rust/src/librustc/mir/mod.rs

3578 lines
120 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// ignore-tidy-filelength
//! MIR datatypes and passes. See the [rustc guide] for more info.
//!
//! [rustc guide]: https://rust-lang.github.io/rustc-guide/mir/index.html
use crate::hir::def::{CtorKind, Namespace};
use crate::hir::def_id::DefId;
use crate::hir::{self, InlineAsm as HirInlineAsm};
use crate::mir::interpret::{ConstValue, InterpError, Scalar};
use crate::mir::visit::MirVisitable;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::graph::dominators::{dominators, Dominators};
use rustc_data_structures::graph::{self, GraphPredecessors, GraphSuccessors};
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::sync::MappedReadGuard;
use rustc_macros::HashStable;
use crate::rustc_serialize::{self as serialize};
use smallvec::SmallVec;
use std::borrow::Cow;
use std::fmt::{self, Debug, Formatter, Write, Display};
use std::iter::FusedIterator;
use std::ops::{Index, IndexMut};
use std::slice;
use std::vec::IntoIter;
use std::{iter, mem, option, u32};
use syntax::ast::Name;
use syntax::symbol::{InternedString, Symbol};
use syntax_pos::{Span, DUMMY_SP};
use crate::ty::fold::{TypeFoldable, TypeFolder, TypeVisitor};
use crate::ty::subst::{Subst, SubstsRef};
use crate::ty::layout::VariantIdx;
use crate::ty::{
self, AdtDef, CanonicalUserTypeAnnotations, ClosureSubsts, GeneratorSubsts, Region, Ty, TyCtxt,
UserTypeAnnotationIndex,
};
use crate::ty::print::{FmtPrinter, Printer};
use crate::ty::adjustment::{PointerCast};
pub use crate::mir::interpret::AssertMessage;
mod cache;
pub mod interpret;
pub mod mono;
pub mod tcx;
pub mod traversal;
pub mod visit;
/// Types for locals
type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>;
pub trait HasLocalDecls<'tcx> {
fn local_decls(&self) -> &LocalDecls<'tcx>;
}
impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
fn local_decls(&self) -> &LocalDecls<'tcx> {
self
}
}
impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
fn local_decls(&self) -> &LocalDecls<'tcx> {
&self.local_decls
}
}
/// The various "big phases" that MIR goes through.
///
/// Warning: ordering of variants is significant
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum MirPhase {
Build = 0,
Const = 1,
Validated = 2,
Optimized = 3,
}
impl MirPhase {
/// Gets the index of the current MirPhase within the set of all MirPhases.
pub fn phase_index(&self) -> usize {
*self as usize
}
}
/// Lowered representation of a single function.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Body<'tcx> {
/// List of basic blocks. References to basic block use a newtyped index type `BasicBlock`
/// that indexes into this vector.
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
/// Records how far through the "desugaring and optimization" process this particular
/// MIR has traversed. This is particularly useful when inlining, since in that context
/// we instantiate the promoted constants and add them to our promoted vector -- but those
/// promoted items have already been optimized, whereas ours have not. This field allows
/// us to see the difference and forego optimization on the inlined promoted items.
pub phase: MirPhase,
/// List of source scopes; these are referenced by statements
/// and used for debuginfo. Indexed by a `SourceScope`.
pub source_scopes: IndexVec<SourceScope, SourceScopeData>,
/// Crate-local information for each source scope, that can't (and
/// needn't) be tracked across crates.
pub source_scope_local_data: ClearCrossCrate<IndexVec<SourceScope, SourceScopeLocalData>>,
/// Rvalues promoted from this function, such as borrows of constants.
/// Each of them is the Body of a constant with the fn's type parameters
/// in scope, but a separate set of locals.
pub promoted: IndexVec<Promoted, Body<'tcx>>,
/// Yields type of the function, if it is a generator.
pub yield_ty: Option<Ty<'tcx>>,
/// Generator drop glue
pub generator_drop: Option<Box<Body<'tcx>>>,
/// The layout of a generator. Produced by the state transformation.
pub generator_layout: Option<GeneratorLayout<'tcx>>,
/// Declarations of locals.
///
/// The first local is the return value pointer, followed by `arg_count`
/// locals for the function arguments, followed by any user-declared
/// variables and temporaries.
pub local_decls: LocalDecls<'tcx>,
/// User type annotations
pub user_type_annotations: CanonicalUserTypeAnnotations<'tcx>,
/// Number of arguments this function takes.
///
/// Starting at local 1, `arg_count` locals will be provided by the caller
/// and can be assumed to be initialized.
///
/// If this MIR was built for a constant, this will be 0.
pub arg_count: usize,
/// Mark an argument local (which must be a tuple) as getting passed as
/// its individual components at the LLVM level.
///
/// This is used for the "rust-call" ABI.
pub spread_arg: Option<Local>,
/// Names and capture modes of all the closure upvars, assuming
/// the first argument is either the closure or a reference to it.
// NOTE(eddyb) This is *strictly* a temporary hack for codegen
// debuginfo generation, and will be removed at some point.
// Do **NOT** use it for anything else, upvar information should not be
// in the MIR, please rely on local crate HIR or other side-channels.
pub __upvar_debuginfo_codegen_only_do_not_use: Vec<UpvarDebuginfo>,
/// Mark this MIR of a const context other than const functions as having converted a `&&` or
/// `||` expression into `&` or `|` respectively. This is problematic because if we ever stop
/// this conversion from happening and use short circuiting, we will cause the following code
/// to change the value of `x`: `let mut x = 42; false && { x = 55; true };`
///
/// List of places where control flow was destroyed. Used for error reporting.
pub control_flow_destroyed: Vec<(Span, String)>,
/// A span representing this MIR, for error reporting
pub span: Span,
/// A cache for various calculations
cache: cache::Cache,
}
impl<'tcx> Body<'tcx> {
pub fn new(
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
source_scopes: IndexVec<SourceScope, SourceScopeData>,
source_scope_local_data: ClearCrossCrate<IndexVec<SourceScope, SourceScopeLocalData>>,
promoted: IndexVec<Promoted, Body<'tcx>>,
yield_ty: Option<Ty<'tcx>>,
local_decls: LocalDecls<'tcx>,
user_type_annotations: CanonicalUserTypeAnnotations<'tcx>,
arg_count: usize,
__upvar_debuginfo_codegen_only_do_not_use: Vec<UpvarDebuginfo>,
span: Span,
control_flow_destroyed: Vec<(Span, String)>,
) -> Self {
// We need `arg_count` locals, and one for the return place
assert!(
local_decls.len() >= arg_count + 1,
"expected at least {} locals, got {}",
arg_count + 1,
local_decls.len()
);
Body {
phase: MirPhase::Build,
basic_blocks,
source_scopes,
source_scope_local_data,
promoted,
yield_ty,
generator_drop: None,
generator_layout: None,
local_decls,
user_type_annotations,
arg_count,
__upvar_debuginfo_codegen_only_do_not_use,
spread_arg: None,
span,
cache: cache::Cache::new(),
control_flow_destroyed,
}
}
#[inline]
pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
&self.basic_blocks
}
#[inline]
pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
self.cache.invalidate();
&mut self.basic_blocks
}
#[inline]
pub fn basic_blocks_and_local_decls_mut(
&mut self,
) -> (
&mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
&mut LocalDecls<'tcx>,
) {
self.cache.invalidate();
(&mut self.basic_blocks, &mut self.local_decls)
}
#[inline]
pub fn predecessors(&self) -> MappedReadGuard<'_, IndexVec<BasicBlock, Vec<BasicBlock>>> {
self.cache.predecessors(self)
}
#[inline]
pub fn predecessors_for(&self, bb: BasicBlock) -> MappedReadGuard<'_, Vec<BasicBlock>> {
MappedReadGuard::map(self.predecessors(), |p| &p[bb])
}
#[inline]
pub fn predecessor_locations(&self, loc: Location) -> impl Iterator<Item = Location> + '_ {
let if_zero_locations = if loc.statement_index == 0 {
let predecessor_blocks = self.predecessors_for(loc.block);
let num_predecessor_blocks = predecessor_blocks.len();
Some(
(0..num_predecessor_blocks)
.map(move |i| predecessor_blocks[i])
.map(move |bb| self.terminator_loc(bb)),
)
} else {
None
};
let if_not_zero_locations = if loc.statement_index == 0 {
None
} else {
Some(Location {
block: loc.block,
statement_index: loc.statement_index - 1,
})
};
if_zero_locations
.into_iter()
.flatten()
.chain(if_not_zero_locations)
}
#[inline]
pub fn dominators(&self) -> Dominators<BasicBlock> {
dominators(self)
}
#[inline]
pub fn local_kind(&self, local: Local) -> LocalKind {
let index = local.as_usize();
if index == 0 {
debug_assert!(
self.local_decls[local].mutability == Mutability::Mut,
"return place should be mutable"
);
LocalKind::ReturnPointer
} else if index < self.arg_count + 1 {
LocalKind::Arg
} else if self.local_decls[local].name.is_some() {
LocalKind::Var
} else {
LocalKind::Temp
}
}
/// Returns an iterator over all temporaries.
#[inline]
pub fn temps_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
(self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
let local = Local::new(index);
if self.local_decls[local].is_user_variable.is_some() {
None
} else {
Some(local)
}
})
}
/// Returns an iterator over all user-declared locals.
#[inline]
pub fn vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
(self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
let local = Local::new(index);
if self.local_decls[local].is_user_variable.is_some() {
Some(local)
} else {
None
}
})
}
/// Returns an iterator over all user-declared mutable locals.
#[inline]
pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
(self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
let local = Local::new(index);
let decl = &self.local_decls[local];
if decl.is_user_variable.is_some() && decl.mutability == Mutability::Mut {
Some(local)
} else {
None
}
})
}
/// Returns an iterator over all user-declared mutable arguments and locals.
#[inline]
pub fn mut_vars_and_args_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
(1..self.local_decls.len()).filter_map(move |index| {
let local = Local::new(index);
let decl = &self.local_decls[local];
if (decl.is_user_variable.is_some() || index < self.arg_count + 1)
&& decl.mutability == Mutability::Mut
{
Some(local)
} else {
None
}
})
}
/// Returns an iterator over all function arguments.
#[inline]
pub fn args_iter(&self) -> impl Iterator<Item = Local> {
let arg_count = self.arg_count;
(1..=arg_count).map(Local::new)
}
/// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
/// locals that are neither arguments nor the return place).
#[inline]
pub fn vars_and_temps_iter(&self) -> impl Iterator<Item = Local> {
let arg_count = self.arg_count;
let local_count = self.local_decls.len();
(arg_count + 1..local_count).map(Local::new)
}
/// Changes a statement to a nop. This is both faster than deleting instructions and avoids
/// invalidating statement indices in `Location`s.
pub fn make_statement_nop(&mut self, location: Location) {
let block = &mut self[location.block];
debug_assert!(location.statement_index < block.statements.len());
block.statements[location.statement_index].make_nop()
}
/// Returns the source info associated with `location`.
pub fn source_info(&self, location: Location) -> &SourceInfo {
let block = &self[location.block];
let stmts = &block.statements;
let idx = location.statement_index;
if idx < stmts.len() {
&stmts[idx].source_info
} else {
assert_eq!(idx, stmts.len());
&block.terminator().source_info
}
}
/// Checks if `sub` is a sub scope of `sup`
pub fn is_sub_scope(&self, mut sub: SourceScope, sup: SourceScope) -> bool {
while sub != sup {
match self.source_scopes[sub].parent_scope {
None => return false,
Some(p) => sub = p,
}
}
true
}
/// Returns the return type, it always return first element from `local_decls` array
pub fn return_ty(&self) -> Ty<'tcx> {
self.local_decls[RETURN_PLACE].ty
}
/// Gets the location of the terminator for the given block
pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
Location {
block: bb,
statement_index: self[bb].statements.len(),
}
}
}
#[derive(Copy, Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub enum Safety {
Safe,
/// Unsafe because of a PushUnsafeBlock
BuiltinUnsafe,
/// Unsafe because of an unsafe fn
FnUnsafe,
/// Unsafe because of an `unsafe` block
ExplicitUnsafe(hir::HirId),
}
impl_stable_hash_for!(struct Body<'tcx> {
phase,
basic_blocks,
source_scopes,
source_scope_local_data,
promoted,
yield_ty,
generator_drop,
generator_layout,
local_decls,
user_type_annotations,
arg_count,
__upvar_debuginfo_codegen_only_do_not_use,
spread_arg,
control_flow_destroyed,
span,
cache
});
impl<'tcx> Index<BasicBlock> for Body<'tcx> {
type Output = BasicBlockData<'tcx>;
#[inline]
fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
&self.basic_blocks()[index]
}
}
impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
#[inline]
fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
&mut self.basic_blocks_mut()[index]
}
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum ClearCrossCrate<T> {
Clear,
Set(T),
}
impl<T> ClearCrossCrate<T> {
pub fn assert_crate_local(self) -> T {
match self {
ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
ClearCrossCrate::Set(v) => v,
}
}
}
impl<T: serialize::Encodable> serialize::UseSpecializedEncodable for ClearCrossCrate<T> {}
impl<T: serialize::Decodable> serialize::UseSpecializedDecodable for ClearCrossCrate<T> {}
/// Grouped information about the source code origin of a MIR entity.
/// Intended to be inspected by diagnostics and debuginfo.
/// Most passes can work with it as a whole, within a single function.
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, HashStable)]
pub struct SourceInfo {
/// Source span for the AST pertaining to this MIR entity.
pub span: Span,
/// The source scope, keeping track of which bindings can be
/// seen by debuginfo, active lint levels, `unsafe {...}`, etc.
pub scope: SourceScope,
}
///////////////////////////////////////////////////////////////////////////
// Mutability and borrow kinds
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum Mutability {
Mut,
Not,
}
impl From<Mutability> for hir::Mutability {
fn from(m: Mutability) -> Self {
match m {
Mutability::Mut => hir::MutMutable,
Mutability::Not => hir::MutImmutable,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd,
Ord, RustcEncodable, RustcDecodable, HashStable)]
pub enum BorrowKind {
/// Data must be immutable and is aliasable.
Shared,
/// The immediately borrowed place must be immutable, but projections from
/// it don't need to be. For example, a shallow borrow of `a.b` doesn't
/// conflict with a mutable borrow of `a.b.c`.
///
/// This is used when lowering matches: when matching on a place we want to
/// ensure that place have the same value from the start of the match until
/// an arm is selected. This prevents this code from compiling:
///
/// let mut x = &Some(0);
/// match *x {
/// None => (),
/// Some(_) if { x = &None; false } => (),
/// Some(_) => (),
/// }
///
/// This can't be a shared borrow because mutably borrowing (*x as Some).0
/// should not prevent `if let None = x { ... }`, for example, because the
/// mutating `(*x as Some).0` can't affect the discriminant of `x`.
/// We can also report errors with this kind of borrow differently.
Shallow,
/// Data must be immutable but not aliasable. This kind of borrow
/// cannot currently be expressed by the user and is used only in
/// implicit closure bindings. It is needed when the closure is
/// borrowing or mutating a mutable referent, e.g.:
///
/// let x: &mut isize = ...;
/// let y = || *x += 5;
///
/// If we were to try to translate this closure into a more explicit
/// form, we'd encounter an error with the code as written:
///
/// struct Env { x: & &mut isize }
/// let x: &mut isize = ...;
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// This is then illegal because you cannot mutate an `&mut` found
/// in an aliasable location. To solve, you'd have to translate with
/// an `&mut` borrow:
///
/// struct Env { x: & &mut isize }
/// let x: &mut isize = ...;
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// Now the assignment to `**env.x` is legal, but creating a
/// mutable pointer to `x` is not because `x` is not mutable. We
/// could fix this by declaring `x` as `let mut x`. This is ok in
/// user code, if awkward, but extra weird for closures, since the
/// borrow is hidden.
///
/// So we introduce a "unique imm" borrow -- the referent is
/// immutable, but not aliasable. This solves the problem. For
/// simplicity, we don't give users the way to express this
/// borrow, it's just used when translating closures.
Unique,
/// Data is mutable and not aliasable.
Mut {
/// `true` if this borrow arose from method-call auto-ref
/// (i.e., `adjustment::Adjust::Borrow`).
allow_two_phase_borrow: bool,
},
}
impl BorrowKind {
pub fn allows_two_phase_borrow(&self) -> bool {
match *self {
BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false,
BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow,
}
}
}
///////////////////////////////////////////////////////////////////////////
// Variables and temps
newtype_index! {
pub struct Local {
derive [HashStable]
DEBUG_FORMAT = "_{}",
const RETURN_PLACE = 0,
}
}
/// Classifies locals into categories. See `Body::local_kind`.
#[derive(PartialEq, Eq, Debug, HashStable)]
pub enum LocalKind {
/// User-declared variable binding
Var,
/// Compiler-introduced temporary
Temp,
/// Function argument
Arg,
/// Location of function's return value
ReturnPointer,
}
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct VarBindingForm<'tcx> {
/// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`?
pub binding_mode: ty::BindingMode,
/// If an explicit type was provided for this variable binding,
/// this holds the source Span of that type.
///
/// NOTE: if you want to change this to a `HirId`, be wary that
/// doing so breaks incremental compilation (as of this writing),
/// while a `Span` does not cause our tests to fail.
pub opt_ty_info: Option<Span>,
/// Place of the RHS of the =, or the subject of the `match` where this
/// variable is initialized. None in the case of `let PATTERN;`.
/// Some((None, ..)) in the case of and `let [mut] x = ...` because
/// (a) the right-hand side isn't evaluated as a place expression.
/// (b) it gives a way to separate this case from the remaining cases
/// for diagnostics.
pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
/// Span of the pattern in which this variable was bound.
pub pat_span: Span,
}
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum BindingForm<'tcx> {
/// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
Var(VarBindingForm<'tcx>),
/// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
ImplicitSelf(ImplicitSelfKind),
/// Reference used in a guard expression to ensure immutability.
RefForGuard,
}
/// Represents what type of implicit self a function has, if any.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum ImplicitSelfKind {
/// Represents a `fn x(self);`.
Imm,
/// Represents a `fn x(mut self);`.
Mut,
/// Represents a `fn x(&self);`.
ImmRef,
/// Represents a `fn x(&mut self);`.
MutRef,
/// Represents when a function does not have a self argument or
/// when a function has a `self: X` argument.
None
}
CloneTypeFoldableAndLiftImpls! { BindingForm<'tcx>, }
impl_stable_hash_for!(struct self::VarBindingForm<'tcx> {
binding_mode,
opt_ty_info,
opt_match_place,
pat_span
});
impl_stable_hash_for!(enum self::ImplicitSelfKind {
Imm,
Mut,
ImmRef,
MutRef,
None
});
impl_stable_hash_for!(enum self::MirPhase {
Build,
Const,
Validated,
Optimized,
});
mod binding_form_impl {
use crate::ich::StableHashingContext;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher, StableHasherResult};
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
fn hash_stable<W: StableHasherResult>(
&self,
hcx: &mut StableHashingContext<'a>,
hasher: &mut StableHasher<W>,
) {
use super::BindingForm::*;
::std::mem::discriminant(self).hash_stable(hcx, hasher);
match self {
Var(binding) => binding.hash_stable(hcx, hasher),
ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
RefForGuard => (),
}
}
}
}
/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
/// created during evaluation of expressions in a block tail
/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
///
/// It is used to improve diagnostics when such temporaries are
/// involved in borrow_check errors, e.g., explanations of where the
/// temporaries come from, when their destructors are run, and/or how
/// one might revise the code to satisfy the borrow checker's rules.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct BlockTailInfo {
/// If `true`, then the value resulting from evaluating this tail
/// expression is ignored by the block's expression context.
///
/// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
/// but not e.g., `let _x = { ...; tail };`
pub tail_result_is_ignored: bool,
}
impl_stable_hash_for!(struct BlockTailInfo { tail_result_is_ignored });
/// A MIR local.
///
/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
/// argument, or the return place.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct LocalDecl<'tcx> {
/// `let mut x` vs `let x`.
///
/// Temporaries and the return place are always mutable.
pub mutability: Mutability,
/// Some(binding_mode) if this corresponds to a user-declared local variable.
///
/// This is solely used for local diagnostics when generating
/// warnings/errors when compiling the current crate, and
/// therefore it need not be visible across crates. pnkfelix
/// currently hypothesized we *need* to wrap this in a
/// `ClearCrossCrate` as long as it carries as `HirId`.
pub is_user_variable: Option<ClearCrossCrate<BindingForm<'tcx>>>,
/// `true` if this is an internal local.
///
/// These locals are not based on types in the source code and are only used
/// for a few desugarings at the moment.
///
/// The generator transformation will sanity check the locals which are live
/// across a suspension point against the type components of the generator
/// which type checking knows are live across a suspension point. We need to
/// flag drop flags to avoid triggering this check as they are introduced
/// after typeck.
///
/// Unsafety checking will also ignore dereferences of these locals,
/// so they can be used for raw pointers only used in a desugaring.
///
/// This should be sound because the drop flags are fully algebraic, and
/// therefore don't affect the OIBIT or outlives properties of the
/// generator.
pub internal: bool,
/// If this local is a temporary and `is_block_tail` is `Some`,
/// then it is a temporary created for evaluation of some
/// subexpression of some block's tail expression (with no
/// intervening statement context).
pub is_block_tail: Option<BlockTailInfo>,
/// Type of this local.
pub ty: Ty<'tcx>,
/// If the user manually ascribed a type to this variable,
/// e.g., via `let x: T`, then we carry that type here. The MIR
/// borrow checker needs this information since it can affect
/// region inference.
pub user_ty: UserTypeProjections,
/// Name of the local, used in debuginfo and pretty-printing.
///
/// Note that function arguments can also have this set to `Some(_)`
/// to generate better debuginfo.
pub name: Option<Name>,
/// The *syntactic* (i.e., not visibility) source scope the local is defined
/// in. If the local was defined in a let-statement, this
/// is *within* the let-statement, rather than outside
/// of it.
///
/// This is needed because the visibility source scope of locals within
/// a let-statement is weird.
///
/// The reason is that we want the local to be *within* the let-statement
/// for lint purposes, but we want the local to be *after* the let-statement
/// for names-in-scope purposes.
///
/// That's it, if we have a let-statement like the one in this
/// function:
///
/// ```
/// fn foo(x: &str) {
/// #[allow(unused_mut)]
/// let mut x: u32 = { // <- one unused mut
/// let mut y: u32 = x.parse().unwrap();
/// y + 2
/// };
/// drop(x);
/// }
/// ```
///
/// Then, from a lint point of view, the declaration of `x: u32`
/// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
/// lint scopes are the same as the AST/HIR nesting.
///
/// However, from a name lookup point of view, the scopes look more like
/// as if the let-statements were `match` expressions:
///
/// ```
/// fn foo(x: &str) {
/// match {
/// match x.parse().unwrap() {
/// y => y + 2
/// }
/// } {
/// x => drop(x)
/// };
/// }
/// ```
///
/// We care about the name-lookup scopes for debuginfo - if the
/// debuginfo instruction pointer is at the call to `x.parse()`, we
/// want `x` to refer to `x: &str`, but if it is at the call to
/// `drop(x)`, we want it to refer to `x: u32`.
///
/// To allow both uses to work, we need to have more than a single scope
/// for a local. We have the `source_info.scope` represent the
/// "syntactic" lint scope (with a variable being under its let
/// block) while the `visibility_scope` represents the "local variable"
/// scope (where the "rest" of a block is under all prior let-statements).
///
/// The end result looks like this:
///
/// ```text
/// ROOT SCOPE
/// │{ argument x: &str }
/// │
/// │ │{ #[allow(unused_mut)] } // this is actually split into 2 scopes
/// │ │ // in practice because I'm lazy.
/// │ │
/// │ │← x.source_info.scope
/// │ │← `x.parse().unwrap()`
/// │ │
/// │ │ │← y.source_info.scope
/// │ │
/// │ │ │{ let y: u32 }
/// │ │ │
/// │ │ │← y.visibility_scope
/// │ │ │← `y + 2`
/// │
/// │ │{ let x: u32 }
/// │ │← x.visibility_scope
/// │ │← `drop(x)` // this accesses `x: u32`
/// ```
pub source_info: SourceInfo,
/// Source scope within which the local is visible (for debuginfo)
/// (see `source_info` for more details).
pub visibility_scope: SourceScope,
}
impl<'tcx> LocalDecl<'tcx> {
/// Returns `true` only if local is a binding that can itself be
/// made mutable via the addition of the `mut` keyword, namely
/// something like the occurrences of `x` in:
/// - `fn foo(x: Type) { ... }`,
/// - `let x = ...`,
/// - or `match ... { C(x) => ... }`
pub fn can_be_made_mutable(&self) -> bool {
match self.is_user_variable {
Some(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
binding_mode: ty::BindingMode::BindByValue(_),
opt_ty_info: _,
opt_match_place: _,
pat_span: _,
}))) => true,
Some(ClearCrossCrate::Set(BindingForm::ImplicitSelf(ImplicitSelfKind::Imm)))
=> true,
_ => false,
}
}
/// Returns `true` if local is definitely not a `ref ident` or
/// `ref mut ident` binding. (Such bindings cannot be made into
/// mutable bindings, but the inverse does not necessarily hold).
pub fn is_nonref_binding(&self) -> bool {
match self.is_user_variable {
Some(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
binding_mode: ty::BindingMode::BindByValue(_),
opt_ty_info: _,
opt_match_place: _,
pat_span: _,
}))) => true,
Some(ClearCrossCrate::Set(BindingForm::ImplicitSelf(_))) => true,
_ => false,
}
}
/// Returns `true` is the local is from a compiler desugaring, e.g.,
/// `__next` from a `for` loop.
#[inline]
pub fn from_compiler_desugaring(&self) -> bool {
self.source_info.span.compiler_desugaring_kind().is_some()
}
/// Creates a new `LocalDecl` for a temporary.
#[inline]
pub fn new_temp(ty: Ty<'tcx>, span: Span) -> Self {
Self::new_local(ty, Mutability::Mut, false, span)
}
/// Converts `self` into same `LocalDecl` except tagged as immutable.
#[inline]
pub fn immutable(mut self) -> Self {
self.mutability = Mutability::Not;
self
}
/// Converts `self` into same `LocalDecl` except tagged as internal temporary.
#[inline]
pub fn block_tail(mut self, info: BlockTailInfo) -> Self {
assert!(self.is_block_tail.is_none());
self.is_block_tail = Some(info);
self
}
/// Creates a new `LocalDecl` for a internal temporary.
#[inline]
pub fn new_internal(ty: Ty<'tcx>, span: Span) -> Self {
Self::new_local(ty, Mutability::Mut, true, span)
}
#[inline]
fn new_local(
ty: Ty<'tcx>,
mutability: Mutability,
internal: bool,
span: Span,
) -> Self {
LocalDecl {
mutability,
ty,
user_ty: UserTypeProjections::none(),
name: None,
source_info: SourceInfo {
span,
scope: OUTERMOST_SOURCE_SCOPE,
},
visibility_scope: OUTERMOST_SOURCE_SCOPE,
internal,
is_user_variable: None,
is_block_tail: None,
}
}
/// Builds a `LocalDecl` for the return place.
///
/// This must be inserted into the `local_decls` list as the first local.
#[inline]
pub fn new_return_place(return_ty: Ty<'_>, span: Span) -> LocalDecl<'_> {
LocalDecl {
mutability: Mutability::Mut,
ty: return_ty,
user_ty: UserTypeProjections::none(),
source_info: SourceInfo {
span,
scope: OUTERMOST_SOURCE_SCOPE,
},
visibility_scope: OUTERMOST_SOURCE_SCOPE,
internal: false,
is_block_tail: None,
name: None, // FIXME maybe we do want some name here?
is_user_variable: None,
}
}
}
/// A closure capture, with its name and mode.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct UpvarDebuginfo {
pub debug_name: Name,
/// If true, the capture is behind a reference.
pub by_ref: bool,
}
///////////////////////////////////////////////////////////////////////////
// BasicBlock
newtype_index! {
pub struct BasicBlock {
derive [HashStable]
DEBUG_FORMAT = "bb{}",
const START_BLOCK = 0,
}
}
impl BasicBlock {
pub fn start_location(self) -> Location {
Location {
block: self,
statement_index: 0,
}
}
}
///////////////////////////////////////////////////////////////////////////
// BasicBlockData and Terminator
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct BasicBlockData<'tcx> {
/// List of statements in this block.
pub statements: Vec<Statement<'tcx>>,
/// Terminator for this block.
///
/// N.B., this should generally ONLY be `None` during construction.
/// Therefore, you should generally access it via the
/// `terminator()` or `terminator_mut()` methods. The only
/// exception is that certain passes, such as `simplify_cfg`, swap
/// out the terminator temporarily with `None` while they continue
/// to recurse over the set of basic blocks.
pub terminator: Option<Terminator<'tcx>>,
/// If true, this block lies on an unwind path. This is used
/// during codegen where distinct kinds of basic blocks may be
/// generated (particularly for MSVC cleanup). Unwind blocks must
/// only branch to other unwind blocks.
pub is_cleanup: bool,
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct Terminator<'tcx> {
pub source_info: SourceInfo,
pub kind: TerminatorKind<'tcx>,
}
#[derive(Clone, RustcEncodable, RustcDecodable, HashStable)]
pub enum TerminatorKind<'tcx> {
/// block should have one successor in the graph; we jump there
Goto { target: BasicBlock },
/// operand evaluates to an integer; jump depending on its value
/// to one of the targets, and otherwise fallback to `otherwise`
SwitchInt {
/// discriminant value being tested
discr: Operand<'tcx>,
/// type of value being tested
switch_ty: Ty<'tcx>,
/// Possible values. The locations to branch to in each case
/// are found in the corresponding indices from the `targets` vector.
values: Cow<'tcx, [u128]>,
/// Possible branch sites. The last element of this vector is used
/// for the otherwise branch, so targets.len() == values.len() + 1
/// should hold.
// This invariant is quite non-obvious and also could be improved.
// One way to make this invariant is to have something like this instead:
//
// branches: Vec<(ConstInt, BasicBlock)>,
// otherwise: Option<BasicBlock> // exhaustive if None
//
// However weve decided to keep this as-is until we figure a case
// where some other approach seems to be strictly better than other.
targets: Vec<BasicBlock>,
},
/// Indicates that the landing pad is finished and unwinding should
/// continue. Emitted by build::scope::diverge_cleanup.
Resume,
/// Indicates that the landing pad is finished and that the process
/// should abort. Used to prevent unwinding for foreign items.
Abort,
/// Indicates a normal return. The return place should have
/// been filled in by now. This should occur at most once.
Return,
/// Indicates a terminator that can never be reached.
Unreachable,
/// Drop the Place
Drop {
location: Place<'tcx>,
target: BasicBlock,
unwind: Option<BasicBlock>,
},
/// Drop the Place and assign the new value over it. This ensures
/// that the assignment to `P` occurs *even if* the destructor for
/// place unwinds. Its semantics are best explained by the
/// elaboration:
///
/// ```
/// BB0 {
/// DropAndReplace(P <- V, goto BB1, unwind BB2)
/// }
/// ```
///
/// becomes
///
/// ```
/// BB0 {
/// Drop(P, goto BB1, unwind BB2)
/// }
/// BB1 {
/// // P is now uninitialized
/// P <- V
/// }
/// BB2 {
/// // P is now uninitialized -- its dtor panicked
/// P <- V
/// }
/// ```
DropAndReplace {
location: Place<'tcx>,
value: Operand<'tcx>,
target: BasicBlock,
unwind: Option<BasicBlock>,
},
/// Block ends with a call of a converging function
Call {
/// The function thats being called
func: Operand<'tcx>,
/// Arguments the function is called with.
/// These are owned by the callee, which is free to modify them.
/// This allows the memory occupied by "by-value" arguments to be
/// reused across function calls without duplicating the contents.
args: Vec<Operand<'tcx>>,
/// Destination for the return value. If some, the call is converging.
destination: Option<(Place<'tcx>, BasicBlock)>,
/// Cleanups to be done if the call unwinds.
cleanup: Option<BasicBlock>,
/// Whether this is from a call in HIR, rather than from an overloaded
/// operator. True for overloaded function call.
from_hir_call: bool,
},
/// Jump to the target if the condition has the expected value,
/// otherwise panic with a message and a cleanup target.
Assert {
cond: Operand<'tcx>,
expected: bool,
msg: AssertMessage<'tcx>,
target: BasicBlock,
cleanup: Option<BasicBlock>,
},
/// A suspend point
Yield {
/// The value to return
value: Operand<'tcx>,
/// Where to resume to
resume: BasicBlock,
/// Cleanup to be done if the generator is dropped at this suspend point
drop: Option<BasicBlock>,
},
/// Indicates the end of the dropping of a generator
GeneratorDrop,
/// A block where control flow only ever takes one real path, but borrowck
/// needs to be more conservative.
FalseEdges {
/// The target normal control flow will take
real_target: BasicBlock,
/// The list of blocks control flow could conceptually take, but won't
/// in practice
imaginary_targets: Vec<BasicBlock>,
},
/// A terminator for blocks that only take one path in reality, but where we
/// reserve the right to unwind in borrowck, even if it won't happen in practice.
/// This can arise in infinite loops with no function calls for example.
FalseUnwind {
/// The target normal control flow will take
real_target: BasicBlock,
/// The imaginary cleanup block link. This particular path will never be taken
/// in practice, but in order to avoid fragility we want to always
/// consider it in borrowck. We don't want to accept programs which
/// pass borrowck only when panic=abort or some assertions are disabled
/// due to release vs. debug mode builds. This needs to be an Option because
/// of the remove_noop_landing_pads and no_landing_pads passes
unwind: Option<BasicBlock>,
},
}
pub type Successors<'a> =
iter::Chain<option::IntoIter<&'a BasicBlock>, slice::Iter<'a, BasicBlock>>;
pub type SuccessorsMut<'a> =
iter::Chain<option::IntoIter<&'a mut BasicBlock>, slice::IterMut<'a, BasicBlock>>;
impl<'tcx> Terminator<'tcx> {
pub fn successors(&self) -> Successors<'_> {
self.kind.successors()
}
pub fn successors_mut(&mut self) -> SuccessorsMut<'_> {
self.kind.successors_mut()
}
pub fn unwind(&self) -> Option<&Option<BasicBlock>> {
self.kind.unwind()
}
pub fn unwind_mut(&mut self) -> Option<&mut Option<BasicBlock>> {
self.kind.unwind_mut()
}
}
impl<'tcx> TerminatorKind<'tcx> {
pub fn if_<'a, 'gcx>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
cond: Operand<'tcx>,
t: BasicBlock,
f: BasicBlock,
) -> TerminatorKind<'tcx> {
static BOOL_SWITCH_FALSE: &'static [u128] = &[0];
TerminatorKind::SwitchInt {
discr: cond,
switch_ty: tcx.types.bool,
values: From::from(BOOL_SWITCH_FALSE),
targets: vec![f, t],
}
}
pub fn successors(&self) -> Successors<'_> {
use self::TerminatorKind::*;
match *self {
Resume
| Abort
| GeneratorDrop
| Return
| Unreachable
| Call {
destination: None,
cleanup: None,
..
} => None.into_iter().chain(&[]),
Goto { target: ref t }
| Call {
destination: None,
cleanup: Some(ref t),
..
}
| Call {
destination: Some((_, ref t)),
cleanup: None,
..
}
| Yield {
resume: ref t,
drop: None,
..
}
| DropAndReplace {
target: ref t,
unwind: None,
..
}
| Drop {
target: ref t,
unwind: None,
..
}
| Assert {
target: ref t,
cleanup: None,
..
}
| FalseUnwind {
real_target: ref t,
unwind: None,
} => Some(t).into_iter().chain(&[]),
Call {
destination: Some((_, ref t)),
cleanup: Some(ref u),
..
}
| Yield {
resume: ref t,
drop: Some(ref u),
..
}
| DropAndReplace {
target: ref t,
unwind: Some(ref u),
..
}
| Drop {
target: ref t,
unwind: Some(ref u),
..
}
| Assert {
target: ref t,
cleanup: Some(ref u),
..
}
| FalseUnwind {
real_target: ref t,
unwind: Some(ref u),
} => Some(t).into_iter().chain(slice::from_ref(u)),
SwitchInt { ref targets, .. } => None.into_iter().chain(&targets[..]),
FalseEdges {
ref real_target,
ref imaginary_targets,
} => Some(real_target).into_iter().chain(&imaginary_targets[..]),
}
}
pub fn successors_mut(&mut self) -> SuccessorsMut<'_> {
use self::TerminatorKind::*;
match *self {
Resume
| Abort
| GeneratorDrop
| Return
| Unreachable
| Call {
destination: None,
cleanup: None,
..
} => None.into_iter().chain(&mut []),
Goto { target: ref mut t }
| Call {
destination: None,
cleanup: Some(ref mut t),
..
}
| Call {
destination: Some((_, ref mut t)),
cleanup: None,
..
}
| Yield {
resume: ref mut t,
drop: None,
..
}
| DropAndReplace {
target: ref mut t,
unwind: None,
..
}
| Drop {
target: ref mut t,
unwind: None,
..
}
| Assert {
target: ref mut t,
cleanup: None,
..
}
| FalseUnwind {
real_target: ref mut t,
unwind: None,
} => Some(t).into_iter().chain(&mut []),
Call {
destination: Some((_, ref mut t)),
cleanup: Some(ref mut u),
..
}
| Yield {
resume: ref mut t,
drop: Some(ref mut u),
..
}
| DropAndReplace {
target: ref mut t,
unwind: Some(ref mut u),
..
}
| Drop {
target: ref mut t,
unwind: Some(ref mut u),
..
}
| Assert {
target: ref mut t,
cleanup: Some(ref mut u),
..
}
| FalseUnwind {
real_target: ref mut t,
unwind: Some(ref mut u),
} => Some(t).into_iter().chain(slice::from_mut(u)),
SwitchInt {
ref mut targets, ..
} => None.into_iter().chain(&mut targets[..]),
FalseEdges {
ref mut real_target,
ref mut imaginary_targets,
} => Some(real_target)
.into_iter()
.chain(&mut imaginary_targets[..]),
}
}
pub fn unwind(&self) -> Option<&Option<BasicBlock>> {
match *self {
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::GeneratorDrop
| TerminatorKind::Yield { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::FalseEdges { .. } => None,
TerminatorKind::Call {
cleanup: ref unwind,
..
}
| TerminatorKind::Assert {
cleanup: ref unwind,
..
}
| TerminatorKind::DropAndReplace { ref unwind, .. }
| TerminatorKind::Drop { ref unwind, .. }
| TerminatorKind::FalseUnwind { ref unwind, .. } => Some(unwind),
}
}
pub fn unwind_mut(&mut self) -> Option<&mut Option<BasicBlock>> {
match *self {
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::GeneratorDrop
| TerminatorKind::Yield { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::FalseEdges { .. } => None,
TerminatorKind::Call {
cleanup: ref mut unwind,
..
}
| TerminatorKind::Assert {
cleanup: ref mut unwind,
..
}
| TerminatorKind::DropAndReplace { ref mut unwind, .. }
| TerminatorKind::Drop { ref mut unwind, .. }
| TerminatorKind::FalseUnwind { ref mut unwind, .. } => Some(unwind),
}
}
}
impl<'tcx> BasicBlockData<'tcx> {
pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
BasicBlockData {
statements: vec![],
terminator,
is_cleanup: false,
}
}
/// Accessor for terminator.
///
/// Terminator may not be None after construction of the basic block is complete. This accessor
/// provides a convenience way to reach the terminator.
pub fn terminator(&self) -> &Terminator<'tcx> {
self.terminator.as_ref().expect("invalid terminator state")
}
pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
self.terminator.as_mut().expect("invalid terminator state")
}
pub fn retain_statements<F>(&mut self, mut f: F)
where
F: FnMut(&mut Statement<'_>) -> bool,
{
for s in &mut self.statements {
if !f(s) {
s.make_nop();
}
}
}
pub fn expand_statements<F, I>(&mut self, mut f: F)
where
F: FnMut(&mut Statement<'tcx>) -> Option<I>,
I: iter::TrustedLen<Item = Statement<'tcx>>,
{
// Gather all the iterators we'll need to splice in, and their positions.
let mut splices: Vec<(usize, I)> = vec![];
let mut extra_stmts = 0;
for (i, s) in self.statements.iter_mut().enumerate() {
if let Some(mut new_stmts) = f(s) {
if let Some(first) = new_stmts.next() {
// We can already store the first new statement.
*s = first;
// Save the other statements for optimized splicing.
let remaining = new_stmts.size_hint().0;
if remaining > 0 {
splices.push((i + 1 + extra_stmts, new_stmts));
extra_stmts += remaining;
}
} else {
s.make_nop();
}
}
}
// Splice in the new statements, from the end of the block.
// FIXME(eddyb) This could be more efficient with a "gap buffer"
// where a range of elements ("gap") is left uninitialized, with
// splicing adding new elements to the end of that gap and moving
// existing elements from before the gap to the end of the gap.
// For now, this is safe code, emulating a gap but initializing it.
let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
self.statements.resize(
gap.end,
Statement {
source_info: SourceInfo {
span: DUMMY_SP,
scope: OUTERMOST_SOURCE_SCOPE,
},
kind: StatementKind::Nop,
},
);
for (splice_start, new_stmts) in splices.into_iter().rev() {
let splice_end = splice_start + new_stmts.size_hint().0;
while gap.end > splice_end {
gap.start -= 1;
gap.end -= 1;
self.statements.swap(gap.start, gap.end);
}
self.statements.splice(splice_start..splice_end, new_stmts);
gap.end = splice_start;
}
}
pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
if index < self.statements.len() {
&self.statements[index]
} else {
&self.terminator
}
}
}
impl<'tcx> Debug for TerminatorKind<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
self.fmt_head(fmt)?;
let successor_count = self.successors().count();
let labels = self.fmt_successor_labels();
assert_eq!(successor_count, labels.len());
match successor_count {
0 => Ok(()),
1 => write!(fmt, " -> {:?}", self.successors().nth(0).unwrap()),
_ => {
write!(fmt, " -> [")?;
for (i, target) in self.successors().enumerate() {
if i > 0 {
write!(fmt, ", ")?;
}
write!(fmt, "{}: {:?}", labels[i], target)?;
}
write!(fmt, "]")
}
}
}
}
impl<'tcx> TerminatorKind<'tcx> {
/// Write the "head" part of the terminator; that is, its name and the data it uses to pick the
/// successor basic block, if any. The only information not included is the list of possible
/// successors, which may be rendered differently between the text and the graphviz format.
pub fn fmt_head<W: Write>(&self, fmt: &mut W) -> fmt::Result {
use self::TerminatorKind::*;
match *self {
Goto { .. } => write!(fmt, "goto"),
SwitchInt {
discr: ref place, ..
} => write!(fmt, "switchInt({:?})", place),
Return => write!(fmt, "return"),
GeneratorDrop => write!(fmt, "generator_drop"),
Resume => write!(fmt, "resume"),
Abort => write!(fmt, "abort"),
Yield { ref value, .. } => write!(fmt, "_1 = suspend({:?})", value),
Unreachable => write!(fmt, "unreachable"),
Drop { ref location, .. } => write!(fmt, "drop({:?})", location),
DropAndReplace {
ref location,
ref value,
..
} => write!(fmt, "replace({:?} <- {:?})", location, value),
Call {
ref func,
ref args,
ref destination,
..
} => {
if let Some((ref destination, _)) = *destination {
write!(fmt, "{:?} = ", destination)?;
}
write!(fmt, "{:?}(", func)?;
for (index, arg) in args.iter().enumerate() {
if index > 0 {
write!(fmt, ", ")?;
}
write!(fmt, "{:?}", arg)?;
}
write!(fmt, ")")
}
Assert {
ref cond,
expected,
ref msg,
..
} => {
write!(fmt, "assert(")?;
if !expected {
write!(fmt, "!")?;
}
write!(fmt, "{:?}, \"{:?}\")", cond, msg)
}
FalseEdges { .. } => write!(fmt, "falseEdges"),
FalseUnwind { .. } => write!(fmt, "falseUnwind"),
}
}
/// Returns the list of labels for the edges to the successor basic blocks.
pub fn fmt_successor_labels(&self) -> Vec<Cow<'static, str>> {
use self::TerminatorKind::*;
match *self {
Return | Resume | Abort | Unreachable | GeneratorDrop => vec![],
Goto { .. } => vec!["".into()],
SwitchInt {
ref values,
switch_ty,
..
} => {
ty::tls::with(|tcx| {
let param_env = ty::ParamEnv::empty();
let switch_ty = tcx.lift_to_global(&switch_ty).unwrap();
let size = tcx.layout_of(param_env.and(switch_ty)).unwrap().size;
values
.iter()
.map(|&u| {
tcx.mk_const(ty::Const {
val: ConstValue::Scalar(
Scalar::from_uint(u, size).into(),
),
ty: switch_ty,
}).to_string().into()
}).chain(iter::once("otherwise".into()))
.collect()
})
}
Call {
destination: Some(_),
cleanup: Some(_),
..
} => vec!["return".into(), "unwind".into()],
Call {
destination: Some(_),
cleanup: None,
..
} => vec!["return".into()],
Call {
destination: None,
cleanup: Some(_),
..
} => vec!["unwind".into()],
Call {
destination: None,
cleanup: None,
..
} => vec![],
Yield { drop: Some(_), .. } => vec!["resume".into(), "drop".into()],
Yield { drop: None, .. } => vec!["resume".into()],
DropAndReplace { unwind: None, .. } | Drop { unwind: None, .. } => {
vec!["return".into()]
}
DropAndReplace {
unwind: Some(_), ..
}
| Drop {
unwind: Some(_), ..
} => vec!["return".into(), "unwind".into()],
Assert { cleanup: None, .. } => vec!["".into()],
Assert { .. } => vec!["success".into(), "unwind".into()],
FalseEdges {
ref imaginary_targets,
..
} => {
let mut l = vec!["real".into()];
l.resize(imaginary_targets.len() + 1, "imaginary".into());
l
}
FalseUnwind {
unwind: Some(_), ..
} => vec!["real".into(), "cleanup".into()],
FalseUnwind { unwind: None, .. } => vec!["real".into()],
}
}
}
///////////////////////////////////////////////////////////////////////////
// Statements
#[derive(Clone, RustcEncodable, RustcDecodable, HashStable)]
pub struct Statement<'tcx> {
pub source_info: SourceInfo,
pub kind: StatementKind<'tcx>,
}
// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert_size!(Statement<'_>, 56);
impl<'tcx> Statement<'tcx> {
/// Changes a statement to a nop. This is both faster than deleting instructions and avoids
/// invalidating statement indices in `Location`s.
pub fn make_nop(&mut self) {
self.kind = StatementKind::Nop
}
/// Changes a statement to a nop and returns the original statement.
pub fn replace_nop(&mut self) -> Self {
Statement {
source_info: self.source_info,
kind: mem::replace(&mut self.kind, StatementKind::Nop),
}
}
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub enum StatementKind<'tcx> {
/// Write the RHS Rvalue to the LHS Place.
Assign(Place<'tcx>, Box<Rvalue<'tcx>>),
/// This represents all the reading that a pattern match may do
/// (e.g., inspecting constants and discriminant values), and the
/// kind of pattern it comes from. This is in order to adapt potential
/// error messages to these specific patterns.
///
/// Note that this also is emitted for regular `let` bindings to ensure that locals that are
/// never accessed still get some sanity checks for, e.g., `let x: ! = ..;`
FakeRead(FakeReadCause, Place<'tcx>),
/// Write the discriminant for a variant to the enum Place.
SetDiscriminant {
place: Place<'tcx>,
variant_index: VariantIdx,
},
/// Start a live range for the storage of the local.
StorageLive(Local),
/// End the current live range for the storage of the local.
StorageDead(Local),
/// Executes a piece of inline Assembly. Stored in a Box to keep the size
/// of `StatementKind` low.
InlineAsm(Box<InlineAsm<'tcx>>),
/// Retag references in the given place, ensuring they got fresh tags. This is
/// part of the Stacked Borrows model. These statements are currently only interpreted
/// by miri and only generated when "-Z mir-emit-retag" is passed.
/// See <https://internals.rust-lang.org/t/stacked-borrows-an-aliasing-model-for-rust/8153/>
/// for more details.
Retag(RetagKind, Place<'tcx>),
/// Encodes a user's type ascription. These need to be preserved
/// intact so that NLL can respect them. For example:
///
/// let a: T = y;
///
/// The effect of this annotation is to relate the type `T_y` of the place `y`
/// to the user-given type `T`. The effect depends on the specified variance:
///
/// - `Covariant` -- requires that `T_y <: T`
/// - `Contravariant` -- requires that `T_y :> T`
/// - `Invariant` -- requires that `T_y == T`
/// - `Bivariant` -- no effect
AscribeUserType(Place<'tcx>, ty::Variance, Box<UserTypeProjection>),
/// No-op. Useful for deleting instructions without affecting statement indices.
Nop,
}
/// `RetagKind` describes what kind of retag is to be performed.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, PartialEq, Eq, HashStable)]
pub enum RetagKind {
/// The initial retag when entering a function
FnEntry,
/// Retag preparing for a two-phase borrow
TwoPhase,
/// Retagging raw pointers
Raw,
/// A "normal" retag
Default,
}
/// The `FakeReadCause` describes the type of pattern why a `FakeRead` statement exists.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Debug, HashStable)]
pub enum FakeReadCause {
/// Inject a fake read of the borrowed input at the end of each guards
/// code.
///
/// This should ensure that you cannot change the variant for an enum while
/// you are in the midst of matching on it.
ForMatchGuard,
/// `let x: !; match x {}` doesn't generate any read of x so we need to
/// generate a read of x to check that it is initialized and safe.
ForMatchedPlace,
/// A fake read of the RefWithinGuard version of a bind-by-value variable
/// in a match guard to ensure that it's value hasn't change by the time
/// we create the OutsideGuard version.
ForGuardBinding,
/// Officially, the semantics of
///
/// `let pattern = <expr>;`
///
/// is that `<expr>` is evaluated into a temporary and then this temporary is
/// into the pattern.
///
/// However, if we see the simple pattern `let var = <expr>`, we optimize this to
/// evaluate `<expr>` directly into the variable `var`. This is mostly unobservable,
/// but in some cases it can affect the borrow checker, as in #53695.
/// Therefore, we insert a "fake read" here to ensure that we get
/// appropriate errors.
ForLet,
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct InlineAsm<'tcx> {
pub asm: HirInlineAsm,
pub outputs: Box<[Place<'tcx>]>,
pub inputs: Box<[(Span, Operand<'tcx>)]>,
}
impl<'tcx> Debug for Statement<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
use self::StatementKind::*;
match self.kind {
Assign(ref place, ref rv) => write!(fmt, "{:?} = {:?}", place, rv),
FakeRead(ref cause, ref place) => write!(fmt, "FakeRead({:?}, {:?})", cause, place),
Retag(ref kind, ref place) =>
write!(fmt, "Retag({}{:?})",
match kind {
RetagKind::FnEntry => "[fn entry] ",
RetagKind::TwoPhase => "[2phase] ",
RetagKind::Raw => "[raw] ",
RetagKind::Default => "",
},
place,
),
StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place),
StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place),
SetDiscriminant {
ref place,
variant_index,
} => write!(fmt, "discriminant({:?}) = {:?}", place, variant_index),
InlineAsm(ref asm) =>
write!(fmt, "asm!({:?} : {:?} : {:?})", asm.asm, asm.outputs, asm.inputs),
AscribeUserType(ref place, ref variance, ref c_ty) => {
write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty)
}
Nop => write!(fmt, "nop"),
}
}
}
///////////////////////////////////////////////////////////////////////////
// Places
/// A path to a value; something that can be evaluated without
/// changing or disturbing program state.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum Place<'tcx> {
Base(PlaceBase<'tcx>),
/// projection out of a place (access a field, deref a pointer, etc)
Projection(Box<Projection<'tcx>>),
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum PlaceBase<'tcx> {
/// local variable
Local(Local),
/// static or static mut variable
Static(Box<Static<'tcx>>),
}
/// We store the normalized type to avoid requiring normalization when reading MIR
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct Static<'tcx> {
pub ty: Ty<'tcx>,
pub kind: StaticKind,
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable, RustcEncodable, RustcDecodable)]
pub enum StaticKind {
Promoted(Promoted),
Static(DefId),
}
impl_stable_hash_for!(struct Static<'tcx> {
ty,
kind
});
/// The `Projection` data structure defines things of the form `base.x`, `*b` or `b[index]`.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord,
Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct Projection<'tcx> {
pub base: Place<'tcx>,
pub elem: PlaceElem<'tcx>,
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord,
Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum ProjectionElem<V, T> {
Deref,
Field(Field, T),
Index(V),
/// These indices are generated by slice patterns. Easiest to explain
/// by example:
///
/// ```
/// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
/// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
/// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
/// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
/// ```
ConstantIndex {
/// index or -index (in Python terms), depending on from_end
offset: u32,
/// thing being indexed must be at least this long
min_length: u32,
/// counting backwards from end?
from_end: bool,
},
/// These indices are generated by slice patterns.
///
/// slice[from:-to] in Python terms.
Subslice {
from: u32,
to: u32,
},
/// "Downcast" to a variant of an ADT. Currently, we only introduce
/// this for ADTs with more than one variant. It may be better to
/// just introduce it always, or always for enums.
///
/// The included Symbol is the name of the variant, used for printing MIR.
Downcast(Option<Symbol>, VariantIdx),
}
/// Alias for projections as they appear in places, where the base is a place
/// and the index is a local.
pub type PlaceElem<'tcx> = ProjectionElem<Local, Ty<'tcx>>;
// At least on 64 bit systems, `PlaceElem` should not be larger than two pointers.
#[cfg(target_arch = "x86_64")]
static_assert_size!(PlaceElem<'_>, 16);
/// Alias for projections as they appear in `UserTypeProjection`, where we
/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
pub type ProjectionKind = ProjectionElem<(), ()>;
newtype_index! {
pub struct Field {
derive [HashStable]
DEBUG_FORMAT = "field[{}]"
}
}
impl<'tcx> Place<'tcx> {
pub const RETURN_PLACE: Place<'tcx> = Place::Base(PlaceBase::Local(RETURN_PLACE));
pub fn field(self, f: Field, ty: Ty<'tcx>) -> Place<'tcx> {
self.elem(ProjectionElem::Field(f, ty))
}
pub fn deref(self) -> Place<'tcx> {
self.elem(ProjectionElem::Deref)
}
pub fn downcast(self, adt_def: &'tcx AdtDef, variant_index: VariantIdx) -> Place<'tcx> {
self.elem(ProjectionElem::Downcast(
Some(adt_def.variants[variant_index].ident.name),
variant_index))
}
pub fn downcast_unnamed(self, variant_index: VariantIdx) -> Place<'tcx> {
self.elem(ProjectionElem::Downcast(None, variant_index))
}
pub fn index(self, index: Local) -> Place<'tcx> {
self.elem(ProjectionElem::Index(index))
}
pub fn elem(self, elem: PlaceElem<'tcx>) -> Place<'tcx> {
Place::Projection(Box::new(Projection { base: self, elem }))
}
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
//
// FIXME: can we safely swap the semantics of `fn base_local` below in here instead?
pub fn local_or_deref_local(&self) -> Option<Local> {
match self {
Place::Base(PlaceBase::Local(local)) |
Place::Projection(box Projection {
base: Place::Base(PlaceBase::Local(local)),
elem: ProjectionElem::Deref,
}) => Some(*local),
_ => None,
}
}
/// Finds the innermost `Local` from this `Place`.
pub fn base_local(&self) -> Option<Local> {
let mut place = self;
loop {
match place {
Place::Projection(proj) => place = &proj.base,
Place::Base(PlaceBase::Static(_)) => return None,
Place::Base(PlaceBase::Local(local)) => return Some(*local),
}
}
}
/// Recursively "iterates" over place components, generating a `PlaceBase` and
/// `Projections` list and invoking `op` with a `ProjectionsIter`.
pub fn iterate<R>(
&self,
op: impl FnOnce(&PlaceBase<'tcx>, ProjectionsIter<'_, 'tcx>) -> R,
) -> R {
self.iterate2(&Projections::Empty, op)
}
fn iterate2<R>(
&self,
next: &Projections<'_, 'tcx>,
op: impl FnOnce(&PlaceBase<'tcx>, ProjectionsIter<'_, 'tcx>) -> R,
) -> R {
match self {
Place::Projection(interior) => interior.base.iterate2(
&Projections::List {
projection: interior,
next,
},
op,
),
Place::Base(base) => op(base, next.iter()),
}
}
}
/// A linked list of projections running up the stack; begins with the
/// innermost projection and extends to the outermost (e.g., `a.b.c`
/// would have the place `b` with a "next" pointer to `b.c`).
/// Created by `Place::iterate`.
///
/// N.B., this particular impl strategy is not the most obvious. It was
/// chosen because it makes a measurable difference to NLL
/// performance, as this code (`borrow_conflicts_with_place`) is somewhat hot.
pub enum Projections<'p, 'tcx: 'p> {
Empty,
List {
projection: &'p Projection<'tcx>,
next: &'p Projections<'p, 'tcx>,
}
}
impl<'p, 'tcx> Projections<'p, 'tcx> {
fn iter(&self) -> ProjectionsIter<'_, 'tcx> {
ProjectionsIter { value: self }
}
}
impl<'p, 'tcx> IntoIterator for &'p Projections<'p, 'tcx> {
type Item = &'p Projection<'tcx>;
type IntoIter = ProjectionsIter<'p, 'tcx>;
/// Converts a list of `Projection` components into an iterator;
/// this iterator yields up a never-ending stream of `Option<&Place>`.
/// These begin with the "innermost" projection and then with each
/// projection therefrom. So given a place like `a.b.c` it would
/// yield up:
///
/// ```notrust
/// Some(`a`), Some(`a.b`), Some(`a.b.c`), None, None, ...
/// ```
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// Iterator over components; see `Projections::iter` for more
/// information.
///
/// N.B., this is not a *true* Rust iterator -- the code above just
/// manually invokes `next`. This is because we (sometimes) want to
/// keep executing even after `None` has been returned.
pub struct ProjectionsIter<'p, 'tcx: 'p> {
pub value: &'p Projections<'p, 'tcx>,
}
impl<'p, 'tcx> Iterator for ProjectionsIter<'p, 'tcx> {
type Item = &'p Projection<'tcx>;
fn next(&mut self) -> Option<Self::Item> {
if let &Projections::List { projection, next } = self.value {
self.value = next;
Some(projection)
} else {
None
}
}
}
impl<'p, 'tcx> FusedIterator for ProjectionsIter<'p, 'tcx> {}
impl<'tcx> Debug for Place<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
self.iterate(|_place_base, place_projections| {
// FIXME: remove this collect once we have migrated to slices
let projs_vec: Vec<_> = place_projections.collect();
for projection in projs_vec.iter().rev() {
match projection.elem {
ProjectionElem::Downcast(_, _) |
ProjectionElem::Field(_, _) => {
write!(fmt, "(").unwrap();
}
ProjectionElem::Deref => {
write!(fmt, "(*").unwrap();
}
ProjectionElem::Index(_) |
ProjectionElem::ConstantIndex { .. } |
ProjectionElem::Subslice { .. } => {}
}
}
});
self.iterate(|place_base, place_projections| {
match place_base {
PlaceBase::Local(id) => {
write!(fmt, "{:?}", id)?;
}
PlaceBase::Static(box self::Static { ty, kind: StaticKind::Static(def_id) }) => {
write!(
fmt,
"({}: {:?})",
ty::tls::with(|tcx| tcx.def_path_str(*def_id)),
ty
)?;
},
PlaceBase::Static(
box self::Static { ty, kind: StaticKind::Promoted(promoted) }
) => {
write!(
fmt,
"({:?}: {:?})",
promoted,
ty
)?;
},
}
for projection in place_projections {
match projection.elem {
ProjectionElem::Downcast(Some(name), _index) => {
write!(fmt, " as {})", name)?;
}
ProjectionElem::Downcast(None, index) => {
write!(fmt, " as variant#{:?})", index)?;
}
ProjectionElem::Deref => {
write!(fmt, ")")?;
}
ProjectionElem::Field(field, ty) => {
write!(fmt, ".{:?}: {:?})", field.index(), ty)?;
}
ProjectionElem::Index(ref index) => {
write!(fmt, "[{:?}]", index)?;
}
ProjectionElem::ConstantIndex {
offset,
min_length,
from_end: false,
} => {
write!(fmt, "[{:?} of {:?}]", offset, min_length)?;
}
ProjectionElem::ConstantIndex {
offset,
min_length,
from_end: true,
} => {
write!(fmt, "[-{:?} of {:?}]", offset, min_length)?;
}
ProjectionElem::Subslice { from, to } if to == 0 => {
write!(fmt, "[{:?}:]", from)?;
}
ProjectionElem::Subslice { from, to } if from == 0 => {
write!(fmt, "[:-{:?}]", to)?;
}
ProjectionElem::Subslice { from, to } => {
write!(fmt, "[{:?}:-{:?}]", from, to)?;
}
}
}
Ok(())
})
}
}
///////////////////////////////////////////////////////////////////////////
// Scopes
newtype_index! {
pub struct SourceScope {
derive [HashStable]
DEBUG_FORMAT = "scope[{}]",
const OUTERMOST_SOURCE_SCOPE = 0,
}
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct SourceScopeData {
pub span: Span,
pub parent_scope: Option<SourceScope>,
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct SourceScopeLocalData {
/// A HirId with lint levels equivalent to this scope's lint levels.
pub lint_root: hir::HirId,
/// The unsafe block that contains this node.
pub safety: Safety,
}
///////////////////////////////////////////////////////////////////////////
// Operands
/// These are values that can appear inside an rvalue. They are intentionally
/// limited to prevent rvalues from being nested in one another.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, HashStable)]
pub enum Operand<'tcx> {
/// Copy: The value must be available for use afterwards.
///
/// This implies that the type of the place must be `Copy`; this is true
/// by construction during build, but also checked by the MIR type checker.
Copy(Place<'tcx>),
/// Move: The value (including old borrows of it) will not be used again.
///
/// Safe for values of all types (modulo future developments towards `?Move`).
/// Correct usage patterns are enforced by the borrow checker for safe code.
/// `Copy` may be converted to `Move` to enable "last-use" optimizations.
Move(Place<'tcx>),
/// Synthesizes a constant value.
Constant(Box<Constant<'tcx>>),
}
impl<'tcx> Debug for Operand<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
use self::Operand::*;
match *self {
Constant(ref a) => write!(fmt, "{:?}", a),
Copy(ref place) => write!(fmt, "{:?}", place),
Move(ref place) => write!(fmt, "move {:?}", place),
}
}
}
impl<'tcx> Operand<'tcx> {
/// Convenience helper to make a constant that refers to the fn
/// with given `DefId` and substs. Since this is used to synthesize
/// MIR, assumes `user_ty` is None.
pub fn function_handle<'a>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId,
substs: SubstsRef<'tcx>,
span: Span,
) -> Self {
let ty = tcx.type_of(def_id).subst(tcx, substs);
Operand::Constant(box Constant {
span,
ty,
user_ty: None,
literal: ty::Const::zero_sized(tcx, ty),
})
}
pub fn to_copy(&self) -> Self {
match *self {
Operand::Copy(_) | Operand::Constant(_) => self.clone(),
Operand::Move(ref place) => Operand::Copy(place.clone()),
}
}
}
///////////////////////////////////////////////////////////////////////////
/// Rvalues
#[derive(Clone, RustcEncodable, RustcDecodable, HashStable)]
pub enum Rvalue<'tcx> {
/// x (either a move or copy, depending on type of x)
Use(Operand<'tcx>),
/// [x; 32]
Repeat(Operand<'tcx>, u64),
/// &x or &mut x
Ref(Region<'tcx>, BorrowKind, Place<'tcx>),
/// length of a [X] or [X;n] value
Len(Place<'tcx>),
Cast(CastKind, Operand<'tcx>, Ty<'tcx>),
BinaryOp(BinOp, Operand<'tcx>, Operand<'tcx>),
CheckedBinaryOp(BinOp, Operand<'tcx>, Operand<'tcx>),
NullaryOp(NullOp, Ty<'tcx>),
UnaryOp(UnOp, Operand<'tcx>),
/// Read the discriminant of an ADT.
///
/// Undefined (i.e., no effort is made to make it defined, but theres no reason why it cannot
/// be defined to return, say, a 0) if ADT is not an enum.
Discriminant(Place<'tcx>),
/// Creates an aggregate value, like a tuple or struct. This is
/// only needed because we want to distinguish `dest = Foo { x:
/// ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case
/// that `Foo` has a destructor. These rvalues can be optimized
/// away after type-checking and before lowering.
Aggregate(Box<AggregateKind<'tcx>>, Vec<Operand<'tcx>>),
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum CastKind {
Misc,
Pointer(PointerCast),
}
#[derive(Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum AggregateKind<'tcx> {
/// The type is of the element
Array(Ty<'tcx>),
Tuple,
/// The second field is the variant index. It's equal to 0 for struct
/// and union expressions. The fourth field is
/// active field number and is present only for union expressions
/// -- e.g., for a union expression `SomeUnion { c: .. }`, the
/// active field index would identity the field `c`
Adt(
&'tcx AdtDef,
VariantIdx,
SubstsRef<'tcx>,
Option<UserTypeAnnotationIndex>,
Option<usize>,
),
Closure(DefId, ClosureSubsts<'tcx>),
Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum BinOp {
/// The `+` operator (addition)
Add,
/// The `-` operator (subtraction)
Sub,
/// The `*` operator (multiplication)
Mul,
/// The `/` operator (division)
Div,
/// The `%` operator (modulus)
Rem,
/// The `^` operator (bitwise xor)
BitXor,
/// The `&` operator (bitwise and)
BitAnd,
/// The `|` operator (bitwise or)
BitOr,
/// The `<<` operator (shift left)
Shl,
/// The `>>` operator (shift right)
Shr,
/// The `==` operator (equality)
Eq,
/// The `<` operator (less than)
Lt,
/// The `<=` operator (less than or equal to)
Le,
/// The `!=` operator (not equal to)
Ne,
/// The `>=` operator (greater than or equal to)
Ge,
/// The `>` operator (greater than)
Gt,
/// The `ptr.offset` operator
Offset,
}
impl BinOp {
pub fn is_checkable(self) -> bool {
use self::BinOp::*;
match self {
Add | Sub | Mul | Shl | Shr => true,
_ => false,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum NullOp {
/// Returns the size of a value of that type
SizeOf,
/// Creates a new uninitialized box for a value of that type
Box,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum UnOp {
/// The `!` operator for logical inversion
Not,
/// The `-` operator for negation
Neg,
}
impl<'tcx> Debug for Rvalue<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
use self::Rvalue::*;
match *self {
Use(ref place) => write!(fmt, "{:?}", place),
Repeat(ref a, ref b) => write!(fmt, "[{:?}; {:?}]", a, b),
Len(ref a) => write!(fmt, "Len({:?})", a),
Cast(ref kind, ref place, ref ty) => {
write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind)
}
BinaryOp(ref op, ref a, ref b) => write!(fmt, "{:?}({:?}, {:?})", op, a, b),
CheckedBinaryOp(ref op, ref a, ref b) => {
write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b)
}
UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a),
Discriminant(ref place) => write!(fmt, "discriminant({:?})", place),
NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t),
Ref(region, borrow_kind, ref place) => {
let kind_str = match borrow_kind {
BorrowKind::Shared => "",
BorrowKind::Shallow => "shallow ",
BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ",
};
// When printing regions, add trailing space if necessary.
let print_region = ty::tls::with(|tcx| {
tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions
});
let region = if print_region {
let mut region = region.to_string();
if region.len() > 0 {
region.push(' ');
}
region
} else {
// Do not even print 'static
String::new()
};
write!(fmt, "&{}{}{:?}", region, kind_str, place)
}
Aggregate(ref kind, ref places) => {
fn fmt_tuple(fmt: &mut Formatter<'_>, places: &[Operand<'_>]) -> fmt::Result {
let mut tuple_fmt = fmt.debug_tuple("");
for place in places {
tuple_fmt.field(place);
}
tuple_fmt.finish()
}
match **kind {
AggregateKind::Array(_) => write!(fmt, "{:?}", places),
AggregateKind::Tuple => match places.len() {
0 => write!(fmt, "()"),
1 => write!(fmt, "({:?},)", places[0]),
_ => fmt_tuple(fmt, places),
},
AggregateKind::Adt(adt_def, variant, substs, _user_ty, _) => {
let variant_def = &adt_def.variants[variant];
let f = &mut *fmt;
ty::tls::with(|tcx| {
let substs = tcx.lift(&substs).expect("could not lift for printing");
FmtPrinter::new(tcx, f, Namespace::ValueNS)
.print_def_path(variant_def.def_id, substs)?;
Ok(())
})?;
match variant_def.ctor_kind {
CtorKind::Const => Ok(()),
CtorKind::Fn => fmt_tuple(fmt, places),
CtorKind::Fictive => {
let mut struct_fmt = fmt.debug_struct("");
for (field, place) in variant_def.fields.iter().zip(places) {
struct_fmt.field(&field.ident.as_str(), place);
}
struct_fmt.finish()
}
}
}
AggregateKind::Closure(def_id, _) => ty::tls::with(|tcx| {
if let Some(hir_id) = tcx.hir().as_local_hir_id(def_id) {
let name = if tcx.sess.opts.debugging_opts.span_free_formats {
format!("[closure@{:?}]", hir_id)
} else {
format!("[closure@{:?}]", tcx.hir().span_by_hir_id(hir_id))
};
let mut struct_fmt = fmt.debug_struct(&name);
if let Some(upvars) = tcx.upvars(def_id) {
for (&var_id, place) in upvars.keys().zip(places) {
let var_name = tcx.hir().name_by_hir_id(var_id);
struct_fmt.field(&var_name.as_str(), place);
}
}
struct_fmt.finish()
} else {
write!(fmt, "[closure]")
}
}),
AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
if let Some(hir_id) = tcx.hir().as_local_hir_id(def_id) {
let name = format!("[generator@{:?}]",
tcx.hir().span_by_hir_id(hir_id));
let mut struct_fmt = fmt.debug_struct(&name);
if let Some(upvars) = tcx.upvars(def_id) {
for (&var_id, place) in upvars.keys().zip(places) {
let var_name = tcx.hir().name_by_hir_id(var_id);
struct_fmt.field(&var_name.as_str(), place);
}
}
struct_fmt.finish()
} else {
write!(fmt, "[generator]")
}
}),
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////
/// Constants
///
/// Two constants are equal if they are the same constant. Note that
/// this does not necessarily mean that they are "==" in Rust -- in
/// particular one must be wary of `NaN`!
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct Constant<'tcx> {
pub span: Span,
pub ty: Ty<'tcx>,
/// Optional user-given type: for something like
/// `collect::<Vec<_>>`, this would be present and would
/// indicate that `Vec<_>` was explicitly specified.
///
/// Needed for NLL to impose user-given type constraints.
pub user_ty: Option<UserTypeAnnotationIndex>,
pub literal: &'tcx ty::Const<'tcx>,
}
/// A collection of projections into user types.
///
/// They are projections because a binding can occur a part of a
/// parent pattern that has been ascribed a type.
///
/// Its a collection because there can be multiple type ascriptions on
/// the path from the root of the pattern down to the binding itself.
///
/// An example:
///
/// ```rust
/// struct S<'a>((i32, &'a str), String);
/// let S((_, w): (i32, &'static str), _): S = ...;
/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
/// // --------------------------------- ^ (2)
/// ```
///
/// The highlights labelled `(1)` show the subpattern `(_, w)` being
/// ascribed the type `(i32, &'static str)`.
///
/// The highlights labelled `(2)` show the whole pattern being
/// ascribed the type `S`.
///
/// In this example, when we descend to `w`, we will have built up the
/// following two projected types:
///
/// * base: `S`, projection: `(base.0).1`
/// * base: `(i32, &'static str)`, projection: `base.1`
///
/// The first will lead to the constraint `w: &'1 str` (for some
/// inferred region `'1`). The second will lead to the constraint `w:
/// &'static str`.
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct UserTypeProjections {
pub(crate) contents: Vec<(UserTypeProjection, Span)>,
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for UserTypeProjections {
contents
}
}
impl<'tcx> UserTypeProjections {
pub fn none() -> Self {
UserTypeProjections { contents: vec![] }
}
pub fn from_projections(projs: impl Iterator<Item=(UserTypeProjection, Span)>) -> Self {
UserTypeProjections { contents: projs.collect() }
}
pub fn projections_and_spans(&self) -> impl Iterator<Item=&(UserTypeProjection, Span)> {
self.contents.iter()
}
pub fn projections(&self) -> impl Iterator<Item=&UserTypeProjection> {
self.contents.iter().map(|&(ref user_type, _span)| user_type)
}
pub fn push_projection(
mut self,
user_ty: &UserTypeProjection,
span: Span,
) -> Self {
self.contents.push((user_ty.clone(), span));
self
}
fn map_projections(
mut self,
mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection
) -> Self {
self.contents = self.contents.drain(..).map(|(proj, span)| (f(proj), span)).collect();
self
}
pub fn index(self) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.index())
}
pub fn subslice(self, from: u32, to: u32) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
}
pub fn deref(self) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
}
pub fn leaf(self, field: Field) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
}
pub fn variant(
self,
adt_def: &'tcx AdtDef,
variant_index: VariantIdx,
field: Field,
) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field))
}
}
/// Encodes the effect of a user-supplied type annotation on the
/// subcomponents of a pattern. The effect is determined by applying the
/// given list of proejctions to some underlying base type. Often,
/// the projection element list `projs` is empty, in which case this
/// directly encodes a type in `base`. But in the case of complex patterns with
/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
/// in which case the `projs` vector is used.
///
/// Examples:
///
/// * `let x: T = ...` -- here, the `projs` vector is empty.
///
/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
/// `field[0]` (aka `.0`), indicating that the type of `s` is
/// determined by finding the type of the `.0` field from `T`.
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct UserTypeProjection {
pub base: UserTypeAnnotationIndex,
pub projs: Vec<ProjectionKind>,
}
impl Copy for ProjectionKind { }
impl UserTypeProjection {
pub(crate) fn index(mut self) -> Self {
self.projs.push(ProjectionElem::Index(()));
self
}
pub(crate) fn subslice(mut self, from: u32, to: u32) -> Self {
self.projs.push(ProjectionElem::Subslice { from, to });
self
}
pub(crate) fn deref(mut self) -> Self {
self.projs.push(ProjectionElem::Deref);
self
}
pub(crate) fn leaf(mut self, field: Field) -> Self {
self.projs.push(ProjectionElem::Field(field, ()));
self
}
pub(crate) fn variant(
mut self,
adt_def: &'tcx AdtDef,
variant_index: VariantIdx,
field: Field,
) -> Self {
self.projs.push(ProjectionElem::Downcast(
Some(adt_def.variants[variant_index].ident.name),
variant_index));
self.projs.push(ProjectionElem::Field(field, ()));
self
}
}
CloneTypeFoldableAndLiftImpls! { ProjectionKind, }
impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
use crate::mir::ProjectionElem::*;
let base = self.base.fold_with(folder);
let projs: Vec<_> = self.projs
.iter()
.map(|elem| {
match elem {
Deref => Deref,
Field(f, ()) => Field(f.clone(), ()),
Index(()) => Index(()),
elem => elem.clone(),
}})
.collect();
UserTypeProjection { base, projs }
}
fn super_visit_with<Vs: TypeVisitor<'tcx>>(&self, visitor: &mut Vs) -> bool {
self.base.visit_with(visitor)
// Note: there's nothing in `self.proj` to visit.
}
}
newtype_index! {
pub struct Promoted {
derive [HashStable]
DEBUG_FORMAT = "promoted[{}]"
}
}
impl<'tcx> Debug for Constant<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
write!(fmt, "{}", self)
}
}
impl<'tcx> Display for Constant<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
write!(fmt, "const ")?;
write!(fmt, "{}", self.literal)
}
}
impl<'tcx> graph::DirectedGraph for Body<'tcx> {
type Node = BasicBlock;
}
impl<'tcx> graph::WithNumNodes for Body<'tcx> {
fn num_nodes(&self) -> usize {
self.basic_blocks.len()
}
}
impl<'tcx> graph::WithStartNode for Body<'tcx> {
fn start_node(&self) -> Self::Node {
START_BLOCK
}
}
impl<'tcx> graph::WithPredecessors for Body<'tcx> {
fn predecessors<'graph>(
&'graph self,
node: Self::Node,
) -> <Self as GraphPredecessors<'graph>>::Iter {
self.predecessors_for(node).clone().into_iter()
}
}
impl<'tcx> graph::WithSuccessors for Body<'tcx> {
fn successors<'graph>(
&'graph self,
node: Self::Node,
) -> <Self as GraphSuccessors<'graph>>::Iter {
self.basic_blocks[node].terminator().successors().cloned()
}
}
impl<'a, 'b> graph::GraphPredecessors<'b> for Body<'a> {
type Item = BasicBlock;
type Iter = IntoIter<BasicBlock>;
}
impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> {
type Item = BasicBlock;
type Iter = iter::Cloned<Successors<'b>>;
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
pub struct Location {
/// the location is within this block
pub block: BasicBlock,
/// the location is the start of the statement; or, if `statement_index`
/// == num-statements, then the start of the terminator.
pub statement_index: usize,
}
impl fmt::Debug for Location {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "{:?}[{}]", self.block, self.statement_index)
}
}
impl Location {
pub const START: Location = Location {
block: START_BLOCK,
statement_index: 0,
};
/// Returns the location immediately after this one within the enclosing block.
///
/// Note that if this location represents a terminator, then the
/// resulting location would be out of bounds and invalid.
pub fn successor_within_block(&self) -> Location {
Location {
block: self.block,
statement_index: self.statement_index + 1,
}
}
/// Returns `true` if `other` is earlier in the control flow graph than `self`.
pub fn is_predecessor_of<'tcx>(&self, other: Location, mir: &Body<'tcx>) -> bool {
// If we are in the same block as the other location and are an earlier statement
// then we are a predecessor of `other`.
if self.block == other.block && self.statement_index < other.statement_index {
return true;
}
// If we're in another block, then we want to check that block is a predecessor of `other`.
let mut queue: Vec<BasicBlock> = mir.predecessors_for(other.block).clone();
let mut visited = FxHashSet::default();
while let Some(block) = queue.pop() {
// If we haven't visited this block before, then make sure we visit it's predecessors.
if visited.insert(block) {
queue.append(&mut mir.predecessors_for(block).clone());
} else {
continue;
}
// If we found the block that `self` is in, then we are a predecessor of `other` (since
// we found that block by looking at the predecessors of `other`).
if self.block == block {
return true;
}
}
false
}
pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
if self.block == other.block {
self.statement_index <= other.statement_index
} else {
dominators.is_dominated_by(other.block, self.block)
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum UnsafetyViolationKind {
General,
/// Permitted in const fn and regular fns.
GeneralAndConstFn,
ExternStatic(hir::HirId),
BorrowPacked(hir::HirId),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct UnsafetyViolation {
pub source_info: SourceInfo,
pub description: InternedString,
pub details: InternedString,
pub kind: UnsafetyViolationKind,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
pub struct UnsafetyCheckResult {
/// Violations that are propagated *upwards* from this function
pub violations: Lrc<[UnsafetyViolation]>,
/// unsafe blocks in this function, along with whether they are used. This is
/// used for the "unused_unsafe" lint.
pub unsafe_blocks: Lrc<[(hir::HirId, bool)]>,
}
newtype_index! {
pub struct GeneratorSavedLocal {
derive [HashStable]
DEBUG_FORMAT = "_{}",
}
}
/// The layout of generator state
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct GeneratorLayout<'tcx> {
/// The type of every local stored inside the generator.
pub field_tys: IndexVec<GeneratorSavedLocal, Ty<'tcx>>,
/// Which of the above fields are in each variant. Note that one field may
/// be stored in multiple variants.
pub variant_fields: IndexVec<VariantIdx, IndexVec<Field, GeneratorSavedLocal>>,
/// Names and scopes of all the stored generator locals.
/// NOTE(tmandry) This is *strictly* a temporary hack for codegen
/// debuginfo generation, and will be removed at some point.
/// Do **NOT** use it for anything else, local information should not be
/// in the MIR, please rely on local crate HIR or other side-channels.
pub __local_debuginfo_codegen_only_do_not_use: IndexVec<GeneratorSavedLocal, LocalDecl<'tcx>>,
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct BorrowCheckResult<'gcx> {
pub closure_requirements: Option<ClosureRegionRequirements<'gcx>>,
pub used_mut_upvars: SmallVec<[Field; 8]>,
}
/// After we borrow check a closure, we are left with various
/// requirements that we have inferred between the free regions that
/// appear in the closure's signature or on its field types. These
/// requirements are then verified and proved by the closure's
/// creating function. This struct encodes those requirements.
///
/// The requirements are listed as being between various
/// `RegionVid`. The 0th region refers to `'static`; subsequent region
/// vids refer to the free regions that appear in the closure (or
/// generator's) type, in order of appearance. (This numbering is
/// actually defined by the `UniversalRegions` struct in the NLL
/// region checker. See for example
/// `UniversalRegions::closure_mapping`.) Note that we treat the free
/// regions in the closure's type "as if" they were erased, so their
/// precise identity is not important, only their position.
///
/// Example: If type check produces a closure with the closure substs:
///
/// ```text
/// ClosureSubsts = [
/// i8, // the "closure kind"
/// for<'x> fn(&'a &'x u32) -> &'x u32, // the "closure signature"
/// &'a String, // some upvar
/// ]
/// ```
///
/// here, there is one unique free region (`'a`) but it appears
/// twice. We would "renumber" each occurrence to a unique vid, as follows:
///
/// ```text
/// ClosureSubsts = [
/// i8, // the "closure kind"
/// for<'x> fn(&'1 &'x u32) -> &'x u32, // the "closure signature"
/// &'2 String, // some upvar
/// ]
/// ```
///
/// Now the code might impose a requirement like `'1: '2`. When an
/// instance of the closure is created, the corresponding free regions
/// can be extracted from its type and constrained to have the given
/// outlives relationship.
///
/// In some cases, we have to record outlives requirements between
/// types and regions as well. In that case, if those types include
/// any regions, those regions are recorded as `ReClosureBound`
/// instances assigned one of these same indices. Those regions will
/// be substituted away by the creator. We use `ReClosureBound` in
/// that case because the regions must be allocated in the global
/// TyCtxt, and hence we cannot use `ReVar` (which is what we use
/// internally within the rest of the NLL code).
#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct ClosureRegionRequirements<'gcx> {
/// The number of external regions defined on the closure. In our
/// example above, it would be 3 -- one for `'static`, then `'1`
/// and `'2`. This is just used for a sanity check later on, to
/// make sure that the number of regions we see at the callsite
/// matches.
pub num_external_vids: usize,
/// Requirements between the various free regions defined in
/// indices.
pub outlives_requirements: Vec<ClosureOutlivesRequirement<'gcx>>,
}
/// Indicates an outlives constraint between a type or between two
/// free-regions declared on the closure.
#[derive(Copy, Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub struct ClosureOutlivesRequirement<'tcx> {
// This region or type ...
pub subject: ClosureOutlivesSubject<'tcx>,
// ... must outlive this one.
pub outlived_free_region: ty::RegionVid,
// If not, report an error here ...
pub blame_span: Span,
// ... due to this reason.
pub category: ConstraintCategory,
}
/// Outlives constraints can be categorized to determine whether and why they
/// are interesting (for error reporting). Order of variants indicates sort
/// order of the category, thereby influencing diagnostic output.
///
/// See also [rustc_mir::borrow_check::nll::constraints]
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord,
Hash, RustcEncodable, RustcDecodable, HashStable)]
pub enum ConstraintCategory {
Return,
Yield,
UseAsConst,
UseAsStatic,
TypeAnnotation,
Cast,
/// A constraint that came from checking the body of a closure.
///
/// We try to get the category that the closure used when reporting this.
ClosureBounds,
CallArgument,
CopyBound,
SizedBound,
Assignment,
OpaqueType,
/// A "boring" constraint (caused by the given location) is one that
/// the user probably doesn't want to see described in diagnostics,
/// because it is kind of an artifact of the type system setup.
/// Example: `x = Foo { field: y }` technically creates
/// intermediate regions representing the "type of `Foo { field: y
/// }`", and data flows from `y` into those variables, but they
/// are not very interesting. The assignment into `x` on the other
/// hand might be.
Boring,
// Boring and applicable everywhere.
BoringNoLocation,
/// A constraint that doesn't correspond to anything the user sees.
Internal,
}
/// The subject of a ClosureOutlivesRequirement -- that is, the thing
/// that must outlive some region.
#[derive(Copy, Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
pub enum ClosureOutlivesSubject<'tcx> {
/// Subject is a type, typically a type parameter, but could also
/// be a projection. Indicates a requirement like `T: 'a` being
/// passed to the caller, where the type here is `T`.
///
/// The type here is guaranteed not to contain any free regions at
/// present.
Ty(Ty<'tcx>),
/// Subject is a free region from the closure. Indicates a requirement
/// like `'a: 'b` being passed to the caller; the region here is `'a`.
Region(ty::RegionVid),
}
/*
* TypeFoldable implementations for MIR types
*/
CloneTypeFoldableAndLiftImpls! {
BlockTailInfo,
MirPhase,
Mutability,
SourceInfo,
UpvarDebuginfo,
FakeReadCause,
RetagKind,
SourceScope,
SourceScopeData,
SourceScopeLocalData,
UserTypeAnnotationIndex,
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for Body<'tcx> {
phase,
basic_blocks,
source_scopes,
source_scope_local_data,
promoted,
yield_ty,
generator_drop,
generator_layout,
local_decls,
user_type_annotations,
arg_count,
__upvar_debuginfo_codegen_only_do_not_use,
spread_arg,
control_flow_destroyed,
span,
cache,
}
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for GeneratorLayout<'tcx> {
field_tys,
variant_fields,
__local_debuginfo_codegen_only_do_not_use,
}
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for LocalDecl<'tcx> {
mutability,
is_user_variable,
internal,
ty,
user_ty,
name,
source_info,
is_block_tail,
visibility_scope,
}
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for BasicBlockData<'tcx> {
statements,
terminator,
is_cleanup,
}
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for Statement<'tcx> {
source_info, kind
}
}
EnumTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for StatementKind<'tcx> {
(StatementKind::Assign)(a, b),
(StatementKind::FakeRead)(cause, place),
(StatementKind::SetDiscriminant) { place, variant_index },
(StatementKind::StorageLive)(a),
(StatementKind::StorageDead)(a),
(StatementKind::InlineAsm)(a),
(StatementKind::Retag)(kind, place),
(StatementKind::AscribeUserType)(a, v, b),
(StatementKind::Nop),
}
}
BraceStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for InlineAsm<'tcx> {
asm,
outputs,
inputs,
}
}
EnumTypeFoldableImpl! {
impl<'tcx, T> TypeFoldable<'tcx> for ClearCrossCrate<T> {
(ClearCrossCrate::Clear),
(ClearCrossCrate::Set)(a),
} where T: TypeFoldable<'tcx>
}
impl<'tcx> TypeFoldable<'tcx> for Terminator<'tcx> {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
use crate::mir::TerminatorKind::*;
let kind = match self.kind {
Goto { target } => Goto { target },
SwitchInt {
ref discr,
switch_ty,
ref values,
ref targets,
} => SwitchInt {
discr: discr.fold_with(folder),
switch_ty: switch_ty.fold_with(folder),
values: values.clone(),
targets: targets.clone(),
},
Drop {
ref location,
target,
unwind,
} => Drop {
location: location.fold_with(folder),
target,
unwind,
},
DropAndReplace {
ref location,
ref value,
target,
unwind,
} => DropAndReplace {
location: location.fold_with(folder),
value: value.fold_with(folder),
target,
unwind,
},
Yield {
ref value,
resume,
drop,
} => Yield {
value: value.fold_with(folder),
resume: resume,
drop: drop,
},
Call {
ref func,
ref args,
ref destination,
cleanup,
from_hir_call,
} => {
let dest = destination
.as_ref()
.map(|&(ref loc, dest)| (loc.fold_with(folder), dest));
Call {
func: func.fold_with(folder),
args: args.fold_with(folder),
destination: dest,
cleanup,
from_hir_call,
}
}
Assert {
ref cond,
expected,
ref msg,
target,
cleanup,
} => {
let msg = if let InterpError::BoundsCheck { ref len, ref index } = *msg {
InterpError::BoundsCheck {
len: len.fold_with(folder),
index: index.fold_with(folder),
}
} else {
msg.clone()
};
Assert {
cond: cond.fold_with(folder),
expected,
msg,
target,
cleanup,
}
}
GeneratorDrop => GeneratorDrop,
Resume => Resume,
Abort => Abort,
Return => Return,
Unreachable => Unreachable,
FalseEdges {
real_target,
ref imaginary_targets,
} => FalseEdges {
real_target,
imaginary_targets: imaginary_targets.clone(),
},
FalseUnwind {
real_target,
unwind,
} => FalseUnwind {
real_target,
unwind,
},
};
Terminator {
source_info: self.source_info,
kind,
}
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
use crate::mir::TerminatorKind::*;
match self.kind {
SwitchInt {
ref discr,
switch_ty,
..
} => discr.visit_with(visitor) || switch_ty.visit_with(visitor),
Drop { ref location, .. } => location.visit_with(visitor),
DropAndReplace {
ref location,
ref value,
..
} => location.visit_with(visitor) || value.visit_with(visitor),
Yield { ref value, .. } => value.visit_with(visitor),
Call {
ref func,
ref args,
ref destination,
..
} => {
let dest = if let Some((ref loc, _)) = *destination {
loc.visit_with(visitor)
} else {
false
};
dest || func.visit_with(visitor) || args.visit_with(visitor)
}
Assert {
ref cond, ref msg, ..
} => {
if cond.visit_with(visitor) {
if let InterpError::BoundsCheck { ref len, ref index } = *msg {
len.visit_with(visitor) || index.visit_with(visitor)
} else {
false
}
} else {
false
}
}
Goto { .. }
| Resume
| Abort
| Return
| GeneratorDrop
| Unreachable
| FalseEdges { .. }
| FalseUnwind { .. } => false,
}
}
}
impl<'tcx> TypeFoldable<'tcx> for Place<'tcx> {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
match self {
&Place::Projection(ref p) => Place::Projection(p.fold_with(folder)),
_ => self.clone(),
}
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
if let &Place::Projection(ref p) = self {
p.visit_with(visitor)
} else {
false
}
}
}
impl<'tcx> TypeFoldable<'tcx> for Rvalue<'tcx> {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
use crate::mir::Rvalue::*;
match *self {
Use(ref op) => Use(op.fold_with(folder)),
Repeat(ref op, len) => Repeat(op.fold_with(folder), len),
Ref(region, bk, ref place) => {
Ref(region.fold_with(folder), bk, place.fold_with(folder))
}
Len(ref place) => Len(place.fold_with(folder)),
Cast(kind, ref op, ty) => Cast(kind, op.fold_with(folder), ty.fold_with(folder)),
BinaryOp(op, ref rhs, ref lhs) => {
BinaryOp(op, rhs.fold_with(folder), lhs.fold_with(folder))
}
CheckedBinaryOp(op, ref rhs, ref lhs) => {
CheckedBinaryOp(op, rhs.fold_with(folder), lhs.fold_with(folder))
}
UnaryOp(op, ref val) => UnaryOp(op, val.fold_with(folder)),
Discriminant(ref place) => Discriminant(place.fold_with(folder)),
NullaryOp(op, ty) => NullaryOp(op, ty.fold_with(folder)),
Aggregate(ref kind, ref fields) => {
let kind = box match **kind {
AggregateKind::Array(ty) => AggregateKind::Array(ty.fold_with(folder)),
AggregateKind::Tuple => AggregateKind::Tuple,
AggregateKind::Adt(def, v, substs, user_ty, n) => AggregateKind::Adt(
def,
v,
substs.fold_with(folder),
user_ty.fold_with(folder),
n,
),
AggregateKind::Closure(id, substs) => {
AggregateKind::Closure(id, substs.fold_with(folder))
}
AggregateKind::Generator(id, substs, movablity) => {
AggregateKind::Generator(id, substs.fold_with(folder), movablity)
}
};
Aggregate(kind, fields.fold_with(folder))
}
}
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
use crate::mir::Rvalue::*;
match *self {
Use(ref op) => op.visit_with(visitor),
Repeat(ref op, _) => op.visit_with(visitor),
Ref(region, _, ref place) => region.visit_with(visitor) || place.visit_with(visitor),
Len(ref place) => place.visit_with(visitor),
Cast(_, ref op, ty) => op.visit_with(visitor) || ty.visit_with(visitor),
BinaryOp(_, ref rhs, ref lhs) | CheckedBinaryOp(_, ref rhs, ref lhs) => {
rhs.visit_with(visitor) || lhs.visit_with(visitor)
}
UnaryOp(_, ref val) => val.visit_with(visitor),
Discriminant(ref place) => place.visit_with(visitor),
NullaryOp(_, ty) => ty.visit_with(visitor),
Aggregate(ref kind, ref fields) => {
(match **kind {
AggregateKind::Array(ty) => ty.visit_with(visitor),
AggregateKind::Tuple => false,
AggregateKind::Adt(_, _, substs, user_ty, _) => {
substs.visit_with(visitor) || user_ty.visit_with(visitor)
}
AggregateKind::Closure(_, substs) => substs.visit_with(visitor),
AggregateKind::Generator(_, substs, _) => substs.visit_with(visitor),
}) || fields.visit_with(visitor)
}
}
}
}
impl<'tcx> TypeFoldable<'tcx> for Operand<'tcx> {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
match *self {
Operand::Copy(ref place) => Operand::Copy(place.fold_with(folder)),
Operand::Move(ref place) => Operand::Move(place.fold_with(folder)),
Operand::Constant(ref c) => Operand::Constant(c.fold_with(folder)),
}
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
match *self {
Operand::Copy(ref place) | Operand::Move(ref place) => place.visit_with(visitor),
Operand::Constant(ref c) => c.visit_with(visitor),
}
}
}
impl<'tcx> TypeFoldable<'tcx> for Projection<'tcx> {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
use crate::mir::ProjectionElem::*;
let base = self.base.fold_with(folder);
let elem = match self.elem {
Deref => Deref,
Field(f, ref ty) => Field(f, ty.fold_with(folder)),
Index(ref v) => Index(v.fold_with(folder)),
ref elem => elem.clone(),
};
Projection { base, elem }
}
fn super_visit_with<Vs: TypeVisitor<'tcx>>(&self, visitor: &mut Vs) -> bool {
use crate::mir::ProjectionElem::*;
self.base.visit_with(visitor) || match self.elem {
Field(_, ref ty) => ty.visit_with(visitor),
Index(ref v) => v.visit_with(visitor),
_ => false,
}
}
}
impl<'tcx> TypeFoldable<'tcx> for Field {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, _: &mut F) -> Self {
*self
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
false
}
}
impl<'tcx> TypeFoldable<'tcx> for GeneratorSavedLocal {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, _: &mut F) -> Self {
*self
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
false
}
}
impl<'tcx> TypeFoldable<'tcx> for Constant<'tcx> {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
Constant {
span: self.span.clone(),
ty: self.ty.fold_with(folder),
user_ty: self.user_ty.fold_with(folder),
literal: self.literal.fold_with(folder),
}
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
self.ty.visit_with(visitor) || self.literal.visit_with(visitor)
}
}