'static, Bar, Baz>(a, b, c, d)`).
///
/// The `PathSegment`/`Span` represent the method name and its generic arguments
/// (within the angle brackets).
/// The first element of the vector of `Expr`s is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the remaining elements are the rest of the arguments.
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
///
/// To resolve the called method to a `DefId`, call [`type_dependent_def_id`] with
/// the `hir_id` of the `MethodCall` node itself.
///
/// [`type_dependent_def_id`]: ../ty/struct.TypeckTables.html#method.type_dependent_def_id
MethodCall(&'hir PathSegment<'hir>, Span, &'hir [Expr<'hir>]),
/// A tuple (e.g., `(a, b, c, d)`).
Tup(&'hir [Expr<'hir>]),
/// A binary operation (e.g., `a + b`, `a * b`).
Binary(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>),
/// A unary operation (e.g., `!x`, `*x`).
Unary(UnOp, &'hir Expr<'hir>),
/// A literal (e.g., `1`, `"foo"`).
Lit(Lit),
/// A cast (e.g., `foo as f64`).
Cast(&'hir Expr<'hir>, &'hir Ty<'hir>),
/// A type reference (e.g., `Foo`).
Type(&'hir Expr<'hir>, &'hir Ty<'hir>),
/// Wraps the expression in a terminating scope.
/// This makes it semantically equivalent to `{ let _t = expr; _t }`.
///
/// This construct only exists to tweak the drop order in HIR lowering.
/// An example of that is the desugaring of `for` loops.
DropTemps(&'hir Expr<'hir>),
/// A conditionless loop (can be exited with `break`, `continue`, or `return`).
///
/// I.e., `'label: loop { <block> }`.
Loop(&'hir Block<'hir>, Option<Label>, LoopSource),
/// A `match` block, with a source that indicates whether or not it is
/// the result of a desugaring, and if so, which kind.
Match(&'hir Expr<'hir>, &'hir [Arm<'hir>], MatchSource),
/// A closure (e.g., `move |a, b, c| {a + b + c}`).
///
/// The `Span` is the argument block `|...|`.
///
/// This may also be a generator literal or an `async block` as indicated by the
/// `Option<Movability>`.
Closure(CaptureBy, &'hir FnDecl<'hir>, BodyId, Span, Option<Movability>),
/// A block (e.g., `'label: { ... }`).
Block(&'hir Block<'hir>, Option<Label>),
/// An assignment (e.g., `a = foo()`).
Assign(&'hir Expr<'hir>, &'hir Expr<'hir>, Span),
/// An assignment with an operator.
///
/// E.g., `a += 1`.
AssignOp(BinOp, &'hir Expr<'hir>, &'hir Expr<'hir>),
/// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct or tuple field.
Field(&'hir Expr<'hir>, Ident),
/// An indexing operation (`foo[2]`).
Index(&'hir Expr<'hir>, &'hir Expr<'hir>),
/// Path to a definition, possibly containing lifetime or type parameters.
Path(QPath<'hir>),
/// A referencing operation (i.e., `&a` or `&mut a`).
AddrOf(BorrowKind, Mutability, &'hir Expr<'hir>),
/// A `break`, with an optional label to break.
Break(Destination, Option<&'hir Expr<'hir>>),
/// A `continue`, with an optional label.
Continue(Destination),
/// A `return`, with an optional value to be returned.
Ret(Option<&'hir Expr<'hir>>),
/// Inline assembly (from `asm!`), with its outputs and inputs.
InlineAsm(&'hir InlineAsm<'hir>),
/// A struct or struct-like variant literal expression.
///
/// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. base}`,
/// where `base` is the `Option<Expr>`.
Struct(&'hir QPath<'hir>, &'hir [Field<'hir>], Option<&'hir Expr<'hir>>),
/// An array literal constructed from one repeated element.
///
/// E.g., `[1; 5]`. The first expression is the element
/// to be repeated; the second is the number of times to repeat it.
Repeat(&'hir Expr<'hir>, AnonConst),
/// A suspension point for generators (i.e., `yield <expr>`).
Yield(&'hir Expr<'hir>, YieldSource),
/// A placeholder for an expression that wasn't syntactically well formed in some way.
Err,
}
/// Represents an optionally `Self`-qualified value/type path or associated extension.
///
/// To resolve the path to a `DefId`, call [`qpath_res`].
///
/// [`qpath_res`]: ../ty/struct.TypeckTables.html#method.qpath_res
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum QPath<'hir> {
/// Path to a definition, optionally "fully-qualified" with a `Self`
/// type, if the path points to an associated item in a trait.
///
/// E.g., an unqualified path like `Clone::clone` has `None` for `Self`,
/// while `<Vec<T> as Clone>::clone` has `Some(Vec<T>)` for `Self`,
/// even though they both have the same two-segment `Clone::clone` `Path`.
Resolved(Option<&'hir Ty<'hir>>, &'hir Path<'hir>),
/// Type-related paths (e.g., `<T>::default` or `<T>::Output`).
/// Will be resolved by type-checking to an associated item.
///
/// UFCS source paths can desugar into this, with `Vec::new` turning into
/// `<Vec>::new`, and `T::X::Y::method` into `<<<T>::X>::Y>::method`,
/// the `X` and `Y` nodes each being a `TyKind::Path(QPath::TypeRelative(..))`.
TypeRelative(&'hir Ty<'hir>, &'hir PathSegment<'hir>),
}
/// Hints at the original code for a let statement.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum LocalSource {
/// A `match _ { .. }`.
Normal,
/// A desugared `for _ in _ { .. }` loop.
ForLoopDesugar,
/// When lowering async functions, we create locals within the `async move` so that
/// all parameters are dropped after the future is polled.
///
/// ```ignore (pseudo-Rust)
/// async fn foo(<pattern> @ x: Type) {
/// async move {
/// let <pattern> = x;
/// }
/// }
/// ```
AsyncFn,
/// A desugared `<expr>.await`.
AwaitDesugar,
}
/// Hints at the original code for a `match _ { .. }`.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum MatchSource {
/// A `match _ { .. }`.
Normal,
/// An `if _ { .. }` (optionally with `else { .. }`).
IfDesugar { contains_else_clause: bool },
/// An `if let _ = _ { .. }` (optionally with `else { .. }`).
IfLetDesugar { contains_else_clause: bool },
/// A `while _ { .. }` (which was desugared to a `loop { match _ { .. } }`).
WhileDesugar,
/// A `while let _ = _ { .. }` (which was desugared to a
/// `loop { match _ { .. } }`).
WhileLetDesugar,
/// A desugared `for _ in _ { .. }` loop.
ForLoopDesugar,
/// A desugared `?` operator.
TryDesugar,
/// A desugared `<expr>.await`.
AwaitDesugar,
}
impl MatchSource {
pub fn name(self) -> &'static str {
use MatchSource::*;
match self {
Normal => "match",
IfDesugar { .. } | IfLetDesugar { .. } => "if",
WhileDesugar | WhileLetDesugar => "while",
ForLoopDesugar => "for",
TryDesugar => "?",
AwaitDesugar => ".await",
}
}
}
/// The loop type that yielded an `ExprKind::Loop`.
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum LoopSource {
/// A `loop { .. }` loop.
Loop,
/// A `while _ { .. }` loop.
While,
/// A `while let _ = _ { .. }` loop.
WhileLet,
/// A `for _ in _ { .. }` loop.
ForLoop,
}
impl LoopSource {
pub fn name(self) -> &'static str {
match self {
LoopSource::Loop => "loop",
LoopSource::While | LoopSource::WhileLet => "while",
LoopSource::ForLoop => "for",
}
}
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum LoopIdError {
OutsideLoopScope,
UnlabeledCfInWhileCondition,
UnresolvedLabel,
}
impl fmt::Display for LoopIdError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
LoopIdError::OutsideLoopScope => "not inside loop scope",
LoopIdError::UnlabeledCfInWhileCondition => {
"unlabeled control flow (break or continue) in while condition"
}
LoopIdError::UnresolvedLabel => "label not found",
})
}
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Destination {
// This is `Some(_)` iff there is an explicit user-specified `label
pub label: Option<Label>,
// These errors are caught and then reported during the diagnostics pass in
// librustc_passes/loops.rs
pub target_id: Result<HirId, LoopIdError>,
}
/// The yield kind that caused an `ExprKind::Yield`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, RustcEncodable, RustcDecodable, HashStable_Generic)]
pub enum YieldSource {
/// An `<expr>.await`.
Await,
/// A plain `yield`.
Yield,
}
impl fmt::Display for YieldSource {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
YieldSource::Await => "`await`",
YieldSource::Yield => "`yield`",
})
}
}
impl From<GeneratorKind> for YieldSource {
fn from(kind: GeneratorKind) -> Self {
match kind {
// Guess based on the kind of the current generator.
GeneratorKind::Gen => Self::Yield,
GeneratorKind::Async(_) => Self::Await,
}
}
}
// N.B., if you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct MutTy<'hir> {
pub ty: &'hir Ty<'hir>,
pub mutbl: Mutability,
}
/// Represents a function's signature in a trait declaration,
/// trait implementation, or a free function.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct FnSig<'hir> {
pub header: FnHeader,
pub decl: &'hir FnDecl<'hir>,
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Debug)]
pub struct TraitItemId {
pub hir_id: HirId,
}
/// Represents an item declaration within a trait declaration,
/// possibly including a default implementation. A trait item is
/// either required (meaning it doesn't have an implementation, just a
/// signature) or provided (meaning it has a default implementation).
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct TraitItem<'hir> {
pub ident: Ident,
pub hir_id: HirId,
pub attrs: &'hir [Attribute],
pub generics: Generics<'hir>,
pub kind: TraitItemKind<'hir>,
pub span: Span,
}
/// Represents a trait method's body (or just argument names).
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum TraitMethod<'hir> {
/// No default body in the trait, just a signature.
Required(&'hir [Ident]),
/// Both signature and body are provided in the trait.
Provided(BodyId),
}
/// Represents a trait method or associated constant or type
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum TraitItemKind<'hir> {
/// An associated constant with an optional value (otherwise `impl`s must contain a value).
Const(&'hir Ty<'hir>, Option<BodyId>),
/// A method with an optional body.
Method(FnSig<'hir>, TraitMethod<'hir>),
/// An associated type with (possibly empty) bounds and optional concrete
/// type.
Type(GenericBounds<'hir>, Option<&'hir Ty<'hir>>),
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Debug)]
pub struct ImplItemId {
pub hir_id: HirId,
}
/// Represents anything within an `impl` block.
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct ImplItem<'hir> {
pub ident: Ident,
pub hir_id: HirId,
pub vis: Visibility<'hir>,
pub defaultness: Defaultness,
pub attrs: &'hir [Attribute],
pub generics: Generics<'hir>,
pub kind: ImplItemKind<'hir>,
pub span: Span,
}
/// Represents various kinds of content within an `impl`.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum ImplItemKind<'hir> {
/// An associated constant of the given type, set to the constant result
/// of the expression.
Const(&'hir Ty<'hir>, BodyId),
/// A method implementation with the given signature and body.
Method(FnSig<'hir>, BodyId),
/// An associated type.
TyAlias(&'hir Ty<'hir>),
/// An associated `type = impl Trait`.
OpaqueTy(GenericBounds<'hir>),
}
impl ImplItemKind<'_> {
pub fn namespace(&self) -> Namespace {
match self {
ImplItemKind::OpaqueTy(..) | ImplItemKind::TyAlias(..) => Namespace::TypeNS,
ImplItemKind::Const(..) | ImplItemKind::Method(..) => Namespace::ValueNS,
}
}
}
// The name of the associated type for `Fn` return types.
pub const FN_OUTPUT_NAME: Symbol = sym::Output;
/// Bind a type to an associated type (i.e., `A = Foo`).
///
/// Bindings like `A: Debug` are represented as a special type `A =
/// $::Debug` that is understood by the astconv code.
///
/// FIXME(alexreg): why have a separate type for the binding case,
/// wouldn't it be better to make the `ty` field an enum like the
/// following?
///
/// ```
/// enum TypeBindingKind {
/// Equals(...),
/// Binding(...),
/// }
/// ```
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct TypeBinding<'hir> {
pub hir_id: HirId,
#[stable_hasher(project(name))]
pub ident: Ident,
pub kind: TypeBindingKind<'hir>,
pub span: Span,
}
// Represents the two kinds of type bindings.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum TypeBindingKind<'hir> {
/// E.g., `Foo<Bar: Send>`.
Constraint { bounds: &'hir [GenericBound<'hir>] },
/// E.g., `Foo<Bar = ()>`.
Equality { ty: &'hir Ty<'hir> },
}
impl TypeBinding<'_> {
pub fn ty(&self) -> &Ty<'_> {
match self.kind {
TypeBindingKind::Equality { ref ty } => ty,
_ => panic!("expected equality type binding for parenthesized generic args"),
}
}
}
#[derive(RustcEncodable, RustcDecodable)]
pub struct Ty<'hir> {
pub hir_id: HirId,
pub kind: TyKind<'hir>,
pub span: Span,
}
impl fmt::Debug for Ty<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "type({})", print::to_string(print::NO_ANN, |s| s.print_type(self)))
}
}
/// Not represented directly in the AST; referred to by name through a `ty_path`.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
#[derive(HashStable_Generic)]
pub enum PrimTy {
Int(IntTy),
Uint(UintTy),
Float(FloatTy),
Str,
Bool,
Char,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct BareFnTy<'hir> {
pub unsafety: Unsafety,
pub abi: Abi,
pub generic_params: &'hir [GenericParam<'hir>],
pub decl: &'hir FnDecl<'hir>,
pub param_names: &'hir [Ident],
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct OpaqueTy<'hir> {
pub generics: Generics<'hir>,
pub bounds: GenericBounds<'hir>,
pub impl_trait_fn: Option<DefId>,
pub origin: OpaqueTyOrigin,
}
/// From whence the opaque type came.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum OpaqueTyOrigin {
/// `type Foo = impl Trait;`
TypeAlias,
/// `-> impl Trait`
FnReturn,
/// `async fn`
AsyncFn,
/// Impl trait in bindings, consts, statics, bounds.
Misc,
}
/// The various kinds of types recognized by the compiler.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum TyKind<'hir> {
/// A variable length slice (i.e., `[T]`).
Slice(&'hir Ty<'hir>),
/// A fixed length array (i.e., `[T; n]`).
Array(&'hir Ty<'hir>, AnonConst),
/// A raw pointer (i.e., `*const T` or `*mut T`).
Ptr(MutTy<'hir>),
/// A reference (i.e., `&'a T` or `&'a mut T`).
Rptr(Lifetime, MutTy<'hir>),
/// A bare function (e.g., `fn(usize) -> bool`).
BareFn(&'hir BareFnTy<'hir>),
/// The never type (`!`).
Never,
/// A tuple (`(A, B, C, D, ...)`).
Tup(&'hir [Ty<'hir>]),
/// A path to a type definition (`module::module::...::Type`), or an
/// associated type (e.g., `<Vec<T> as Trait>::Type` or `<T>::Target`).
///
/// Type parameters may be stored in each `PathSegment`.
Path(QPath<'hir>),
/// A type definition itself. This is currently only used for the `type Foo = impl Trait`
/// item that `impl Trait` in return position desugars to.
///
/// The generic argument list contains the lifetimes (and in the future possibly parameters)
/// that are actually bound on the `impl Trait`.
Def(ItemId, &'hir [GenericArg<'hir>]),
/// A trait object type `Bound1 + Bound2 + Bound3`
/// where `Bound` is a trait or a lifetime.
TraitObject(&'hir [PolyTraitRef<'hir>], Lifetime),
/// Unused for now.
Typeof(AnonConst),
/// `TyKind::Infer` means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
Infer,
/// Placeholder for a type that has failed to be defined.
Err,
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic, PartialEq)]
pub struct InlineAsmOutput {
pub constraint: Symbol,
pub is_rw: bool,
pub is_indirect: bool,
pub span: Span,
}
// NOTE(eddyb) This is used within MIR as well, so unlike the rest of the HIR,
// it needs to be `Clone` and use plain `Vec<T>` instead of arena-allocated slice.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic, PartialEq)]
pub struct InlineAsmInner {
pub asm: Symbol,
pub asm_str_style: StrStyle,
pub outputs: Vec<InlineAsmOutput>,
pub inputs: Vec<Symbol>,
pub clobbers: Vec<Symbol>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct InlineAsm<'hir> {
pub inner: InlineAsmInner,
pub outputs_exprs: &'hir [Expr<'hir>],
pub inputs_exprs: &'hir [Expr<'hir>],
}
/// Represents a parameter in a function header.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Param<'hir> {
pub attrs: &'hir [Attribute],
pub hir_id: HirId,
pub pat: &'hir Pat<'hir>,
pub span: Span,
}
/// Represents the header (not the body) of a function declaration.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct FnDecl<'hir> {
/// The types of the function's parameters.
///
/// Additional argument data is stored in the function's [body](Body::parameters).
pub inputs: &'hir [Ty<'hir>],
pub output: FnRetTy<'hir>,
pub c_variadic: bool,
/// Does the function have an implicit self?
pub implicit_self: ImplicitSelfKind,
}
/// Represents what type of implicit self a function has, if any.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum ImplicitSelfKind {
/// Represents a `fn x(self);`.
Imm,
/// Represents a `fn x(mut self);`.
Mut,
/// Represents a `fn x(&self);`.
ImmRef,
/// Represents a `fn x(&mut self);`.
MutRef,
/// Represents when a function does not have a self argument or
/// when a function has a `self: X` argument.
None,
}
impl ImplicitSelfKind {
/// Does this represent an implicit self?
pub fn has_implicit_self(&self) -> bool {
match *self {
ImplicitSelfKind::None => false,
_ => true,
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Debug)]
#[derive(HashStable_Generic)]
pub enum IsAsync {
Async,
NotAsync,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum Defaultness {
Default { has_value: bool },
Final,
}
impl Defaultness {
pub fn has_value(&self) -> bool {
match *self {
Defaultness::Default { has_value, .. } => has_value,
Defaultness::Final => true,
}
}
pub fn is_final(&self) -> bool {
*self == Defaultness::Final
}
pub fn is_default(&self) -> bool {
match *self {
Defaultness::Default { .. } => true,
_ => false,
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum FnRetTy<'hir> {
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
DefaultReturn(Span),
/// Everything else.
Return(&'hir Ty<'hir>),
}
impl fmt::Display for FnRetTy<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Return(ref ty) => print::to_string(print::NO_ANN, |s| s.print_type(ty)).fmt(f),
Self::DefaultReturn(_) => "()".fmt(f),
}
}
}
impl FnRetTy<'_> {
pub fn span(&self) -> Span {
match *self {
Self::DefaultReturn(span) => span,
Self::Return(ref ty) => ty.span,
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct Mod<'hir> {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub item_ids: &'hir [ItemId],
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct ForeignMod<'hir> {
pub abi: Abi,
pub items: &'hir [ForeignItem<'hir>],
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct GlobalAsm {
pub asm: Symbol,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct EnumDef<'hir> {
pub variants: &'hir [Variant<'hir>],
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct Variant<'hir> {
/// Name of the variant.
#[stable_hasher(project(name))]
pub ident: Ident,
/// Attributes of the variant.
pub attrs: &'hir [Attribute],
/// Id of the variant (not the constructor, see `VariantData::ctor_hir_id()`).
pub id: HirId,
/// Fields and constructor id of the variant.
pub data: VariantData<'hir>,
/// Explicit discriminant (e.g., `Foo = 1`).
pub disr_expr: Option<AnonConst>,
/// Span
pub span: Span,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum UseKind {
/// One import, e.g., `use foo::bar` or `use foo::bar as baz`.
/// Also produced for each element of a list `use`, e.g.
/// `use foo::{a, b}` lowers to `use foo::a; use foo::b;`.
Single,
/// Glob import, e.g., `use foo::*`.
Glob,
/// Degenerate list import, e.g., `use foo::{a, b}` produces
/// an additional `use foo::{}` for performing checks such as
/// unstable feature gating. May be removed in the future.
ListStem,
}
/// References to traits in impls.
///
/// `resolve` maps each `TraitRef`'s `ref_id` to its defining trait; that's all
/// that the `ref_id` is for. Note that `ref_id`'s value is not the `HirId` of the
/// trait being referred to but just a unique `HirId` that serves as a key
/// within the resolution map.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct TraitRef<'hir> {
pub path: &'hir Path<'hir>,
// Don't hash the `ref_id`. It is tracked via the thing it is used to access.
#[stable_hasher(ignore)]
pub hir_ref_id: HirId,
}
impl TraitRef<'_> {
/// Gets the `DefId` of the referenced trait. It _must_ actually be a trait or trait alias.
pub fn trait_def_id(&self) -> DefId {
match self.path.res {
Res::Def(DefKind::Trait, did) => did,
Res::Def(DefKind::TraitAlias, did) => did,
Res::Err => {
FatalError.raise();
}
_ => unreachable!(),
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct PolyTraitRef<'hir> {
/// The `'a` in `for<'a> Foo<&'a T>`.
pub bound_generic_params: &'hir [GenericParam<'hir>],
/// The `Foo<&'a T>` in `for<'a> Foo<&'a T>`.
pub trait_ref: TraitRef<'hir>,
pub span: Span,
}
pub type Visibility<'hir> = Spanned<VisibilityKind<'hir>>;
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub enum VisibilityKind<'hir> {
Public,
Crate(CrateSugar),
Restricted { path: &'hir Path<'hir>, hir_id: HirId },
Inherited,
}
impl VisibilityKind<'_> {
pub fn is_pub(&self) -> bool {
match *self {
VisibilityKind::Public => true,
_ => false,
}
}
pub fn is_pub_restricted(&self) -> bool {
match *self {
VisibilityKind::Public | VisibilityKind::Inherited => false,
VisibilityKind::Crate(..) | VisibilityKind::Restricted { .. } => true,
}
}
pub fn descr(&self) -> &'static str {
match *self {
VisibilityKind::Public => "public",
VisibilityKind::Inherited => "private",
VisibilityKind::Crate(..) => "crate-visible",
VisibilityKind::Restricted { .. } => "restricted",
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct StructField<'hir> {
pub span: Span,
#[stable_hasher(project(name))]
pub ident: Ident,
pub vis: Visibility<'hir>,
pub hir_id: HirId,
pub ty: &'hir Ty<'hir>,
pub attrs: &'hir [Attribute],
}
impl StructField<'_> {
// Still necessary in couple of places
pub fn is_positional(&self) -> bool {
let first = self.ident.as_str().as_bytes()[0];
first >= b'0' && first <= b'9'
}
}
/// Fields and constructor IDs of enum variants and structs.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum VariantData<'hir> {
/// A struct variant.
///
/// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
Struct(&'hir [StructField<'hir>], /* recovered */ bool),
/// A tuple variant.
///
/// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
Tuple(&'hir [StructField<'hir>], HirId),
/// A unit variant.
///
/// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
Unit(HirId),
}
impl VariantData<'hir> {
/// Return the fields of this variant.
pub fn fields(&self) -> &'hir [StructField<'hir>] {
match *self {
VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, ..) => fields,
_ => &[],
}
}
/// Return the `HirId` of this variant's constructor, if it has one.
pub fn ctor_hir_id(&self) -> Option<HirId> {
match *self {
VariantData::Struct(_, _) => None,
VariantData::Tuple(_, hir_id) | VariantData::Unit(hir_id) => Some(hir_id),
}
}
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ItemId {
pub id: HirId,
}
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(RustcEncodable, RustcDecodable, Debug)]
pub struct Item<'hir> {
pub ident: Ident,
pub hir_id: HirId,
pub attrs: &'hir [Attribute],
pub kind: ItemKind<'hir>,
pub vis: Visibility<'hir>,
pub span: Span,
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(RustcEncodable, RustcDecodable, HashStable_Generic)]
pub enum Unsafety {
Unsafe,
Normal,
}
impl Unsafety {
pub fn prefix_str(&self) -> &'static str {
match self {
Self::Unsafe => "unsafe ",
Self::Normal => "",
}
}
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match *self {
Self::Unsafe => "unsafe",
Self::Normal => "normal",
})
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(RustcEncodable, RustcDecodable, HashStable_Generic)]
pub enum Constness {
Const,
NotConst,
}
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct FnHeader {
pub unsafety: Unsafety,
pub constness: Constness,
pub asyncness: IsAsync,
pub abi: Abi,
}
impl FnHeader {
pub fn is_const(&self) -> bool {
match &self.constness {
Constness::Const => true,
_ => false,
}
}
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum ItemKind<'hir> {
/// An `extern crate` item, with optional *original* crate name if the crate was renamed.
///
/// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
ExternCrate(Option<Name>),
/// `use foo::bar::*;` or `use foo::bar::baz as quux;`
///
/// or just
///
/// `use foo::bar::baz;` (with `as baz` implicitly on the right).
Use(&'hir Path<'hir>, UseKind),
/// A `static` item.
Static(&'hir Ty<'hir>, Mutability, BodyId),
/// A `const` item.
Const(&'hir Ty<'hir>, BodyId),
/// A function declaration.
Fn(FnSig<'hir>, Generics<'hir>, BodyId),
/// A module.
Mod(Mod<'hir>),
/// An external module, e.g. `extern { .. }`.
ForeignMod(ForeignMod<'hir>),
/// Module-level inline assembly (from `global_asm!`).
GlobalAsm(&'hir GlobalAsm),
/// A type alias, e.g., `type Foo = Bar<u8>`.
TyAlias(&'hir Ty<'hir>, Generics<'hir>),
/// An opaque `impl Trait` type alias, e.g., `type Foo = impl Bar;`.
OpaqueTy(OpaqueTy<'hir>),
/// An enum definition, e.g., `enum Foo<A, B> {C<A>, D<B>}`.
Enum(EnumDef<'hir>, Generics<'hir>),
/// A struct definition, e.g., `struct Foo<A> {x: A}`.
Struct(VariantData<'hir>, Generics<'hir>),
/// A union definition, e.g., `union Foo<A, B> {x: A, y: B}`.
Union(VariantData<'hir>, Generics<'hir>),
/// A trait definition.
Trait(IsAuto, Unsafety, Generics<'hir>, GenericBounds<'hir>, &'hir [TraitItemRef]),
/// A trait alias.
TraitAlias(Generics<'hir>, GenericBounds<'hir>),
/// An implementation, e.g., `impl<A> Trait for Foo { .. }`.
Impl {
unsafety: Unsafety,
polarity: ImplPolarity,
defaultness: Defaultness,
constness: Constness,
generics: Generics<'hir>,
/// The trait being implemented, if any.
of_trait: Option<TraitRef<'hir>>,
self_ty: &'hir Ty<'hir>,
items: &'hir [ImplItemRef<'hir>],
},
}
impl ItemKind<'_> {
pub fn descr(&self) -> &str {
match *self {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "`use` import",
ItemKind::Static(..) => "static item",
ItemKind::Const(..) => "constant item",
ItemKind::Fn(..) => "function",
ItemKind::Mod(..) => "module",
ItemKind::ForeignMod(..) => "extern block",
ItemKind::GlobalAsm(..) => "global asm item",
ItemKind::TyAlias(..) => "type alias",
ItemKind::OpaqueTy(..) => "opaque type",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl { .. } => "implementation",
}
}
pub fn generics(&self) -> Option<&Generics<'_>> {
Some(match *self {
ItemKind::Fn(_, ref generics, _)
| ItemKind::TyAlias(_, ref generics)
| ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
| ItemKind::Enum(_, ref generics)
| ItemKind::Struct(_, ref generics)
| ItemKind::Union(_, ref generics)
| ItemKind::Trait(_, _, ref generics, _, _)
| ItemKind::Impl { ref generics, .. } => generics,
_ => return None,
})
}
}
/// A reference from an trait to one of its associated items. This
/// contains the item's id, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the ID (which
/// means fewer edges in the incremental compilation graph).
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct TraitItemRef {
pub id: TraitItemId,
#[stable_hasher(project(name))]
pub ident: Ident,
pub kind: AssocItemKind,
pub span: Span,
pub defaultness: Defaultness,
}
/// A reference from an impl to one of its associated items. This
/// contains the item's ID, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the ID (which
/// means fewer edges in the incremental compilation graph).
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct ImplItemRef<'hir> {
pub id: ImplItemId,
#[stable_hasher(project(name))]
pub ident: Ident,
pub kind: AssocItemKind,
pub span: Span,
pub vis: Visibility<'hir>,
pub defaultness: Defaultness,
}
#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum AssocItemKind {
Const,
Method { has_self: bool },
Type,
OpaqueTy,
}
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub struct ForeignItem<'hir> {
#[stable_hasher(project(name))]
pub ident: Ident,
pub attrs: &'hir [Attribute],
pub kind: ForeignItemKind<'hir>,
pub hir_id: HirId,
pub span: Span,
pub vis: Visibility<'hir>,
}
/// An item within an `extern` block.
#[derive(RustcEncodable, RustcDecodable, Debug, HashStable_Generic)]
pub enum ForeignItemKind<'hir> {
/// A foreign function.
Fn(&'hir FnDecl<'hir>, &'hir [Ident], Generics<'hir>),
/// A foreign static item (`static ext: u8`).
Static(&'hir Ty<'hir>, Mutability),
/// A foreign type.
Type,
}
impl ForeignItemKind<'hir> {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemKind::Fn(..) => "foreign function",
ForeignItemKind::Static(..) => "foreign static item",
ForeignItemKind::Type => "foreign type",
}
}
}
/// A variable captured by a closure.
#[derive(Debug, Copy, Clone, RustcEncodable, RustcDecodable, HashStable_Generic)]
pub struct Upvar {
// First span where it is accessed (there can be multiple).
pub span: Span,
}
pub type CaptureModeMap = NodeMap<CaptureBy>;
// The TraitCandidate's import_ids is empty if the trait is defined in the same module, and
// has length > 0 if the trait is found through an chain of imports, starting with the
// import/use statement in the scope where the trait is used.
#[derive(Clone, Debug)]
pub struct TraitCandidate<ID = HirId> {
pub def_id: DefId,
pub import_ids: SmallVec<[ID; 1]>,
}
impl<ID> TraitCandidate<ID> {
pub fn map_import_ids<F, T>(self, f: F) -> TraitCandidate<T>
where
F: Fn(ID) -> T,
{
let TraitCandidate { def_id, import_ids } = self;
let import_ids = import_ids.into_iter().map(f).collect();
TraitCandidate { def_id, import_ids }
}
}
// Trait method resolution
pub type TraitMap<ID = HirId> = NodeMap<Vec<TraitCandidate<ID>>>;
// Map from the NodeId of a glob import to a list of items which are actually
// imported.
pub type GlobMap = NodeMap<FxHashSet<Name>>;
#[derive(Copy, Clone, Debug)]
pub enum Node<'hir> {
Param(&'hir Param<'hir>),
Item(&'hir Item<'hir>),
ForeignItem(&'hir ForeignItem<'hir>),
TraitItem(&'hir TraitItem<'hir>),
ImplItem(&'hir ImplItem<'hir>),
Variant(&'hir Variant<'hir>),
Field(&'hir StructField<'hir>),
AnonConst(&'hir AnonConst),
Expr(&'hir Expr<'hir>),
Stmt(&'hir Stmt<'hir>),
PathSegment(&'hir PathSegment<'hir>),
Ty(&'hir Ty<'hir>),
TraitRef(&'hir TraitRef<'hir>),
Binding(&'hir Pat<'hir>),
Pat(&'hir Pat<'hir>),
Arm(&'hir Arm<'hir>),
Block(&'hir Block<'hir>),
Local(&'hir Local<'hir>),
MacroDef(&'hir MacroDef<'hir>),
/// `Ctor` refers to the constructor of an enum variant or struct. Only tuple or unit variants
/// with synthesized constructors.
Ctor(&'hir VariantData<'hir>),
Lifetime(&'hir Lifetime),
GenericParam(&'hir GenericParam<'hir>),
Visibility(&'hir Visibility<'hir>),
Crate,
}
impl Node<'_> {
pub fn ident(&self) -> Option<Ident> {
match self {
Node::TraitItem(TraitItem { ident, .. })
| Node::ImplItem(ImplItem { ident, .. })
| Node::ForeignItem(ForeignItem { ident, .. })
| Node::Item(Item { ident, .. }) => Some(*ident),
_ => None,
}
}
pub fn fn_decl(&self) -> Option<&FnDecl<'_>> {
match self {
Node::TraitItem(TraitItem { kind: TraitItemKind::Method(fn_sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Method(fn_sig, _), .. })
| Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl),
Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
Some(fn_decl)
}
_ => None,
}
}
pub fn generics(&self) -> Option<&Generics<'_>> {
match self {
Node::TraitItem(TraitItem { generics, .. })
| Node::ImplItem(ImplItem { generics, .. })
| Node::Item(Item { kind: ItemKind::Fn(_, generics, _), .. }) => Some(generics),
_ => None,
}
}
}