rust/src/librustc_resolve/lib.rs

5499 lines
224 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// ignore-tidy-filelength
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
#![feature(crate_visibility_modifier)]
#![feature(label_break_value)]
#![feature(nll)]
#![feature(rustc_diagnostic_macros)]
#![feature(type_alias_enum_variants)]
#![recursion_limit="256"]
#![deny(rust_2018_idioms)]
#![deny(internal)]
pub use rustc::hir::def::{Namespace, PerNS};
use GenericParameters::*;
use RibKind::*;
use smallvec::smallvec;
use rustc::hir::map::{Definitions, DefCollector};
use rustc::hir::{self, PrimTy, Bool, Char, Float, Int, Uint, Str};
use rustc::middle::cstore::CrateStore;
use rustc::session::Session;
use rustc::lint;
use rustc::hir::def::{
self, DefKind, PartialRes, CtorKind, CtorOf, NonMacroAttrKind, ExportMap
};
use rustc::hir::def::Namespace::*;
use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
use rustc::hir::{Upvar, UpvarMap, TraitCandidate, TraitMap, GlobMap};
use rustc::ty::{self, DefIdTree};
use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};
use rustc::{bug, span_bug};
use rustc_metadata::creader::CrateLoader;
use rustc_metadata::cstore::CStore;
use syntax::source_map::SourceMap;
use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext};
use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy};
use syntax::ext::base::SyntaxExtension;
use syntax::ext::base::Determinacy::{self, Determined, Undetermined};
use syntax::ext::base::MacroKind;
use syntax::symbol::{Symbol, kw, sym};
use syntax::util::lev_distance::find_best_match_for_name;
use syntax::visit::{self, FnKind, Visitor};
use syntax::attr;
use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind};
use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics};
use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path};
use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
use syntax::ptr::P;
use syntax::{span_err, struct_span_err, unwrap_or, walk_list};
use syntax_pos::{Span, DUMMY_SP, MultiSpan};
use errors::{Applicability, DiagnosticBuilder, DiagnosticId};
use log::debug;
use std::cell::{Cell, RefCell};
use std::{cmp, fmt, iter, mem, ptr};
use std::collections::BTreeSet;
use std::mem::replace;
use rustc_data_structures::ptr_key::PtrKey;
use rustc_data_structures::sync::Lrc;
use smallvec::SmallVec;
use diagnostics::{find_span_of_binding_until_next_binding, extend_span_to_previous_binding};
use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
use macros::{InvocationData, LegacyBinding, ParentScope};
type Res = def::Res<NodeId>;
// N.B., this module needs to be declared first so diagnostics are
// registered before they are used.
mod error_codes;
mod diagnostics;
mod macros;
mod check_unused;
mod build_reduced_graph;
mod resolve_imports;
fn is_known_tool(name: Name) -> bool {
["clippy", "rustfmt"].contains(&&*name.as_str())
}
enum Weak {
Yes,
No,
}
enum ScopeSet {
Import(Namespace),
AbsolutePath(Namespace),
Macro(MacroKind),
Module,
}
/// A free importable items suggested in case of resolution failure.
struct ImportSuggestion {
did: Option<DefId>,
path: Path,
}
/// A field or associated item from self type suggested in case of resolution failure.
enum AssocSuggestion {
Field,
MethodWithSelf,
AssocItem,
}
#[derive(Eq)]
struct BindingError {
name: Name,
origin: BTreeSet<Span>,
target: BTreeSet<Span>,
}
struct TypoSuggestion {
candidate: Symbol,
/// The kind of the binding ("crate", "module", etc.)
kind: &'static str,
/// An appropriate article to refer to the binding ("a", "an", etc.)
article: &'static str,
}
impl PartialOrd for BindingError {
fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for BindingError {
fn eq(&self, other: &BindingError) -> bool {
self.name == other.name
}
}
impl Ord for BindingError {
fn cmp(&self, other: &BindingError) -> cmp::Ordering {
self.name.cmp(&other.name)
}
}
/// A vector of spans and replacements, a message and applicability.
type Suggestion = (Vec<(Span, String)>, String, Applicability);
enum ResolutionError<'a> {
/// Error E0401: can't use type or const parameters from outer function.
GenericParamsFromOuterFunction(Res),
/// Error E0403: the name is already used for a type or const parameter in this generic
/// parameter list.
NameAlreadyUsedInParameterList(Name, &'a Span),
/// Error E0407: method is not a member of trait.
MethodNotMemberOfTrait(Name, &'a str),
/// Error E0437: type is not a member of trait.
TypeNotMemberOfTrait(Name, &'a str),
/// Error E0438: const is not a member of trait.
ConstNotMemberOfTrait(Name, &'a str),
/// Error E0408: variable `{}` is not bound in all patterns.
VariableNotBoundInPattern(&'a BindingError),
/// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
VariableBoundWithDifferentMode(Name, Span),
/// Error E0415: identifier is bound more than once in this parameter list.
IdentifierBoundMoreThanOnceInParameterList(&'a str),
/// Error E0416: identifier is bound more than once in the same pattern.
IdentifierBoundMoreThanOnceInSamePattern(&'a str),
/// Error E0426: use of undeclared label.
UndeclaredLabel(&'a str, Option<Name>),
/// Error E0429: `self` imports are only allowed within a `{ }` list.
SelfImportsOnlyAllowedWithin,
/// Error E0430: `self` import can only appear once in the list.
SelfImportCanOnlyAppearOnceInTheList,
/// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
SelfImportOnlyInImportListWithNonEmptyPrefix,
/// Error E0433: failed to resolve.
FailedToResolve { label: String, suggestion: Option<Suggestion> },
/// Error E0434: can't capture dynamic environment in a fn item.
CannotCaptureDynamicEnvironmentInFnItem,
/// Error E0435: attempt to use a non-constant value in a constant.
AttemptToUseNonConstantValueInConstant,
/// Error E0530: `X` bindings cannot shadow `Y`s.
BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
/// Error E0128: type parameters with a default cannot use forward-declared identifiers.
ForwardDeclaredTyParam, // FIXME(const_generics:defaults)
/// Error E0671: const parameter cannot depend on type parameter.
ConstParamDependentOnTypeParam,
}
/// Combines an error with provided span and emits it.
///
/// This takes the error provided, combines it with the span and any additional spans inside the
/// error and emits it.
fn resolve_error<'sess, 'a>(resolver: &'sess Resolver<'_>,
span: Span,
resolution_error: ResolutionError<'a>) {
resolve_struct_error(resolver, span, resolution_error).emit();
}
fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver<'_>,
span: Span,
resolution_error: ResolutionError<'a>)
-> DiagnosticBuilder<'sess> {
match resolution_error {
ResolutionError::GenericParamsFromOuterFunction(outer_res) => {
let mut err = struct_span_err!(resolver.session,
span,
E0401,
"can't use generic parameters from outer function",
);
err.span_label(span, format!("use of generic parameter from outer function"));
let cm = resolver.session.source_map();
match outer_res {
Res::SelfTy(maybe_trait_defid, maybe_impl_defid) => {
if let Some(impl_span) = maybe_impl_defid.and_then(|def_id| {
resolver.definitions.opt_span(def_id)
}) {
err.span_label(
reduce_impl_span_to_impl_keyword(cm, impl_span),
"`Self` type implicitly declared here, by this `impl`",
);
}
match (maybe_trait_defid, maybe_impl_defid) {
(Some(_), None) => {
err.span_label(span, "can't use `Self` here");
}
(_, Some(_)) => {
err.span_label(span, "use a type here instead");
}
(None, None) => bug!("`impl` without trait nor type?"),
}
return err;
},
Res::Def(DefKind::TyParam, def_id) => {
if let Some(span) = resolver.definitions.opt_span(def_id) {
err.span_label(span, "type parameter from outer function");
}
}
Res::Def(DefKind::ConstParam, def_id) => {
if let Some(span) = resolver.definitions.opt_span(def_id) {
err.span_label(span, "const parameter from outer function");
}
}
_ => {
bug!("GenericParamsFromOuterFunction should only be used with Res::SelfTy, \
DefKind::TyParam");
}
}
// Try to retrieve the span of the function signature and generate a new message with
// a local type or const parameter.
let sugg_msg = &format!("try using a local generic parameter instead");
if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) {
// Suggest the modification to the user
err.span_suggestion(
sugg_span,
sugg_msg,
new_snippet,
Applicability::MachineApplicable,
);
} else if let Some(sp) = cm.generate_fn_name_span(span) {
err.span_label(sp,
format!("try adding a local generic parameter in this method instead"));
} else {
err.help(&format!("try using a local generic parameter instead"));
}
err
}
ResolutionError::NameAlreadyUsedInParameterList(name, first_use_span) => {
let mut err = struct_span_err!(resolver.session,
span,
E0403,
"the name `{}` is already used for a generic \
parameter in this list of generic parameters",
name);
err.span_label(span, "already used");
err.span_label(first_use_span.clone(), format!("first use of `{}`", name));
err
}
ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
let mut err = struct_span_err!(resolver.session,
span,
E0407,
"method `{}` is not a member of trait `{}`",
method,
trait_);
err.span_label(span, format!("not a member of trait `{}`", trait_));
err
}
ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
let mut err = struct_span_err!(resolver.session,
span,
E0437,
"type `{}` is not a member of trait `{}`",
type_,
trait_);
err.span_label(span, format!("not a member of trait `{}`", trait_));
err
}
ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
let mut err = struct_span_err!(resolver.session,
span,
E0438,
"const `{}` is not a member of trait `{}`",
const_,
trait_);
err.span_label(span, format!("not a member of trait `{}`", trait_));
err
}
ResolutionError::VariableNotBoundInPattern(binding_error) => {
let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>();
let msp = MultiSpan::from_spans(target_sp.clone());
let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
let mut err = resolver.session.struct_span_err_with_code(
msp,
&msg,
DiagnosticId::Error("E0408".into()),
);
for sp in target_sp {
err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name));
}
let origin_sp = binding_error.origin.iter().cloned();
for sp in origin_sp {
err.span_label(sp, "variable not in all patterns");
}
err
}
ResolutionError::VariableBoundWithDifferentMode(variable_name,
first_binding_span) => {
let mut err = struct_span_err!(resolver.session,
span,
E0409,
"variable `{}` is bound in inconsistent \
ways within the same match arm",
variable_name);
err.span_label(span, "bound in different ways");
err.span_label(first_binding_span, "first binding");
err
}
ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
let mut err = struct_span_err!(resolver.session,
span,
E0415,
"identifier `{}` is bound more than once in this parameter list",
identifier);
err.span_label(span, "used as parameter more than once");
err
}
ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
let mut err = struct_span_err!(resolver.session,
span,
E0416,
"identifier `{}` is bound more than once in the same pattern",
identifier);
err.span_label(span, "used in a pattern more than once");
err
}
ResolutionError::UndeclaredLabel(name, lev_candidate) => {
let mut err = struct_span_err!(resolver.session,
span,
E0426,
"use of undeclared label `{}`",
name);
if let Some(lev_candidate) = lev_candidate {
err.span_suggestion(
span,
"a label with a similar name exists in this scope",
lev_candidate.to_string(),
Applicability::MaybeIncorrect,
);
} else {
err.span_label(span, format!("undeclared label `{}`", name));
}
err
}
ResolutionError::SelfImportsOnlyAllowedWithin => {
struct_span_err!(resolver.session,
span,
E0429,
"{}",
"`self` imports are only allowed within a { } list")
}
ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
let mut err = struct_span_err!(resolver.session, span, E0430,
"`self` import can only appear once in an import list");
err.span_label(span, "can only appear once in an import list");
err
}
ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
let mut err = struct_span_err!(resolver.session, span, E0431,
"`self` import can only appear in an import list with \
a non-empty prefix");
err.span_label(span, "can only appear in an import list with a non-empty prefix");
err
}
ResolutionError::FailedToResolve { label, suggestion } => {
let mut err = struct_span_err!(resolver.session, span, E0433,
"failed to resolve: {}", &label);
err.span_label(span, label);
if let Some((suggestions, msg, applicability)) = suggestion {
err.multipart_suggestion(&msg, suggestions, applicability);
}
err
}
ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
let mut err = struct_span_err!(resolver.session,
span,
E0434,
"{}",
"can't capture dynamic environment in a fn item");
err.help("use the `|| { ... }` closure form instead");
err
}
ResolutionError::AttemptToUseNonConstantValueInConstant => {
let mut err = struct_span_err!(resolver.session, span, E0435,
"attempt to use a non-constant value in a constant");
err.span_label(span, "non-constant value");
err
}
ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
let shadows_what = binding.descr();
let mut err = struct_span_err!(resolver.session, span, E0530, "{}s cannot shadow {}s",
what_binding, shadows_what);
err.span_label(span, format!("cannot be named the same as {} {}",
binding.article(), shadows_what));
let participle = if binding.is_import() { "imported" } else { "defined" };
let msg = format!("the {} `{}` is {} here", shadows_what, name, participle);
err.span_label(binding.span, msg);
err
}
ResolutionError::ForwardDeclaredTyParam => {
let mut err = struct_span_err!(resolver.session, span, E0128,
"type parameters with a default cannot use \
forward declared identifiers");
err.span_label(
span, "defaulted type parameters cannot be forward declared".to_string());
err
}
ResolutionError::ConstParamDependentOnTypeParam => {
let mut err = struct_span_err!(
resolver.session,
span,
E0671,
"const parameters cannot depend on type parameters"
);
err.span_label(span, format!("const parameter depends on type parameter"));
err
}
}
}
/// Adjust the impl span so that just the `impl` keyword is taken by removing
/// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and
/// everything after the first whitespace (`"impl Iterator for A" -> "impl"`).
///
/// *Attention*: the method used is very fragile since it essentially duplicates the work of the
/// parser. If you need to use this function or something similar, please consider updating the
/// `source_map` functions and this function to something more robust.
fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span {
let impl_span = cm.span_until_char(impl_span, '<');
let impl_span = cm.span_until_whitespace(impl_span);
impl_span
}
#[derive(Copy, Clone, Debug)]
struct BindingInfo {
span: Span,
binding_mode: BindingMode,
}
/// Map from the name in a pattern to its binding mode.
type BindingMap = FxHashMap<Ident, BindingInfo>;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum PatternSource {
Match,
IfLet,
WhileLet,
Let,
For,
FnParam,
}
impl PatternSource {
fn descr(self) -> &'static str {
match self {
PatternSource::Match => "match binding",
PatternSource::IfLet => "if let binding",
PatternSource::WhileLet => "while let binding",
PatternSource::Let => "let binding",
PatternSource::For => "for binding",
PatternSource::FnParam => "function parameter",
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum AliasPossibility {
No,
Maybe,
}
#[derive(Copy, Clone, Debug)]
enum PathSource<'a> {
// Type paths `Path`.
Type,
// Trait paths in bounds or impls.
Trait(AliasPossibility),
// Expression paths `path`, with optional parent context.
Expr(Option<&'a Expr>),
// Paths in path patterns `Path`.
Pat,
// Paths in struct expressions and patterns `Path { .. }`.
Struct,
// Paths in tuple struct patterns `Path(..)`.
TupleStruct,
// `m::A::B` in `<T as m::A>::B::C`.
TraitItem(Namespace),
// Path in `pub(path)`
Visibility,
}
impl<'a> PathSource<'a> {
fn namespace(self) -> Namespace {
match self {
PathSource::Type | PathSource::Trait(_) | PathSource::Struct |
PathSource::Visibility => TypeNS,
PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
PathSource::TraitItem(ns) => ns,
}
}
fn global_by_default(self) -> bool {
match self {
PathSource::Visibility => true,
PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
PathSource::Struct | PathSource::TupleStruct |
PathSource::Trait(_) | PathSource::TraitItem(..) => false,
}
}
fn defer_to_typeck(self) -> bool {
match self {
PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
PathSource::Struct | PathSource::TupleStruct => true,
PathSource::Trait(_) | PathSource::TraitItem(..) |
PathSource::Visibility => false,
}
}
fn descr_expected(self) -> &'static str {
match self {
PathSource::Type => "type",
PathSource::Trait(_) => "trait",
PathSource::Pat => "unit struct/variant or constant",
PathSource::Struct => "struct, variant or union type",
PathSource::TupleStruct => "tuple struct/variant",
PathSource::Visibility => "module",
PathSource::TraitItem(ns) => match ns {
TypeNS => "associated type",
ValueNS => "method or associated constant",
MacroNS => bug!("associated macro"),
},
PathSource::Expr(parent) => match parent.map(|p| &p.node) {
// "function" here means "anything callable" rather than `DefKind::Fn`,
// this is not precise but usually more helpful than just "value".
Some(&ExprKind::Call(..)) => "function",
_ => "value",
},
}
}
fn is_expected(self, res: Res) -> bool {
match self {
PathSource::Type => match res {
Res::Def(DefKind::Struct, _)
| Res::Def(DefKind::Union, _)
| Res::Def(DefKind::Enum, _)
| Res::Def(DefKind::Trait, _)
| Res::Def(DefKind::TraitAlias, _)
| Res::Def(DefKind::TyAlias, _)
| Res::Def(DefKind::AssocTy, _)
| Res::PrimTy(..)
| Res::Def(DefKind::TyParam, _)
| Res::SelfTy(..)
| Res::Def(DefKind::Existential, _)
| Res::Def(DefKind::ForeignTy, _) => true,
_ => false,
},
PathSource::Trait(AliasPossibility::No) => match res {
Res::Def(DefKind::Trait, _) => true,
_ => false,
},
PathSource::Trait(AliasPossibility::Maybe) => match res {
Res::Def(DefKind::Trait, _) => true,
Res::Def(DefKind::TraitAlias, _) => true,
_ => false,
},
PathSource::Expr(..) => match res {
Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
| Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
| Res::Def(DefKind::Const, _)
| Res::Def(DefKind::Static, _)
| Res::Local(..)
| Res::Upvar(..)
| Res::Def(DefKind::Fn, _)
| Res::Def(DefKind::Method, _)
| Res::Def(DefKind::AssocConst, _)
| Res::SelfCtor(..)
| Res::Def(DefKind::ConstParam, _) => true,
_ => false,
},
PathSource::Pat => match res {
Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) |
Res::SelfCtor(..) => true,
_ => false,
},
PathSource::TupleStruct => match res {
Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
_ => false,
},
PathSource::Struct => match res {
Res::Def(DefKind::Struct, _)
| Res::Def(DefKind::Union, _)
| Res::Def(DefKind::Variant, _)
| Res::Def(DefKind::TyAlias, _)
| Res::Def(DefKind::AssocTy, _)
| Res::SelfTy(..) => true,
_ => false,
},
PathSource::TraitItem(ns) => match res {
Res::Def(DefKind::AssocConst, _)
| Res::Def(DefKind::Method, _) if ns == ValueNS => true,
Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
_ => false,
},
PathSource::Visibility => match res {
Res::Def(DefKind::Mod, _) => true,
_ => false,
},
}
}
fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
__diagnostic_used!(E0404);
__diagnostic_used!(E0405);
__diagnostic_used!(E0412);
__diagnostic_used!(E0422);
__diagnostic_used!(E0423);
__diagnostic_used!(E0425);
__diagnostic_used!(E0531);
__diagnostic_used!(E0532);
__diagnostic_used!(E0573);
__diagnostic_used!(E0574);
__diagnostic_used!(E0575);
__diagnostic_used!(E0576);
__diagnostic_used!(E0577);
__diagnostic_used!(E0578);
match (self, has_unexpected_resolution) {
(PathSource::Trait(_), true) => "E0404",
(PathSource::Trait(_), false) => "E0405",
(PathSource::Type, true) => "E0573",
(PathSource::Type, false) => "E0412",
(PathSource::Struct, true) => "E0574",
(PathSource::Struct, false) => "E0422",
(PathSource::Expr(..), true) => "E0423",
(PathSource::Expr(..), false) => "E0425",
(PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
(PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
(PathSource::TraitItem(..), true) => "E0575",
(PathSource::TraitItem(..), false) => "E0576",
(PathSource::Visibility, true) => "E0577",
(PathSource::Visibility, false) => "E0578",
}
}
}
// A minimal representation of a path segment. We use this in resolve because
// we synthesize 'path segments' which don't have the rest of an AST or HIR
// `PathSegment`.
#[derive(Clone, Copy, Debug)]
pub struct Segment {
ident: Ident,
id: Option<NodeId>,
}
impl Segment {
fn from_path(path: &Path) -> Vec<Segment> {
path.segments.iter().map(|s| s.into()).collect()
}
fn from_ident(ident: Ident) -> Segment {
Segment {
ident,
id: None,
}
}
fn names_to_string(segments: &[Segment]) -> String {
names_to_string(&segments.iter()
.map(|seg| seg.ident)
.collect::<Vec<_>>())
}
}
impl<'a> From<&'a ast::PathSegment> for Segment {
fn from(seg: &'a ast::PathSegment) -> Segment {
Segment {
ident: seg.ident,
id: Some(seg.id),
}
}
}
struct UsePlacementFinder {
target_module: NodeId,
span: Option<Span>,
found_use: bool,
}
impl UsePlacementFinder {
fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) {
let mut finder = UsePlacementFinder {
target_module,
span: None,
found_use: false,
};
visit::walk_crate(&mut finder, krate);
(finder.span, finder.found_use)
}
}
impl<'tcx> Visitor<'tcx> for UsePlacementFinder {
fn visit_mod(
&mut self,
module: &'tcx ast::Mod,
_: Span,
_: &[ast::Attribute],
node_id: NodeId,
) {
if self.span.is_some() {
return;
}
if node_id != self.target_module {
visit::walk_mod(self, module);
return;
}
// find a use statement
for item in &module.items {
match item.node {
ItemKind::Use(..) => {
// don't suggest placing a use before the prelude
// import or other generated ones
if item.span.ctxt().outer_expn_info().is_none() {
self.span = Some(item.span.shrink_to_lo());
self.found_use = true;
return;
}
},
// don't place use before extern crate
ItemKind::ExternCrate(_) => {}
// but place them before the first other item
_ => if self.span.map_or(true, |span| item.span < span ) {
if item.span.ctxt().outer_expn_info().is_none() {
// don't insert between attributes and an item
if item.attrs.is_empty() {
self.span = Some(item.span.shrink_to_lo());
} else {
// find the first attribute on the item
for attr in &item.attrs {
if self.span.map_or(true, |span| attr.span < span) {
self.span = Some(attr.span.shrink_to_lo());
}
}
}
}
},
}
}
}
}
/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
fn visit_item(&mut self, item: &'tcx Item) {
self.resolve_item(item);
}
fn visit_arm(&mut self, arm: &'tcx Arm) {
self.resolve_arm(arm);
}
fn visit_block(&mut self, block: &'tcx Block) {
self.resolve_block(block);
}
fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) {
debug!("visit_anon_const {:?}", constant);
self.with_constant_rib(|this| {
visit::walk_anon_const(this, constant);
});
}
fn visit_expr(&mut self, expr: &'tcx Expr) {
self.resolve_expr(expr, None);
}
fn visit_local(&mut self, local: &'tcx Local) {
self.resolve_local(local);
}
fn visit_ty(&mut self, ty: &'tcx Ty) {
match ty.node {
TyKind::Path(ref qself, ref path) => {
self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
}
TyKind::ImplicitSelf => {
let self_ty = Ident::with_empty_ctxt(kw::SelfUpper);
let res = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
.map_or(Res::Err, |d| d.res());
self.record_partial_res(ty.id, PartialRes::new(res));
}
_ => (),
}
visit::walk_ty(self, ty);
}
fn visit_poly_trait_ref(&mut self,
tref: &'tcx ast::PolyTraitRef,
m: &'tcx ast::TraitBoundModifier) {
self.smart_resolve_path(tref.trait_ref.ref_id, None,
&tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
visit::walk_poly_trait_ref(self, tref, m);
}
fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
let generic_params = match foreign_item.node {
ForeignItemKind::Fn(_, ref generics) => {
HasGenericParams(generics, ItemRibKind)
}
ForeignItemKind::Static(..) => NoGenericParams,
ForeignItemKind::Ty => NoGenericParams,
ForeignItemKind::Macro(..) => NoGenericParams,
};
self.with_generic_param_rib(generic_params, |this| {
visit::walk_foreign_item(this, foreign_item);
});
}
fn visit_fn(&mut self,
function_kind: FnKind<'tcx>,
declaration: &'tcx FnDecl,
_: Span,
node_id: NodeId)
{
debug!("(resolving function) entering function");
let (rib_kind, asyncness) = match function_kind {
FnKind::ItemFn(_, ref header, ..) =>
(FnItemRibKind, &header.asyncness.node),
FnKind::Method(_, ref sig, _, _) =>
(AssocItemRibKind, &sig.header.asyncness.node),
FnKind::Closure(_) =>
// Async closures aren't resolved through `visit_fn`-- they're
// processed separately
(ClosureRibKind(node_id), &IsAsync::NotAsync),
};
// Create a value rib for the function.
self.ribs[ValueNS].push(Rib::new(rib_kind));
// Create a label rib for the function.
self.label_ribs.push(Rib::new(rib_kind));
// Add each argument to the rib.
let mut bindings_list = FxHashMap::default();
let mut add_argument = |argument: &ast::Arg| {
self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
self.visit_ty(&argument.ty);
debug!("(resolving function) recorded argument");
};
// Walk the generated async arguments if this is an `async fn`, otherwise walk the
// normal arguments.
if let IsAsync::Async { ref arguments, .. } = asyncness {
for (i, a) in arguments.iter().enumerate() {
if let Some(arg) = &a.arg {
add_argument(&arg);
} else {
add_argument(&declaration.inputs[i]);
}
}
} else {
for a in &declaration.inputs { add_argument(a); }
}
visit::walk_fn_ret_ty(self, &declaration.output);
// Resolve the function body, potentially inside the body of an async closure
if let IsAsync::Async { closure_id, .. } = asyncness {
let rib_kind = ClosureRibKind(*closure_id);
self.ribs[ValueNS].push(Rib::new(rib_kind));
self.label_ribs.push(Rib::new(rib_kind));
}
match function_kind {
FnKind::ItemFn(.., body) | FnKind::Method(.., body) => {
if let IsAsync::Async { ref arguments, .. } = asyncness {
let mut body = body.clone();
// Insert the generated statements into the body before attempting to
// resolve names.
for a in arguments.iter().rev() {
if let Some(pat_stmt) = a.pat_stmt.clone() {
body.stmts.insert(0, pat_stmt);
}
body.stmts.insert(0, a.move_stmt.clone());
}
self.visit_block(&body);
} else {
self.visit_block(body);
}
}
FnKind::Closure(body) => {
self.visit_expr(body);
}
};
// Leave the body of the async closure
if asyncness.is_async() {
self.label_ribs.pop();
self.ribs[ValueNS].pop();
}
debug!("(resolving function) leaving function");
self.label_ribs.pop();
self.ribs[ValueNS].pop();
}
fn visit_generics(&mut self, generics: &'tcx Generics) {
// For type parameter defaults, we have to ban access
// to following type parameters, as the InternalSubsts can only
// provide previous type parameters as they're built. We
// put all the parameters on the ban list and then remove
// them one by one as they are processed and become available.
let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
let mut found_default = false;
default_ban_rib.bindings.extend(generics.params.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Const { .. } |
GenericParamKind::Lifetime { .. } => None,
GenericParamKind::Type { ref default, .. } => {
found_default |= default.is_some();
if found_default {
Some((Ident::with_empty_ctxt(param.ident.name), Res::Err))
} else {
None
}
}
}));
// We also ban access to type parameters for use as the types of const parameters.
let mut const_ty_param_ban_rib = Rib::new(TyParamAsConstParamTy);
const_ty_param_ban_rib.bindings.extend(generics.params.iter()
.filter(|param| {
if let GenericParamKind::Type { .. } = param.kind {
true
} else {
false
}
})
.map(|param| (Ident::with_empty_ctxt(param.ident.name), Res::Err)));
for param in &generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
GenericParamKind::Type { ref default, .. } => {
for bound in &param.bounds {
self.visit_param_bound(bound);
}
if let Some(ref ty) = default {
self.ribs[TypeNS].push(default_ban_rib);
self.visit_ty(ty);
default_ban_rib = self.ribs[TypeNS].pop().unwrap();
}
// Allow all following defaults to refer to this type parameter.
default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
}
GenericParamKind::Const { ref ty } => {
self.ribs[TypeNS].push(const_ty_param_ban_rib);
for bound in &param.bounds {
self.visit_param_bound(bound);
}
self.visit_ty(ty);
const_ty_param_ban_rib = self.ribs[TypeNS].pop().unwrap();
}
}
}
for p in &generics.where_clause.predicates {
self.visit_where_predicate(p);
}
}
}
#[derive(Copy, Clone)]
enum GenericParameters<'a, 'b> {
NoGenericParams,
HasGenericParams(// Type parameters.
&'b Generics,
// The kind of the rib used for type parameters.
RibKind<'a>),
}
/// The rib kind controls the translation of local
/// definitions (`Res::Local`) to upvars (`Res::Upvar`).
#[derive(Copy, Clone, Debug)]
enum RibKind<'a> {
/// No translation needs to be applied.
NormalRibKind,
/// We passed through a closure scope at the given `NodeId`.
/// Translate upvars as appropriate.
ClosureRibKind(NodeId /* func id */),
/// We passed through an impl or trait and are now in one of its
/// methods or associated types. Allow references to ty params that impl or trait
/// binds. Disallow any other upvars (including other ty params that are
/// upvars).
AssocItemRibKind,
/// We passed through a function definition. Disallow upvars.
/// Permit only those const parameters that are specified in the function's generics.
FnItemRibKind,
/// We passed through an item scope. Disallow upvars.
ItemRibKind,
/// We're in a constant item. Can't refer to dynamic stuff.
ConstantItemRibKind,
/// We passed through a module.
ModuleRibKind(Module<'a>),
/// We passed through a `macro_rules!` statement
MacroDefinition(DefId),
/// All bindings in this rib are type parameters that can't be used
/// from the default of a type parameter because they're not declared
/// before said type parameter. Also see the `visit_generics` override.
ForwardTyParamBanRibKind,
/// We forbid the use of type parameters as the types of const parameters.
TyParamAsConstParamTy,
}
/// A single local scope.
///
/// A rib represents a scope names can live in. Note that these appear in many places, not just
/// around braces. At any place where the list of accessible names (of the given namespace)
/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
/// etc.
///
/// Different [rib kinds](enum.RibKind) are transparent for different names.
///
/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
/// resolving, the name is looked up from inside out.
#[derive(Debug)]
struct Rib<'a, R = Res> {
bindings: FxHashMap<Ident, R>,
kind: RibKind<'a>,
}
impl<'a, R> Rib<'a, R> {
fn new(kind: RibKind<'a>) -> Rib<'a, R> {
Rib {
bindings: Default::default(),
kind,
}
}
}
/// An intermediate resolution result.
///
/// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
/// items are visible in their whole block, while `Res`es only from the place they are defined
/// forward.
enum LexicalScopeBinding<'a> {
Item(&'a NameBinding<'a>),
Res(Res),
}
impl<'a> LexicalScopeBinding<'a> {
fn item(self) -> Option<&'a NameBinding<'a>> {
match self {
LexicalScopeBinding::Item(binding) => Some(binding),
_ => None,
}
}
fn res(self) -> Res {
match self {
LexicalScopeBinding::Item(binding) => binding.res(),
LexicalScopeBinding::Res(res) => res,
}
}
}
#[derive(Copy, Clone, Debug)]
enum ModuleOrUniformRoot<'a> {
/// Regular module.
Module(Module<'a>),
/// Virtual module that denotes resolution in crate root with fallback to extern prelude.
CrateRootAndExternPrelude,
/// Virtual module that denotes resolution in extern prelude.
/// Used for paths starting with `::` on 2018 edition.
ExternPrelude,
/// Virtual module that denotes resolution in current scope.
/// Used only for resolving single-segment imports. The reason it exists is that import paths
/// are always split into two parts, the first of which should be some kind of module.
CurrentScope,
}
impl ModuleOrUniformRoot<'_> {
fn same_def(lhs: Self, rhs: Self) -> bool {
match (lhs, rhs) {
(ModuleOrUniformRoot::Module(lhs),
ModuleOrUniformRoot::Module(rhs)) => lhs.def_id() == rhs.def_id(),
(ModuleOrUniformRoot::CrateRootAndExternPrelude,
ModuleOrUniformRoot::CrateRootAndExternPrelude) |
(ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) |
(ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
_ => false,
}
}
}
#[derive(Clone, Debug)]
enum PathResult<'a> {
Module(ModuleOrUniformRoot<'a>),
NonModule(PartialRes),
Indeterminate,
Failed {
span: Span,
label: String,
suggestion: Option<Suggestion>,
is_error_from_last_segment: bool,
},
}
enum ModuleKind {
/// An anonymous module; e.g., just a block.
///
/// ```
/// fn main() {
/// fn f() {} // (1)
/// { // This is an anonymous module
/// f(); // This resolves to (2) as we are inside the block.
/// fn f() {} // (2)
/// }
/// f(); // Resolves to (1)
/// }
/// ```
Block(NodeId),
/// Any module with a name.
///
/// This could be:
///
/// * A normal module either `mod from_file;` or `mod from_block { }`.
/// * A trait or an enum (it implicitly contains associated types, methods and variant
/// constructors).
Def(DefKind, DefId, Name),
}
impl ModuleKind {
/// Get name of the module.
pub fn name(&self) -> Option<Name> {
match self {
ModuleKind::Block(..) => None,
ModuleKind::Def(.., name) => Some(*name),
}
}
}
/// One node in the tree of modules.
pub struct ModuleData<'a> {
parent: Option<Module<'a>>,
kind: ModuleKind,
// The def id of the closest normal module (`mod`) ancestor (including this module).
normal_ancestor_id: DefId,
resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
single_segment_macro_resolutions: RefCell<Vec<(Ident, MacroKind, ParentScope<'a>,
Option<&'a NameBinding<'a>>)>>,
multi_segment_macro_resolutions: RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>,
Option<Res>)>>,
builtin_attrs: RefCell<Vec<(Ident, ParentScope<'a>)>>,
// Macro invocations that can expand into items in this module.
unresolved_invocations: RefCell<FxHashSet<Mark>>,
no_implicit_prelude: bool,
glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
globs: RefCell<Vec<&'a ImportDirective<'a>>>,
// Used to memoize the traits in this module for faster searches through all traits in scope.
traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
// Whether this module is populated. If not populated, any attempt to
// access the children must be preceded with a
// `populate_module_if_necessary` call.
populated: Cell<bool>,
/// Span of the module itself. Used for error reporting.
span: Span,
expansion: Mark,
}
type Module<'a> = &'a ModuleData<'a>;
impl<'a> ModuleData<'a> {
fn new(parent: Option<Module<'a>>,
kind: ModuleKind,
normal_ancestor_id: DefId,
expansion: Mark,
span: Span) -> Self {
ModuleData {
parent,
kind,
normal_ancestor_id,
resolutions: Default::default(),
single_segment_macro_resolutions: RefCell::new(Vec::new()),
multi_segment_macro_resolutions: RefCell::new(Vec::new()),
builtin_attrs: RefCell::new(Vec::new()),
unresolved_invocations: Default::default(),
no_implicit_prelude: false,
glob_importers: RefCell::new(Vec::new()),
globs: RefCell::new(Vec::new()),
traits: RefCell::new(None),
populated: Cell::new(normal_ancestor_id.is_local()),
span,
expansion,
}
}
fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
}
}
fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
let resolutions = self.resolutions.borrow();
let mut resolutions = resolutions.iter().collect::<Vec<_>>();
resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns));
for &(&(ident, ns), &resolution) in resolutions.iter() {
resolution.borrow().binding.map(|binding| f(ident, ns, binding));
}
}
fn res(&self) -> Option<Res> {
match self.kind {
ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
_ => None,
}
}
fn def_kind(&self) -> Option<DefKind> {
match self.kind {
ModuleKind::Def(kind, ..) => Some(kind),
_ => None,
}
}
fn def_id(&self) -> Option<DefId> {
match self.kind {
ModuleKind::Def(_, def_id, _) => Some(def_id),
_ => None,
}
}
// `self` resolves to the first module ancestor that `is_normal`.
fn is_normal(&self) -> bool {
match self.kind {
ModuleKind::Def(DefKind::Mod, _, _) => true,
_ => false,
}
}
fn is_trait(&self) -> bool {
match self.kind {
ModuleKind::Def(DefKind::Trait, _, _) => true,
_ => false,
}
}
fn nearest_item_scope(&'a self) -> Module<'a> {
if self.is_trait() { self.parent.unwrap() } else { self }
}
fn is_ancestor_of(&self, mut other: &Self) -> bool {
while !ptr::eq(self, other) {
if let Some(parent) = other.parent {
other = parent;
} else {
return false;
}
}
true
}
}
impl<'a> fmt::Debug for ModuleData<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.res())
}
}
/// Records a possibly-private value, type, or module definition.
#[derive(Clone, Debug)]
pub struct NameBinding<'a> {
kind: NameBindingKind<'a>,
ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>,
expansion: Mark,
span: Span,
vis: ty::Visibility,
}
pub trait ToNameBinding<'a> {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
}
impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
self
}
}
#[derive(Clone, Debug)]
enum NameBindingKind<'a> {
Res(Res, /* is_macro_export */ bool),
Module(Module<'a>),
Import {
binding: &'a NameBinding<'a>,
directive: &'a ImportDirective<'a>,
used: Cell<bool>,
},
}
impl<'a> NameBindingKind<'a> {
/// Is this a name binding of a import?
fn is_import(&self) -> bool {
match *self {
NameBindingKind::Import { .. } => true,
_ => false,
}
}
}
struct PrivacyError<'a>(Span, Ident, &'a NameBinding<'a>);
struct UseError<'a> {
err: DiagnosticBuilder<'a>,
/// Attach `use` statements for these candidates.
candidates: Vec<ImportSuggestion>,
/// The `NodeId` of the module to place the use-statements in.
node_id: NodeId,
/// Whether the diagnostic should state that it's "better".
better: bool,
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum AmbiguityKind {
Import,
BuiltinAttr,
DeriveHelper,
LegacyHelperVsPrelude,
LegacyVsModern,
GlobVsOuter,
GlobVsGlob,
GlobVsExpanded,
MoreExpandedVsOuter,
}
impl AmbiguityKind {
fn descr(self) -> &'static str {
match self {
AmbiguityKind::Import =>
"name vs any other name during import resolution",
AmbiguityKind::BuiltinAttr =>
"built-in attribute vs any other name",
AmbiguityKind::DeriveHelper =>
"derive helper attribute vs any other name",
AmbiguityKind::LegacyHelperVsPrelude =>
"legacy plugin helper attribute vs name from prelude",
AmbiguityKind::LegacyVsModern =>
"`macro_rules` vs non-`macro_rules` from other module",
AmbiguityKind::GlobVsOuter =>
"glob import vs any other name from outer scope during import/macro resolution",
AmbiguityKind::GlobVsGlob =>
"glob import vs glob import in the same module",
AmbiguityKind::GlobVsExpanded =>
"glob import vs macro-expanded name in the same \
module during import/macro resolution",
AmbiguityKind::MoreExpandedVsOuter =>
"macro-expanded name vs less macro-expanded name \
from outer scope during import/macro resolution",
}
}
}
/// Miscellaneous bits of metadata for better ambiguity error reporting.
#[derive(Clone, Copy, PartialEq)]
enum AmbiguityErrorMisc {
SuggestCrate,
SuggestSelf,
FromPrelude,
None,
}
struct AmbiguityError<'a> {
kind: AmbiguityKind,
ident: Ident,
b1: &'a NameBinding<'a>,
b2: &'a NameBinding<'a>,
misc1: AmbiguityErrorMisc,
misc2: AmbiguityErrorMisc,
}
impl<'a> NameBinding<'a> {
fn module(&self) -> Option<Module<'a>> {
match self.kind {
NameBindingKind::Module(module) => Some(module),
NameBindingKind::Import { binding, .. } => binding.module(),
_ => None,
}
}
fn res(&self) -> Res {
match self.kind {
NameBindingKind::Res(res, _) => res,
NameBindingKind::Module(module) => module.res().unwrap(),
NameBindingKind::Import { binding, .. } => binding.res(),
}
}
fn is_ambiguity(&self) -> bool {
self.ambiguity.is_some() || match self.kind {
NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
_ => false,
}
}
// We sometimes need to treat variants as `pub` for backwards compatibility.
fn pseudo_vis(&self) -> ty::Visibility {
if self.is_variant() && self.res().def_id().is_local() {
ty::Visibility::Public
} else {
self.vis
}
}
fn is_variant(&self) -> bool {
match self.kind {
NameBindingKind::Res(Res::Def(DefKind::Variant, _), _) |
NameBindingKind::Res(Res::Def(DefKind::Ctor(CtorOf::Variant, ..), _), _) => true,
_ => false,
}
}
fn is_extern_crate(&self) -> bool {
match self.kind {
NameBindingKind::Import {
directive: &ImportDirective {
subclass: ImportDirectiveSubclass::ExternCrate { .. }, ..
}, ..
} => true,
NameBindingKind::Module(
&ModuleData { kind: ModuleKind::Def(DefKind::Mod, def_id, _), .. }
) => def_id.index == CRATE_DEF_INDEX,
_ => false,
}
}
fn is_import(&self) -> bool {
match self.kind {
NameBindingKind::Import { .. } => true,
_ => false,
}
}
fn is_glob_import(&self) -> bool {
match self.kind {
NameBindingKind::Import { directive, .. } => directive.is_glob(),
_ => false,
}
}
fn is_importable(&self) -> bool {
match self.res() {
Res::Def(DefKind::AssocConst, _)
| Res::Def(DefKind::Method, _)
| Res::Def(DefKind::AssocTy, _) => false,
_ => true,
}
}
fn is_macro_def(&self) -> bool {
match self.kind {
NameBindingKind::Res(Res::Def(DefKind::Macro(..), _), _) => true,
_ => false,
}
}
fn macro_kind(&self) -> Option<MacroKind> {
match self.res() {
Res::Def(DefKind::Macro(kind), _) => Some(kind),
Res::NonMacroAttr(..) => Some(MacroKind::Attr),
_ => None,
}
}
fn descr(&self) -> &'static str {
if self.is_extern_crate() { "extern crate" } else { self.res().descr() }
}
fn article(&self) -> &'static str {
if self.is_extern_crate() { "an" } else { self.res().article() }
}
// Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
// at some expansion round `max(invoc, binding)` when they both emerged from macros.
// Then this function returns `true` if `self` may emerge from a macro *after* that
// in some later round and screw up our previously found resolution.
// See more detailed explanation in
// https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
fn may_appear_after(&self, invoc_parent_expansion: Mark, binding: &NameBinding<'_>) -> bool {
// self > max(invoc, binding) => !(self <= invoc || self <= binding)
// Expansions are partially ordered, so "may appear after" is an inversion of
// "certainly appears before or simultaneously" and includes unordered cases.
let self_parent_expansion = self.expansion;
let other_parent_expansion = binding.expansion;
let certainly_before_other_or_simultaneously =
other_parent_expansion.is_descendant_of(self_parent_expansion);
let certainly_before_invoc_or_simultaneously =
invoc_parent_expansion.is_descendant_of(self_parent_expansion);
!(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
}
}
/// Interns the names of the primitive types.
///
/// All other types are defined somewhere and possibly imported, but the primitive ones need
/// special handling, since they have no place of origin.
#[derive(Default)]
struct PrimitiveTypeTable {
primitive_types: FxHashMap<Name, PrimTy>,
}
impl PrimitiveTypeTable {
fn new() -> PrimitiveTypeTable {
let mut table = PrimitiveTypeTable::default();
table.intern("bool", Bool);
table.intern("char", Char);
table.intern("f32", Float(FloatTy::F32));
table.intern("f64", Float(FloatTy::F64));
table.intern("isize", Int(IntTy::Isize));
table.intern("i8", Int(IntTy::I8));
table.intern("i16", Int(IntTy::I16));
table.intern("i32", Int(IntTy::I32));
table.intern("i64", Int(IntTy::I64));
table.intern("i128", Int(IntTy::I128));
table.intern("str", Str);
table.intern("usize", Uint(UintTy::Usize));
table.intern("u8", Uint(UintTy::U8));
table.intern("u16", Uint(UintTy::U16));
table.intern("u32", Uint(UintTy::U32));
table.intern("u64", Uint(UintTy::U64));
table.intern("u128", Uint(UintTy::U128));
table
}
fn intern(&mut self, string: &str, primitive_type: PrimTy) {
self.primitive_types.insert(Symbol::intern(string), primitive_type);
}
}
#[derive(Debug, Default, Clone)]
pub struct ExternPreludeEntry<'a> {
extern_crate_item: Option<&'a NameBinding<'a>>,
pub introduced_by_item: bool,
}
/// The main resolver class.
///
/// This is the visitor that walks the whole crate.
pub struct Resolver<'a> {
session: &'a Session,
cstore: &'a CStore,
pub definitions: Definitions,
graph_root: Module<'a>,
prelude: Option<Module<'a>>,
pub extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
/// N.B., this is used only for better diagnostics, not name resolution itself.
has_self: FxHashSet<DefId>,
/// Names of fields of an item `DefId` accessible with dot syntax.
/// Used for hints during error reporting.
field_names: FxHashMap<DefId, Vec<Name>>,
/// All imports known to succeed or fail.
determined_imports: Vec<&'a ImportDirective<'a>>,
/// All non-determined imports.
indeterminate_imports: Vec<&'a ImportDirective<'a>>,
/// The module that represents the current item scope.
current_module: Module<'a>,
/// The current set of local scopes for types and values.
/// FIXME #4948: Reuse ribs to avoid allocation.
ribs: PerNS<Vec<Rib<'a>>>,
/// The current set of local scopes, for labels.
label_ribs: Vec<Rib<'a, NodeId>>,
/// The trait that the current context can refer to.
current_trait_ref: Option<(Module<'a>, TraitRef)>,
/// The current self type if inside an impl (used for better errors).
current_self_type: Option<Ty>,
/// The current self item if inside an ADT (used for better errors).
current_self_item: Option<NodeId>,
/// FIXME: Refactor things so that these fields are passed through arguments and not resolver.
/// We are resolving a last import segment during import validation.
last_import_segment: bool,
/// This binding should be ignored during in-module resolution, so that we don't get
/// "self-confirming" import resolutions during import validation.
blacklisted_binding: Option<&'a NameBinding<'a>>,
/// The idents for the primitive types.
primitive_type_table: PrimitiveTypeTable,
/// Resolutions for nodes that have a single resolution.
partial_res_map: NodeMap<PartialRes>,
/// Resolutions for import nodes, which have multiple resolutions in different namespaces.
import_res_map: NodeMap<PerNS<Option<Res>>>,
/// Resolutions for labels (node IDs of their corresponding blocks or loops).
label_res_map: NodeMap<NodeId>,
pub upvars: UpvarMap,
pub export_map: ExportMap<NodeId>,
pub trait_map: TraitMap,
/// A map from nodes to anonymous modules.
/// Anonymous modules are pseudo-modules that are implicitly created around items
/// contained within blocks.
///
/// For example, if we have this:
///
/// fn f() {
/// fn g() {
/// ...
/// }
/// }
///
/// There will be an anonymous module created around `g` with the ID of the
/// entry block for `f`.
block_map: NodeMap<Module<'a>>,
module_map: FxHashMap<DefId, Module<'a>>,
extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>,
binding_parent_modules: FxHashMap<PtrKey<'a, NameBinding<'a>>, Module<'a>>,
/// Maps glob imports to the names of items actually imported.
pub glob_map: GlobMap,
used_imports: FxHashSet<(NodeId, Namespace)>,
pub maybe_unused_trait_imports: NodeSet,
pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
/// A list of labels as of yet unused. Labels will be removed from this map when
/// they are used (in a `break` or `continue` statement)
pub unused_labels: FxHashMap<NodeId, Span>,
/// Privacy errors are delayed until the end in order to deduplicate them.
privacy_errors: Vec<PrivacyError<'a>>,
/// Ambiguity errors are delayed for deduplication.
ambiguity_errors: Vec<AmbiguityError<'a>>,
/// `use` injections are delayed for better placement and deduplication.
use_injections: Vec<UseError<'a>>,
/// Crate-local macro expanded `macro_export` referred to by a module-relative path.
macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
arenas: &'a ResolverArenas<'a>,
dummy_binding: &'a NameBinding<'a>,
crate_loader: &'a mut CrateLoader<'a>,
macro_names: FxHashSet<Ident>,
builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
macro_use_prelude: FxHashMap<Name, &'a NameBinding<'a>>,
pub all_macros: FxHashMap<Name, Res>,
macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>,
macro_defs: FxHashMap<Mark, DefId>,
local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
/// List of crate local macros that we need to warn about as being unused.
/// Right now this only includes macro_rules! macros, and macros 2.0.
unused_macros: FxHashSet<DefId>,
/// Maps the `Mark` of an expansion to its containing module or block.
invocations: FxHashMap<Mark, &'a InvocationData<'a>>,
/// Avoid duplicated errors for "name already defined".
name_already_seen: FxHashMap<Name, Span>,
potentially_unused_imports: Vec<&'a ImportDirective<'a>>,
/// Table for mapping struct IDs into struct constructor IDs,
/// it's not used during normal resolution, only for better error reporting.
struct_constructors: DefIdMap<(Res, ty::Visibility)>,
/// Only used for better errors on `fn(): fn()`.
current_type_ascription: Vec<Span>,
injected_crate: Option<Module<'a>>,
}
/// Nothing really interesting here; it just provides memory for the rest of the crate.
#[derive(Default)]
pub struct ResolverArenas<'a> {
modules: arena::TypedArena<ModuleData<'a>>,
local_modules: RefCell<Vec<Module<'a>>>,
name_bindings: arena::TypedArena<NameBinding<'a>>,
import_directives: arena::TypedArena<ImportDirective<'a>>,
name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
invocation_data: arena::TypedArena<InvocationData<'a>>,
legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
}
impl<'a> ResolverArenas<'a> {
fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
let module = self.modules.alloc(module);
if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
self.local_modules.borrow_mut().push(module);
}
module
}
fn local_modules(&'a self) -> std::cell::Ref<'a, Vec<Module<'a>>> {
self.local_modules.borrow()
}
fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
self.name_bindings.alloc(name_binding)
}
fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
-> &'a ImportDirective<'_> {
self.import_directives.alloc(import_directive)
}
fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
self.name_resolutions.alloc(Default::default())
}
fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
-> &'a InvocationData<'a> {
self.invocation_data.alloc(expansion_data)
}
fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
self.legacy_bindings.alloc(binding)
}
}
impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
fn parent(self, id: DefId) -> Option<DefId> {
match id.krate {
LOCAL_CRATE => self.definitions.def_key(id.index).parent,
_ => self.cstore.def_key(id).parent,
}.map(|index| DefId { index, ..id })
}
}
/// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that
/// the resolver is no longer needed as all the relevant information is inline.
impl<'a> hir::lowering::Resolver for Resolver<'a> {
fn resolve_hir_path(
&mut self,
path: &ast::Path,
is_value: bool,
) -> hir::Path {
self.resolve_hir_path_cb(path, is_value,
|resolver, span, error| resolve_error(resolver, span, error))
}
fn resolve_str_path(
&mut self,
span: Span,
crate_root: Option<Symbol>,
components: &[Symbol],
is_value: bool
) -> hir::Path {
let root = if crate_root.is_some() {
kw::PathRoot
} else {
kw::Crate
};
let segments = iter::once(Ident::with_empty_ctxt(root))
.chain(
crate_root.into_iter()
.chain(components.iter().cloned())
.map(Ident::with_empty_ctxt)
).map(|i| self.new_ast_path_segment(i)).collect::<Vec<_>>();
let path = ast::Path {
span,
segments,
};
self.resolve_hir_path(&path, is_value)
}
fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes> {
self.partial_res_map.get(&id).cloned()
}
fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res>> {
self.import_res_map.get(&id).cloned().unwrap_or_default()
}
fn get_label_res(&mut self, id: NodeId) -> Option<NodeId> {
self.label_res_map.get(&id).cloned()
}
fn definitions(&mut self) -> &mut Definitions {
&mut self.definitions
}
}
impl<'a> Resolver<'a> {
/// Rustdoc uses this to resolve things in a recoverable way. `ResolutionError<'a>`
/// isn't something that can be returned because it can't be made to live that long,
/// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
/// just that an error occurred.
pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool)
-> Result<hir::Path, ()> {
let mut errored = false;
let path = if path_str.starts_with("::") {
ast::Path {
span,
segments: iter::once(Ident::with_empty_ctxt(kw::PathRoot))
.chain({
path_str.split("::").skip(1).map(Ident::from_str)
})
.map(|i| self.new_ast_path_segment(i))
.collect(),
}
} else {
ast::Path {
span,
segments: path_str
.split("::")
.map(Ident::from_str)
.map(|i| self.new_ast_path_segment(i))
.collect(),
}
};
let path = self.resolve_hir_path_cb(&path, is_value, |_, _, _| errored = true);
if errored || path.res == def::Res::Err {
Err(())
} else {
Ok(path)
}
}
/// Like `resolve_hir_path`, but takes a callback in case there was an error.
fn resolve_hir_path_cb<F>(
&mut self,
path: &ast::Path,
is_value: bool,
error_callback: F,
) -> hir::Path
where F: for<'c, 'b> FnOnce(&'c mut Resolver<'_>, Span, ResolutionError<'b>)
{
let namespace = if is_value { ValueNS } else { TypeNS };
let span = path.span;
let segments = &path.segments;
let path = Segment::from_path(&path);
// FIXME(Manishearth): intra-doc links won't get warned of epoch changes.
let res = match self.resolve_path_without_parent_scope(&path, Some(namespace), true,
span, CrateLint::No) {
PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
module.res().unwrap(),
PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
path_res.base_res(),
PathResult::NonModule(..) => {
error_callback(self, span, ResolutionError::FailedToResolve {
label: String::from("type-relative paths are not supported in this context"),
suggestion: None,
});
Res::Err
}
PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
PathResult::Failed { span, label, suggestion, .. } => {
error_callback(self, span, ResolutionError::FailedToResolve {
label,
suggestion,
});
Res::Err
}
};
let segments: Vec<_> = segments.iter().map(|seg| {
let mut hir_seg = hir::PathSegment::from_ident(seg.ident);
hir_seg.res = Some(self.partial_res_map.get(&seg.id).map_or(def::Res::Err, |p| {
p.base_res().map_id(|_| panic!("unexpected node_id"))
}));
hir_seg
}).collect();
hir::Path {
span,
res: res.map_id(|_| panic!("unexpected node_id")),
segments: segments.into(),
}
}
fn new_ast_path_segment(&self, ident: Ident) -> ast::PathSegment {
let mut seg = ast::PathSegment::from_ident(ident);
seg.id = self.session.next_node_id();
seg
}
}
impl<'a> Resolver<'a> {
pub fn new(session: &'a Session,
cstore: &'a CStore,
krate: &Crate,
crate_name: &str,
crate_loader: &'a mut CrateLoader<'a>,
arenas: &'a ResolverArenas<'a>)
-> Resolver<'a> {
let root_def_id = DefId::local(CRATE_DEF_INDEX);
let root_module_kind = ModuleKind::Def(
DefKind::Mod,
root_def_id,
kw::Invalid,
);
let graph_root = arenas.alloc_module(ModuleData {
no_implicit_prelude: attr::contains_name(&krate.attrs, sym::no_implicit_prelude),
..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span)
});
let mut module_map = FxHashMap::default();
module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);
let mut definitions = Definitions::default();
DefCollector::new(&mut definitions, Mark::root())
.collect_root(crate_name, session.local_crate_disambiguator());
let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'_>> =
session.opts.externs.iter().map(|kv| (Ident::from_str(kv.0), Default::default()))
.collect();
if !attr::contains_name(&krate.attrs, sym::no_core) {
extern_prelude.insert(Ident::with_empty_ctxt(sym::core), Default::default());
if !attr::contains_name(&krate.attrs, sym::no_std) {
extern_prelude.insert(Ident::with_empty_ctxt(sym::std), Default::default());
if session.rust_2018() {
extern_prelude.insert(Ident::with_empty_ctxt(sym::meta), Default::default());
}
}
}
let mut invocations = FxHashMap::default();
invocations.insert(Mark::root(),
arenas.alloc_invocation_data(InvocationData::root(graph_root)));
let mut macro_defs = FxHashMap::default();
macro_defs.insert(Mark::root(), root_def_id);
Resolver {
session,
cstore,
definitions,
// The outermost module has def ID 0; this is not reflected in the
// AST.
graph_root,
prelude: None,
extern_prelude,
has_self: FxHashSet::default(),
field_names: FxHashMap::default(),
determined_imports: Vec::new(),
indeterminate_imports: Vec::new(),
current_module: graph_root,
ribs: PerNS {
value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
macro_ns: vec![Rib::new(ModuleRibKind(graph_root))],
},
label_ribs: Vec::new(),
current_trait_ref: None,
current_self_type: None,
current_self_item: None,
last_import_segment: false,
blacklisted_binding: None,
primitive_type_table: PrimitiveTypeTable::new(),
partial_res_map: Default::default(),
import_res_map: Default::default(),
label_res_map: Default::default(),
upvars: Default::default(),
export_map: FxHashMap::default(),
trait_map: Default::default(),
module_map,
block_map: Default::default(),
extern_module_map: FxHashMap::default(),
binding_parent_modules: FxHashMap::default(),
glob_map: Default::default(),
used_imports: FxHashSet::default(),
maybe_unused_trait_imports: Default::default(),
maybe_unused_extern_crates: Vec::new(),
unused_labels: FxHashMap::default(),
privacy_errors: Vec::new(),
ambiguity_errors: Vec::new(),
use_injections: Vec::new(),
macro_expanded_macro_export_errors: BTreeSet::new(),
arenas,
dummy_binding: arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Res(Res::Err, false),
ambiguity: None,
expansion: Mark::root(),
span: DUMMY_SP,
vis: ty::Visibility::Public,
}),
crate_loader,
macro_names: FxHashSet::default(),
builtin_macros: FxHashMap::default(),
macro_use_prelude: FxHashMap::default(),
all_macros: FxHashMap::default(),
macro_map: FxHashMap::default(),
invocations,
macro_defs,
local_macro_def_scopes: FxHashMap::default(),
name_already_seen: FxHashMap::default(),
potentially_unused_imports: Vec::new(),
struct_constructors: Default::default(),
unused_macros: FxHashSet::default(),
current_type_ascription: Vec::new(),
injected_crate: None,
}
}
pub fn arenas() -> ResolverArenas<'a> {
Default::default()
}
/// Runs the function on each namespace.
fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
f(self, TypeNS);
f(self, ValueNS);
f(self, MacroNS);
}
fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
loop {
match self.macro_defs.get(&ctxt.outer()) {
Some(&def_id) => return def_id,
None => ctxt.remove_mark(),
};
}
}
/// Entry point to crate resolution.
pub fn resolve_crate(&mut self, krate: &Crate) {
ImportResolver { resolver: self }.finalize_imports();
self.current_module = self.graph_root;
self.finalize_current_module_macro_resolutions();
visit::walk_crate(self, krate);
check_unused::check_crate(self, krate);
self.report_errors(krate);
self.crate_loader.postprocess(krate);
}
fn new_module(
&self,
parent: Module<'a>,
kind: ModuleKind,
normal_ancestor_id: DefId,
expansion: Mark,
span: Span,
) -> Module<'a> {
let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span);
self.arenas.alloc_module(module)
}
fn record_use(&mut self, ident: Ident, ns: Namespace,
used_binding: &'a NameBinding<'a>, is_lexical_scope: bool) {
if let Some((b2, kind)) = used_binding.ambiguity {
self.ambiguity_errors.push(AmbiguityError {
kind, ident, b1: used_binding, b2,
misc1: AmbiguityErrorMisc::None,
misc2: AmbiguityErrorMisc::None,
});
}
if let NameBindingKind::Import { directive, binding, ref used } = used_binding.kind {
// Avoid marking `extern crate` items that refer to a name from extern prelude,
// but not introduce it, as used if they are accessed from lexical scope.
if is_lexical_scope {
if let Some(entry) = self.extern_prelude.get(&ident.modern()) {
if let Some(crate_item) = entry.extern_crate_item {
if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
return;
}
}
}
}
used.set(true);
directive.used.set(true);
self.used_imports.insert((directive.id, ns));
self.add_to_glob_map(&directive, ident);
self.record_use(ident, ns, binding, false);
}
}
#[inline]
fn add_to_glob_map(&mut self, directive: &ImportDirective<'_>, ident: Ident) {
if directive.is_glob() {
self.glob_map.entry(directive.id).or_default().insert(ident.name);
}
}
/// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
/// More specifically, we proceed up the hierarchy of scopes and return the binding for
/// `ident` in the first scope that defines it (or None if no scopes define it).
///
/// A block's items are above its local variables in the scope hierarchy, regardless of where
/// the items are defined in the block. For example,
/// ```rust
/// fn f() {
/// g(); // Since there are no local variables in scope yet, this resolves to the item.
/// let g = || {};
/// fn g() {}
/// g(); // This resolves to the local variable `g` since it shadows the item.
/// }
/// ```
///
/// Invariant: This must only be called during main resolution, not during
/// import resolution.
fn resolve_ident_in_lexical_scope(&mut self,
mut ident: Ident,
ns: Namespace,
record_used_id: Option<NodeId>,
path_span: Span)
-> Option<LexicalScopeBinding<'a>> {
assert!(ns == TypeNS || ns == ValueNS);
if ident.name == kw::Invalid {
return Some(LexicalScopeBinding::Res(Res::Err));
}
ident.span = if ident.name == kw::SelfUpper {
// FIXME(jseyfried) improve `Self` hygiene
ident.span.with_ctxt(SyntaxContext::empty())
} else if ns == TypeNS {
ident.span.modern()
} else {
ident.span.modern_and_legacy()
};
// Walk backwards up the ribs in scope.
let record_used = record_used_id.is_some();
let mut module = self.graph_root;
for i in (0 .. self.ribs[ns].len()).rev() {
debug!("walk rib\n{:?}", self.ribs[ns][i].bindings);
if let Some(res) = self.ribs[ns][i].bindings.get(&ident).cloned() {
// The ident resolves to a type parameter or local variable.
return Some(LexicalScopeBinding::Res(
self.adjust_local_res(ns, i, res, record_used, path_span)
));
}
module = match self.ribs[ns][i].kind {
ModuleRibKind(module) => module,
MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => {
// If an invocation of this macro created `ident`, give up on `ident`
// and switch to `ident`'s source from the macro definition.
ident.span.remove_mark();
continue
}
_ => continue,
};
let item = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(module),
ident,
ns,
record_used,
path_span,
);
if let Ok(binding) = item {
// The ident resolves to an item.
return Some(LexicalScopeBinding::Item(binding));
}
match module.kind {
ModuleKind::Block(..) => {}, // We can see through blocks
_ => break,
}
}
ident.span = ident.span.modern();
let mut poisoned = None;
loop {
let opt_module = if let Some(node_id) = record_used_id {
self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span,
node_id, &mut poisoned)
} else {
self.hygienic_lexical_parent(module, &mut ident.span)
};
module = unwrap_or!(opt_module, break);
let orig_current_module = self.current_module;
self.current_module = module; // Lexical resolutions can never be a privacy error.
let result = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(module),
ident,
ns,
record_used,
path_span,
);
self.current_module = orig_current_module;
match result {
Ok(binding) => {
if let Some(node_id) = poisoned {
self.session.buffer_lint_with_diagnostic(
lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK,
node_id, ident.span,
&format!("cannot find {} `{}` in this scope", ns.descr(), ident),
lint::builtin::BuiltinLintDiagnostics::
ProcMacroDeriveResolutionFallback(ident.span),
);
}
return Some(LexicalScopeBinding::Item(binding))
}
Err(Determined) => continue,
Err(Undetermined) =>
span_bug!(ident.span, "undetermined resolution during main resolution pass"),
}
}
if !module.no_implicit_prelude {
if ns == TypeNS {
if let Some(binding) = self.extern_prelude_get(ident, !record_used) {
return Some(LexicalScopeBinding::Item(binding));
}
}
if ns == TypeNS && is_known_tool(ident.name) {
let binding = (Res::ToolMod, ty::Visibility::Public,
DUMMY_SP, Mark::root()).to_name_binding(self.arenas);
return Some(LexicalScopeBinding::Item(binding));
}
if let Some(prelude) = self.prelude {
if let Ok(binding) = self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(prelude),
ident,
ns,
false,
path_span,
) {
return Some(LexicalScopeBinding::Item(binding));
}
}
}
None
}
fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span)
-> Option<Module<'a>> {
if !module.expansion.outer_is_descendant_of(span.ctxt()) {
return Some(self.macro_def_scope(span.remove_mark()));
}
if let ModuleKind::Block(..) = module.kind {
return Some(module.parent.unwrap());
}
None
}
fn hygienic_lexical_parent_with_compatibility_fallback(&mut self, module: Module<'a>,
span: &mut Span, node_id: NodeId,
poisoned: &mut Option<NodeId>)
-> Option<Module<'a>> {
if let module @ Some(..) = self.hygienic_lexical_parent(module, span) {
return module;
}
// We need to support the next case under a deprecation warning
// ```
// struct MyStruct;
// ---- begin: this comes from a proc macro derive
// mod implementation_details {
// // Note that `MyStruct` is not in scope here.
// impl SomeTrait for MyStruct { ... }
// }
// ---- end
// ```
// So we have to fall back to the module's parent during lexical resolution in this case.
if let Some(parent) = module.parent {
// Inner module is inside the macro, parent module is outside of the macro.
if module.expansion != parent.expansion &&
module.expansion.is_descendant_of(parent.expansion) {
// The macro is a proc macro derive
if module.expansion.looks_like_proc_macro_derive() {
if parent.expansion.outer_is_descendant_of(span.ctxt()) {
*poisoned = Some(node_id);
return module.parent;
}
}
}
}
None
}
fn resolve_ident_in_module(
&mut self,
module: ModuleOrUniformRoot<'a>,
ident: Ident,
ns: Namespace,
parent_scope: Option<&ParentScope<'a>>,
record_used: bool,
path_span: Span
) -> Result<&'a NameBinding<'a>, Determinacy> {
self.resolve_ident_in_module_ext(
module, ident, ns, parent_scope, record_used, path_span
).map_err(|(determinacy, _)| determinacy)
}
fn resolve_ident_in_module_ext(
&mut self,
module: ModuleOrUniformRoot<'a>,
mut ident: Ident,
ns: Namespace,
parent_scope: Option<&ParentScope<'a>>,
record_used: bool,
path_span: Span
) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> {
let orig_current_module = self.current_module;
match module {
ModuleOrUniformRoot::Module(module) => {
ident.span = ident.span.modern();
if let Some(def) = ident.span.adjust(module.expansion) {
self.current_module = self.macro_def_scope(def);
}
}
ModuleOrUniformRoot::ExternPrelude => {
ident.span = ident.span.modern();
ident.span.adjust(Mark::root());
}
ModuleOrUniformRoot::CrateRootAndExternPrelude |
ModuleOrUniformRoot::CurrentScope => {
// No adjustments
}
}
let result = self.resolve_ident_in_module_unadjusted_ext(
module, ident, ns, parent_scope, false, record_used, path_span,
);
self.current_module = orig_current_module;
result
}
fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
let mut ctxt = ident.span.ctxt();
let mark = if ident.name == kw::DollarCrate {
// When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
// we don't want to pretend that the `macro_rules!` definition is in the `macro`
// as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks.
// FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
// definitions actually produced by `macro` and `macro` definitions produced by
// `macro_rules!`, but at least such configurations are not stable yet.
ctxt = ctxt.modern_and_legacy();
let mut iter = ctxt.marks().into_iter().rev().peekable();
let mut result = None;
// Find the last modern mark from the end if it exists.
while let Some(&(mark, transparency)) = iter.peek() {
if transparency == Transparency::Opaque {
result = Some(mark);
iter.next();
} else {
break;
}
}
// Then find the last legacy mark from the end if it exists.
for (mark, transparency) in iter {
if transparency == Transparency::SemiTransparent {
result = Some(mark);
} else {
break;
}
}
result
} else {
ctxt = ctxt.modern();
ctxt.adjust(Mark::root())
};
let module = match mark {
Some(def) => self.macro_def_scope(def),
None => return self.graph_root,
};
self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id })
}
fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
let mut module = self.get_module(module.normal_ancestor_id);
while module.span.ctxt().modern() != *ctxt {
let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark()));
module = self.get_module(parent.normal_ancestor_id);
}
module
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `current_module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T
where F: FnOnce(&mut Resolver<'_>) -> T
{
let id = self.definitions.local_def_id(id);
let module = self.module_map.get(&id).cloned(); // clones a reference
if let Some(module) = module {
// Move down in the graph.
let orig_module = replace(&mut self.current_module, module);
self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
self.finalize_current_module_macro_resolutions();
let ret = f(self);
self.current_module = orig_module;
self.ribs[ValueNS].pop();
self.ribs[TypeNS].pop();
ret
} else {
f(self)
}
}
/// Searches the current set of local scopes for labels. Returns the first non-`None` label that
/// is returned by the given predicate function
///
/// Stops after meeting a closure.
fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
where P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>
{
for rib in self.label_ribs.iter().rev() {
match rib.kind {
NormalRibKind => {}
// If an invocation of this macro created `ident`, give up on `ident`
// and switch to `ident`'s source from the macro definition.
MacroDefinition(def) => {
if def == self.macro_def(ident.span.ctxt()) {
ident.span.remove_mark();
}
}
_ => {
// Do not resolve labels across function boundary
return None;
}
}
let r = pred(rib, ident);
if r.is_some() {
return r;
}
}
None
}
fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
debug!("resolve_adt");
self.with_current_self_item(item, |this| {
this.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
let item_def_id = this.definitions.local_def_id(item.id);
this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
visit::walk_item(this, item);
});
});
});
}
fn future_proof_import(&mut self, use_tree: &ast::UseTree) {
let segments = &use_tree.prefix.segments;
if !segments.is_empty() {
let ident = segments[0].ident;
if ident.is_path_segment_keyword() || ident.span.rust_2015() {
return;
}
let nss = match use_tree.kind {
ast::UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
_ => &[TypeNS],
};
let report_error = |this: &Self, ns| {
let what = if ns == TypeNS { "type parameters" } else { "local variables" };
this.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
};
for &ns in nss {
match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
Some(LexicalScopeBinding::Res(..)) => {
report_error(self, ns);
}
Some(LexicalScopeBinding::Item(binding)) => {
let orig_blacklisted_binding =
mem::replace(&mut self.blacklisted_binding, Some(binding));
if let Some(LexicalScopeBinding::Res(..)) =
self.resolve_ident_in_lexical_scope(ident, ns, None,
use_tree.prefix.span) {
report_error(self, ns);
}
self.blacklisted_binding = orig_blacklisted_binding;
}
None => {}
}
}
} else if let ast::UseTreeKind::Nested(use_trees) = &use_tree.kind {
for (use_tree, _) in use_trees {
self.future_proof_import(use_tree);
}
}
}
fn resolve_item(&mut self, item: &Item) {
let name = item.ident.name;
debug!("(resolving item) resolving {} ({:?})", name, item.node);
match item.node {
ItemKind::Ty(_, ref generics) |
ItemKind::Fn(_, _, ref generics, _) |
ItemKind::Existential(_, ref generics) => {
self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind),
|this| visit::walk_item(this, item));
}
ItemKind::Enum(_, ref generics) |
ItemKind::Struct(_, ref generics) |
ItemKind::Union(_, ref generics) => {
self.resolve_adt(item, generics);
}
ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
self.resolve_implementation(generics,
opt_trait_ref,
&self_type,
item.id,
impl_items),
ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
// Create a new rib for the trait-wide type parameters.
self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
let local_def_id = this.definitions.local_def_id(item.id);
this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds);
for trait_item in trait_items {
let generic_params = HasGenericParams(&trait_item.generics,
AssocItemRibKind);
this.with_generic_param_rib(generic_params, |this| {
match trait_item.node {
TraitItemKind::Const(ref ty, ref default) => {
this.visit_ty(ty);
// Only impose the restrictions of
// ConstRibKind for an actual constant
// expression in a provided default.
if let Some(ref expr) = *default{
this.with_constant_rib(|this| {
this.visit_expr(expr);
});
}
}
TraitItemKind::Method(_, _) => {
visit::walk_trait_item(this, trait_item)
}
TraitItemKind::Type(..) => {
visit::walk_trait_item(this, trait_item)
}
TraitItemKind::Macro(_) => {
panic!("unexpanded macro in resolve!")
}
};
});
}
});
});
}
ItemKind::TraitAlias(ref generics, ref bounds) => {
// Create a new rib for the trait-wide type parameters.
self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
let local_def_id = this.definitions.local_def_id(item.id);
this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
this.visit_generics(generics);
walk_list!(this, visit_param_bound, bounds);
});
});
}
ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
self.with_scope(item.id, |this| {
visit::walk_item(this, item);
});
}
ItemKind::Static(ref ty, _, ref expr) |
ItemKind::Const(ref ty, ref expr) => {
debug!("resolve_item ItemKind::Const");
self.with_item_rib(|this| {
this.visit_ty(ty);
this.with_constant_rib(|this| {
this.visit_expr(expr);
});
});
}
ItemKind::Use(ref use_tree) => {
self.future_proof_import(use_tree);
}
ItemKind::ExternCrate(..) |
ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
// do nothing, these are just around to be encoded
}
ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
}
}
fn with_generic_param_rib<'b, F>(&'b mut self, generic_params: GenericParameters<'a, 'b>, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
debug!("with_generic_param_rib");
match generic_params {
HasGenericParams(generics, rib_kind) => {
let mut function_type_rib = Rib::new(rib_kind);
let mut function_value_rib = Rib::new(rib_kind);
let mut seen_bindings = FxHashMap::default();
for param in &generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {}
GenericParamKind::Type { .. } => {
let ident = param.ident.modern();
debug!("with_generic_param_rib: {}", param.id);
if seen_bindings.contains_key(&ident) {
let span = seen_bindings.get(&ident).unwrap();
let err = ResolutionError::NameAlreadyUsedInParameterList(
ident.name,
span,
);
resolve_error(self, param.ident.span, err);
}
seen_bindings.entry(ident).or_insert(param.ident.span);
// Plain insert (no renaming).
let res = Res::Def(
DefKind::TyParam,
self.definitions.local_def_id(param.id),
);
function_type_rib.bindings.insert(ident, res);
self.record_partial_res(param.id, PartialRes::new(res));
}
GenericParamKind::Const { .. } => {
let ident = param.ident.modern();
debug!("with_generic_param_rib: {}", param.id);
if seen_bindings.contains_key(&ident) {
let span = seen_bindings.get(&ident).unwrap();
let err = ResolutionError::NameAlreadyUsedInParameterList(
ident.name,
span,
);
resolve_error(self, param.ident.span, err);
}
seen_bindings.entry(ident).or_insert(param.ident.span);
let res = Res::Def(
DefKind::ConstParam,
self.definitions.local_def_id(param.id),
);
function_value_rib.bindings.insert(ident, res);
self.record_partial_res(param.id, PartialRes::new(res));
}
}
}
self.ribs[ValueNS].push(function_value_rib);
self.ribs[TypeNS].push(function_type_rib);
}
NoGenericParams => {
// Nothing to do.
}
}
f(self);
if let HasGenericParams(..) = generic_params {
self.ribs[TypeNS].pop();
self.ribs[ValueNS].pop();
}
}
fn with_label_rib<F>(&mut self, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
self.label_ribs.push(Rib::new(NormalRibKind));
f(self);
self.label_ribs.pop();
}
fn with_item_rib<F>(&mut self, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
self.ribs[ValueNS].push(Rib::new(ItemRibKind));
self.ribs[TypeNS].push(Rib::new(ItemRibKind));
f(self);
self.ribs[TypeNS].pop();
self.ribs[ValueNS].pop();
}
fn with_constant_rib<F>(&mut self, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
debug!("with_constant_rib");
self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
self.label_ribs.push(Rib::new(ConstantItemRibKind));
f(self);
self.label_ribs.pop();
self.ribs[ValueNS].pop();
}
fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
where F: FnOnce(&mut Resolver<'_>) -> T
{
// Handle nested impls (inside fn bodies)
let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
let result = f(self);
self.current_self_type = previous_value;
result
}
fn with_current_self_item<T, F>(&mut self, self_item: &Item, f: F) -> T
where F: FnOnce(&mut Resolver<'_>) -> T
{
let previous_value = replace(&mut self.current_self_item, Some(self_item.id));
let result = f(self);
self.current_self_item = previous_value;
result
}
/// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
where F: FnOnce(&mut Resolver<'_>, Option<DefId>) -> T
{
let mut new_val = None;
let mut new_id = None;
if let Some(trait_ref) = opt_trait_ref {
let path: Vec<_> = Segment::from_path(&trait_ref.path);
let res = self.smart_resolve_path_fragment(
trait_ref.ref_id,
None,
&path,
trait_ref.path.span,
PathSource::Trait(AliasPossibility::No),
CrateLint::SimplePath(trait_ref.ref_id),
).base_res();
if res != Res::Err {
new_id = Some(res.def_id());
let span = trait_ref.path.span;
if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
self.resolve_path_without_parent_scope(
&path,
Some(TypeNS),
false,
span,
CrateLint::SimplePath(trait_ref.ref_id),
)
{
new_val = Some((module, trait_ref.clone()));
}
}
}
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
let result = f(self, new_id);
self.current_trait_ref = original_trait_ref;
result
}
fn with_self_rib<F>(&mut self, self_res: Res, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
let mut self_type_rib = Rib::new(NormalRibKind);
// Plain insert (no renaming, since types are not currently hygienic)
self_type_rib.bindings.insert(Ident::with_empty_ctxt(kw::SelfUpper), self_res);
self.ribs[TypeNS].push(self_type_rib);
f(self);
self.ribs[TypeNS].pop();
}
fn with_self_struct_ctor_rib<F>(&mut self, impl_id: DefId, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
let self_res = Res::SelfCtor(impl_id);
let mut self_type_rib = Rib::new(NormalRibKind);
self_type_rib.bindings.insert(Ident::with_empty_ctxt(kw::SelfUpper), self_res);
self.ribs[ValueNS].push(self_type_rib);
f(self);
self.ribs[ValueNS].pop();
}
fn resolve_implementation(&mut self,
generics: &Generics,
opt_trait_reference: &Option<TraitRef>,
self_type: &Ty,
item_id: NodeId,
impl_items: &[ImplItem]) {
debug!("resolve_implementation");
// If applicable, create a rib for the type parameters.
self.with_generic_param_rib(HasGenericParams(generics, ItemRibKind), |this| {
// Dummy self type for better errors if `Self` is used in the trait path.
this.with_self_rib(Res::SelfTy(None, None), |this| {
// Resolve the trait reference, if necessary.
this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
let item_def_id = this.definitions.local_def_id(item_id);
this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
if let Some(trait_ref) = opt_trait_reference.as_ref() {
// Resolve type arguments in the trait path.
visit::walk_trait_ref(this, trait_ref);
}
// Resolve the self type.
this.visit_ty(self_type);
// Resolve the generic parameters.
this.visit_generics(generics);
// Resolve the items within the impl.
this.with_current_self_type(self_type, |this| {
this.with_self_struct_ctor_rib(item_def_id, |this| {
debug!("resolve_implementation with_self_struct_ctor_rib");
for impl_item in impl_items {
this.resolve_visibility(&impl_item.vis);
// We also need a new scope for the impl item type parameters.
let generic_params = HasGenericParams(&impl_item.generics,
AssocItemRibKind);
this.with_generic_param_rib(generic_params, |this| {
use self::ResolutionError::*;
match impl_item.node {
ImplItemKind::Const(..) => {
debug!(
"resolve_implementation ImplItemKind::Const",
);
// If this is a trait impl, ensure the const
// exists in trait
this.check_trait_item(
impl_item.ident,
ValueNS,
impl_item.span,
|n, s| ConstNotMemberOfTrait(n, s),
);
this.with_constant_rib(|this| {
visit::walk_impl_item(this, impl_item)
});
}
ImplItemKind::Method(..) => {
// If this is a trait impl, ensure the method
// exists in trait
this.check_trait_item(impl_item.ident,
ValueNS,
impl_item.span,
|n, s| MethodNotMemberOfTrait(n, s));
visit::walk_impl_item(this, impl_item);
}
ImplItemKind::Type(ref ty) => {
// If this is a trait impl, ensure the type
// exists in trait
this.check_trait_item(impl_item.ident,
TypeNS,
impl_item.span,
|n, s| TypeNotMemberOfTrait(n, s));
this.visit_ty(ty);
}
ImplItemKind::Existential(ref bounds) => {
// If this is a trait impl, ensure the type
// exists in trait
this.check_trait_item(impl_item.ident,
TypeNS,
impl_item.span,
|n, s| TypeNotMemberOfTrait(n, s));
for bound in bounds {
this.visit_param_bound(bound);
}
}
ImplItemKind::Macro(_) =>
panic!("unexpanded macro in resolve!"),
}
});
}
});
});
});
});
});
});
}
fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
where F: FnOnce(Name, &str) -> ResolutionError<'_>
{
// If there is a TraitRef in scope for an impl, then the method must be in the
// trait.
if let Some((module, _)) = self.current_trait_ref {
if self.resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
ns,
None,
false,
span,
).is_err() {
let path = &self.current_trait_ref.as_ref().unwrap().1.path;
resolve_error(self, span, err(ident.name, &path_names_to_string(path)));
}
}
}
fn resolve_local(&mut self, local: &Local) {
// Resolve the type.
walk_list!(self, visit_ty, &local.ty);
// Resolve the initializer.
walk_list!(self, visit_expr, &local.init);
// Resolve the pattern.
self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap::default());
}
// build a map from pattern identifiers to binding-info's.
// this is done hygienically. This could arise for a macro
// that expands into an or-pattern where one 'x' was from the
// user and one 'x' came from the macro.
fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
let mut binding_map = FxHashMap::default();
pat.walk(&mut |pat| {
if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
if sub_pat.is_some() || match self.partial_res_map.get(&pat.id)
.map(|res| res.base_res()) {
Some(Res::Local(..)) => true,
_ => false,
} {
let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
binding_map.insert(ident, binding_info);
}
}
true
});
binding_map
}
// check that all of the arms in an or-pattern have exactly the
// same set of bindings, with the same binding modes for each.
fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) {
if pats.is_empty() {
return;
}
let mut missing_vars = FxHashMap::default();
let mut inconsistent_vars = FxHashMap::default();
for (i, p) in pats.iter().enumerate() {
let map_i = self.binding_mode_map(&p);
for (j, q) in pats.iter().enumerate() {
if i == j {
continue;
}
let map_j = self.binding_mode_map(&q);
for (&key, &binding_i) in &map_i {
if map_j.is_empty() { // Account for missing bindings when
let binding_error = missing_vars // map_j has none.
.entry(key.name)
.or_insert(BindingError {
name: key.name,
origin: BTreeSet::new(),
target: BTreeSet::new(),
});
binding_error.origin.insert(binding_i.span);
binding_error.target.insert(q.span);
}
for (&key_j, &binding_j) in &map_j {
match map_i.get(&key_j) {
None => { // missing binding
let binding_error = missing_vars
.entry(key_j.name)
.or_insert(BindingError {
name: key_j.name,
origin: BTreeSet::new(),
target: BTreeSet::new(),
});
binding_error.origin.insert(binding_j.span);
binding_error.target.insert(p.span);
}
Some(binding_i) => { // check consistent binding
if binding_i.binding_mode != binding_j.binding_mode {
inconsistent_vars
.entry(key.name)
.or_insert((binding_j.span, binding_i.span));
}
}
}
}
}
}
}
let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
missing_vars.sort();
for (_, v) in missing_vars {
resolve_error(self,
*v.origin.iter().next().unwrap(),
ResolutionError::VariableNotBoundInPattern(v));
}
let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
inconsistent_vars.sort();
for (name, v) in inconsistent_vars {
resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
}
}
fn resolve_arm(&mut self, arm: &Arm) {
self.ribs[ValueNS].push(Rib::new(NormalRibKind));
let mut bindings_list = FxHashMap::default();
for pattern in &arm.pats {
self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
}
// This has to happen *after* we determine which pat_idents are variants.
self.check_consistent_bindings(&arm.pats);
if let Some(ast::Guard::If(ref expr)) = arm.guard {
self.visit_expr(expr)
}
self.visit_expr(&arm.body);
self.ribs[ValueNS].pop();
}
fn resolve_block(&mut self, block: &Block) {
debug!("(resolving block) entering block");
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.current_module;
let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference
let mut num_macro_definition_ribs = 0;
if let Some(anonymous_module) = anonymous_module {
debug!("(resolving block) found anonymous module, moving down");
self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
self.current_module = anonymous_module;
self.finalize_current_module_macro_resolutions();
} else {
self.ribs[ValueNS].push(Rib::new(NormalRibKind));
}
// Descend into the block.
for stmt in &block.stmts {
if let ast::StmtKind::Item(ref item) = stmt.node {
if let ast::ItemKind::MacroDef(..) = item.node {
num_macro_definition_ribs += 1;
let res = self.definitions.local_def_id(item.id);
self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
self.label_ribs.push(Rib::new(MacroDefinition(res)));
}
}
self.visit_stmt(stmt);
}
// Move back up.
self.current_module = orig_module;
for _ in 0 .. num_macro_definition_ribs {
self.ribs[ValueNS].pop();
self.label_ribs.pop();
}
self.ribs[ValueNS].pop();
if anonymous_module.is_some() {
self.ribs[TypeNS].pop();
}
debug!("(resolving block) leaving block");
}
fn fresh_binding(&mut self,
ident: Ident,
pat_id: NodeId,
outer_pat_id: NodeId,
pat_src: PatternSource,
bindings: &mut FxHashMap<Ident, NodeId>)
-> Res {
// Add the binding to the local ribs, if it
// doesn't already exist in the bindings map. (We
// must not add it if it's in the bindings map
// because that breaks the assumptions later
// passes make about or-patterns.)
let ident = ident.modern_and_legacy();
let mut res = Res::Local(pat_id);
match bindings.get(&ident).cloned() {
Some(id) if id == outer_pat_id => {
// `Variant(a, a)`, error
resolve_error(
self,
ident.span,
ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
&ident.as_str())
);
}
Some(..) if pat_src == PatternSource::FnParam => {
// `fn f(a: u8, a: u8)`, error
resolve_error(
self,
ident.span,
ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
&ident.as_str())
);
}
Some(..) if pat_src == PatternSource::Match ||
pat_src == PatternSource::IfLet ||
pat_src == PatternSource::WhileLet => {
// `Variant1(a) | Variant2(a)`, ok
// Reuse definition from the first `a`.
res = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident];
}
Some(..) => {
span_bug!(ident.span, "two bindings with the same name from \
unexpected pattern source {:?}", pat_src);
}
None => {
// A completely fresh binding, add to the lists if it's valid.
if ident.name != kw::Invalid {
bindings.insert(ident, outer_pat_id);
self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, res);
}
}
}
res
}
fn resolve_pattern(&mut self,
pat: &Pat,
pat_src: PatternSource,
// Maps idents to the node ID for the
// outermost pattern that binds them.
bindings: &mut FxHashMap<Ident, NodeId>) {
// Visit all direct subpatterns of this pattern.
let outer_pat_id = pat.id;
pat.walk(&mut |pat| {
debug!("resolve_pattern pat={:?} node={:?}", pat, pat.node);
match pat.node {
PatKind::Ident(bmode, ident, ref opt_pat) => {
// First try to resolve the identifier as some existing
// entity, then fall back to a fresh binding.
let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS,
None, pat.span)
.and_then(LexicalScopeBinding::item);
let res = binding.map(NameBinding::res).and_then(|res| {
let is_syntactic_ambiguity = opt_pat.is_none() &&
bmode == BindingMode::ByValue(Mutability::Immutable);
match res {
Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
Res::Def(DefKind::Const, _) if is_syntactic_ambiguity => {
// Disambiguate in favor of a unit struct/variant
// or constant pattern.
self.record_use(ident, ValueNS, binding.unwrap(), false);
Some(res)
}
Res::Def(DefKind::Ctor(..), _)
| Res::Def(DefKind::Const, _)
| Res::Def(DefKind::Static, _) => {
// This is unambiguously a fresh binding, either syntactically
// (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
// to something unusable as a pattern (e.g., constructor function),
// but we still conservatively report an error, see
// issues/33118#issuecomment-233962221 for one reason why.
resolve_error(
self,
ident.span,
ResolutionError::BindingShadowsSomethingUnacceptable(
pat_src.descr(), ident.name, binding.unwrap())
);
None
}
Res::Def(DefKind::Fn, _) | Res::Err => {
// These entities are explicitly allowed
// to be shadowed by fresh bindings.
None
}
res => {
span_bug!(ident.span, "unexpected resolution for an \
identifier in pattern: {:?}", res);
}
}
}).unwrap_or_else(|| {
self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
});
self.record_partial_res(pat.id, PartialRes::new(res));
}
PatKind::TupleStruct(ref path, ..) => {
self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
}
PatKind::Path(ref qself, ref path) => {
self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
}
PatKind::Struct(ref path, ..) => {
self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
}
_ => {}
}
true
});
visit::walk_pat(self, pat);
}
// High-level and context dependent path resolution routine.
// Resolves the path and records the resolution into definition map.
// If resolution fails tries several techniques to find likely
// resolution candidates, suggest imports or other help, and report
// errors in user friendly way.
fn smart_resolve_path(&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &Path,
source: PathSource<'_>) {
self.smart_resolve_path_fragment(
id,
qself,
&Segment::from_path(path),
path.span,
source,
CrateLint::SimplePath(id),
);
}
fn smart_resolve_path_fragment(&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &[Segment],
span: Span,
source: PathSource<'_>,
crate_lint: CrateLint)
-> PartialRes {
let ns = source.namespace();
let is_expected = &|res| source.is_expected(res);
let report_errors = |this: &mut Self, res: Option<Res>| {
let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
let def_id = this.current_module.normal_ancestor_id;
let node_id = this.definitions.as_local_node_id(def_id).unwrap();
let better = res.is_some();
this.use_injections.push(UseError { err, candidates, node_id, better });
PartialRes::new(Res::Err)
};
let partial_res = match self.resolve_qpath_anywhere(
id,
qself,
path,
ns,
span,
source.defer_to_typeck(),
source.global_by_default(),
crate_lint,
) {
Some(partial_res) if partial_res.unresolved_segments() == 0 => {
if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
partial_res
} else {
// Add a temporary hack to smooth the transition to new struct ctor
// visibility rules. See #38932 for more details.
let mut res = None;
if let Res::Def(DefKind::Struct, def_id) = partial_res.base_res() {
if let Some((ctor_res, ctor_vis))
= self.struct_constructors.get(&def_id).cloned() {
if is_expected(ctor_res) && self.is_accessible(ctor_vis) {
let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
self.session.buffer_lint(lint, id, span,
"private struct constructors are not usable through \
re-exports in outer modules",
);
res = Some(PartialRes::new(ctor_res));
}
}
}
res.unwrap_or_else(|| report_errors(self, Some(partial_res.base_res())))
}
}
Some(partial_res) if source.defer_to_typeck() => {
// Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
// or `<T>::A::B`. If `B` should be resolved in value namespace then
// it needs to be added to the trait map.
if ns == ValueNS {
let item_name = path.last().unwrap().ident;
let traits = self.get_traits_containing_item(item_name, ns);
self.trait_map.insert(id, traits);
}
let mut std_path = vec![Segment::from_ident(Ident::with_empty_ctxt(sym::std))];
std_path.extend(path);
if self.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
let cl = CrateLint::No;
let ns = Some(ns);
if let PathResult::Module(_) | PathResult::NonModule(_) =
self.resolve_path_without_parent_scope(&std_path, ns, false, span, cl)
{
// check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
let item_span = path.iter().last().map(|segment| segment.ident.span)
.unwrap_or(span);
debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
let mut hm = self.session.confused_type_with_std_module.borrow_mut();
hm.insert(item_span, span);
// In some places (E0223) we only have access to the full path
hm.insert(span, span);
}
}
partial_res
}
_ => report_errors(self, None)
};
if let PathSource::TraitItem(..) = source {} else {
// Avoid recording definition of `A::B` in `<T as A>::B::C`.
self.record_partial_res(id, partial_res);
}
partial_res
}
/// Only used in a specific case of type ascription suggestions
#[doc(hidden)]
fn get_colon_suggestion_span(&self, start: Span) -> Span {
let cm = self.session.source_map();
start.to(cm.next_point(start))
}
fn type_ascription_suggestion(
&self,
err: &mut DiagnosticBuilder<'_>,
base_span: Span,
) {
debug!("type_ascription_suggetion {:?}", base_span);
let cm = self.session.source_map();
let base_snippet = cm.span_to_snippet(base_span);
debug!("self.current_type_ascription {:?}", self.current_type_ascription);
if let Some(sp) = self.current_type_ascription.last() {
let mut sp = *sp;
loop {
// Try to find the `:`; bail on first non-':' / non-whitespace.
sp = cm.next_point(sp);
if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) {
let line_sp = cm.lookup_char_pos(sp.hi()).line;
let line_base_sp = cm.lookup_char_pos(base_span.lo()).line;
if snippet == ":" {
let mut show_label = true;
if line_sp != line_base_sp {
err.span_suggestion_short(
sp,
"did you mean to use `;` here instead?",
";".to_string(),
Applicability::MaybeIncorrect,
);
} else {
let colon_sp = self.get_colon_suggestion_span(sp);
let after_colon_sp = self.get_colon_suggestion_span(
colon_sp.shrink_to_hi(),
);
if !cm.span_to_snippet(after_colon_sp).map(|s| s == " ")
.unwrap_or(false)
{
err.span_suggestion(
colon_sp,
"maybe you meant to write a path separator here",
"::".to_string(),
Applicability::MaybeIncorrect,
);
show_label = false;
}
if let Ok(base_snippet) = base_snippet {
let mut sp = after_colon_sp;
for _ in 0..100 {
// Try to find an assignment
sp = cm.next_point(sp);
let snippet = cm.span_to_snippet(sp.to(cm.next_point(sp)));
match snippet {
Ok(ref x) if x.as_str() == "=" => {
err.span_suggestion(
base_span,
"maybe you meant to write an assignment here",
format!("let {}", base_snippet),
Applicability::MaybeIncorrect,
);
show_label = false;
break;
}
Ok(ref x) if x.as_str() == "\n" => break,
Err(_) => break,
Ok(_) => {}
}
}
}
}
if show_label {
err.span_label(base_span,
"expecting a type here because of type ascription");
}
break;
} else if !snippet.trim().is_empty() {
debug!("tried to find type ascription `:` token, couldn't find it");
break;
}
} else {
break;
}
}
}
}
fn self_type_is_available(&mut self, span: Span) -> bool {
let binding = self.resolve_ident_in_lexical_scope(Ident::with_empty_ctxt(kw::SelfUpper),
TypeNS, None, span);
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
}
fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
let ident = Ident::new(kw::SelfLower, self_span);
let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
}
// Resolve in alternative namespaces if resolution in the primary namespace fails.
fn resolve_qpath_anywhere(
&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &[Segment],
primary_ns: Namespace,
span: Span,
defer_to_typeck: bool,
global_by_default: bool,
crate_lint: CrateLint,
) -> Option<PartialRes> {
let mut fin_res = None;
// FIXME: can't resolve paths in macro namespace yet, macros are
// processed by the little special hack below.
for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
if i == 0 || ns != primary_ns {
match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) {
// If defer_to_typeck, then resolution > no resolution,
// otherwise full resolution > partial resolution > no resolution.
Some(partial_res) if partial_res.unresolved_segments() == 0 ||
defer_to_typeck =>
return Some(partial_res),
partial_res => if fin_res.is_none() { fin_res = partial_res },
};
}
}
if primary_ns != MacroNS &&
(self.macro_names.contains(&path[0].ident.modern()) ||
self.builtin_macros.get(&path[0].ident.name).cloned()
.and_then(NameBinding::macro_kind) == Some(MacroKind::Bang) ||
self.macro_use_prelude.get(&path[0].ident.name).cloned()
.and_then(NameBinding::macro_kind) == Some(MacroKind::Bang)) {
// Return some dummy definition, it's enough for error reporting.
return Some(PartialRes::new(Res::Def(
DefKind::Macro(MacroKind::Bang),
DefId::local(CRATE_DEF_INDEX),
)));
}
fin_res
}
/// Handles paths that may refer to associated items.
fn resolve_qpath(
&mut self,
id: NodeId,
qself: Option<&QSelf>,
path: &[Segment],
ns: Namespace,
span: Span,
global_by_default: bool,
crate_lint: CrateLint,
) -> Option<PartialRes> {
debug!(
"resolve_qpath(id={:?}, qself={:?}, path={:?}, \
ns={:?}, span={:?}, global_by_default={:?})",
id,
qself,
path,
ns,
span,
global_by_default,
);
if let Some(qself) = qself {
if qself.position == 0 {
// This is a case like `<T>::B`, where there is no
// trait to resolve. In that case, we leave the `B`
// segment to be resolved by type-check.
return Some(PartialRes::with_unresolved_segments(
Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)), path.len()
));
}
// Make sure `A::B` in `<T as A::B>::C` is a trait item.
//
// Currently, `path` names the full item (`A::B::C`, in
// our example). so we extract the prefix of that that is
// the trait (the slice upto and including
// `qself.position`). And then we recursively resolve that,
// but with `qself` set to `None`.
//
// However, setting `qself` to none (but not changing the
// span) loses the information about where this path
// *actually* appears, so for the purposes of the crate
// lint we pass along information that this is the trait
// name from a fully qualified path, and this also
// contains the full span (the `CrateLint::QPathTrait`).
let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
let partial_res = self.smart_resolve_path_fragment(
id,
None,
&path[..=qself.position],
span,
PathSource::TraitItem(ns),
CrateLint::QPathTrait {
qpath_id: id,
qpath_span: qself.path_span,
},
);
// The remaining segments (the `C` in our example) will
// have to be resolved by type-check, since that requires doing
// trait resolution.
return Some(PartialRes::with_unresolved_segments(
partial_res.base_res(),
partial_res.unresolved_segments() + path.len() - qself.position - 1,
));
}
let result = match self.resolve_path_without_parent_scope(
&path,
Some(ns),
true,
span,
crate_lint,
) {
PathResult::NonModule(path_res) => path_res,
PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
PartialRes::new(module.res().unwrap())
}
// In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
// don't report an error right away, but try to fallback to a primitive type.
// So, we are still able to successfully resolve something like
//
// use std::u8; // bring module u8 in scope
// fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
// u8::max_value() // OK, resolves to associated function <u8>::max_value,
// // not to non-existent std::u8::max_value
// }
//
// Such behavior is required for backward compatibility.
// The same fallback is used when `a` resolves to nothing.
PathResult::Module(ModuleOrUniformRoot::Module(_)) |
PathResult::Failed { .. }
if (ns == TypeNS || path.len() > 1) &&
self.primitive_type_table.primitive_types
.contains_key(&path[0].ident.name) => {
let prim = self.primitive_type_table.primitive_types[&path[0].ident.name];
PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
}
PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
PartialRes::new(module.res().unwrap()),
PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
resolve_error(self, span, ResolutionError::FailedToResolve { label, suggestion });
PartialRes::new(Res::Err)
}
PathResult::Module(..) | PathResult::Failed { .. } => return None,
PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
};
if path.len() > 1 && !global_by_default && result.base_res() != Res::Err &&
path[0].ident.name != kw::PathRoot &&
path[0].ident.name != kw::DollarCrate {
let unqualified_result = {
match self.resolve_path_without_parent_scope(
&[*path.last().unwrap()],
Some(ns),
false,
span,
CrateLint::No,
) {
PathResult::NonModule(path_res) => path_res.base_res(),
PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
module.res().unwrap(),
_ => return Some(result),
}
};
if result.base_res() == unqualified_result {
let lint = lint::builtin::UNUSED_QUALIFICATIONS;
self.session.buffer_lint(lint, id, span, "unnecessary qualification")
}
}
Some(result)
}
fn resolve_path_without_parent_scope(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
record_used: bool,
path_span: Span,
crate_lint: CrateLint,
) -> PathResult<'a> {
// Macro and import paths must have full parent scope available during resolution,
// other paths will do okay with parent module alone.
assert!(opt_ns != None && opt_ns != Some(MacroNS));
let parent_scope = ParentScope { module: self.current_module, ..self.dummy_parent_scope() };
self.resolve_path(path, opt_ns, &parent_scope, record_used, path_span, crate_lint)
}
fn resolve_path(
&mut self,
path: &[Segment],
opt_ns: Option<Namespace>, // `None` indicates a module path in import
parent_scope: &ParentScope<'a>,
record_used: bool,
path_span: Span,
crate_lint: CrateLint,
) -> PathResult<'a> {
let mut module = None;
let mut allow_super = true;
let mut second_binding = None;
self.current_module = parent_scope.module;
debug!(
"resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \
path_span={:?}, crate_lint={:?})",
path,
opt_ns,
record_used,
path_span,
crate_lint,
);
for (i, &Segment { ident, id }) in path.iter().enumerate() {
debug!("resolve_path ident {} {:?} {:?}", i, ident, id);
let record_segment_res = |this: &mut Self, res| {
if record_used {
if let Some(id) = id {
if !this.partial_res_map.contains_key(&id) {
assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id");
this.record_partial_res(id, PartialRes::new(res));
}
}
}
};
let is_last = i == path.len() - 1;
let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };
let name = ident.name;
allow_super &= ns == TypeNS &&
(name == kw::SelfLower ||
name == kw::Super);
if ns == TypeNS {
if allow_super && name == kw::Super {
let mut ctxt = ident.span.ctxt().modern();
let self_module = match i {
0 => Some(self.resolve_self(&mut ctxt, self.current_module)),
_ => match module {
Some(ModuleOrUniformRoot::Module(module)) => Some(module),
_ => None,
},
};
if let Some(self_module) = self_module {
if let Some(parent) = self_module.parent {
module = Some(ModuleOrUniformRoot::Module(
self.resolve_self(&mut ctxt, parent)));
continue;
}
}
let msg = "there are too many initial `super`s.".to_string();
return PathResult::Failed {
span: ident.span,
label: msg,
suggestion: None,
is_error_from_last_segment: false,
};
}
if i == 0 {
if name == kw::SelfLower {
let mut ctxt = ident.span.ctxt().modern();
module = Some(ModuleOrUniformRoot::Module(
self.resolve_self(&mut ctxt, self.current_module)));
continue;
}
if name == kw::PathRoot && ident.span.rust_2018() {
module = Some(ModuleOrUniformRoot::ExternPrelude);
continue;
}
if name == kw::PathRoot &&
ident.span.rust_2015() && self.session.rust_2018() {
// `::a::b` from 2015 macro on 2018 global edition
module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude);
continue;
}
if name == kw::PathRoot ||
name == kw::Crate ||
name == kw::DollarCrate {
// `::a::b`, `crate::a::b` or `$crate::a::b`
module = Some(ModuleOrUniformRoot::Module(
self.resolve_crate_root(ident)));
continue;
}
}
}
// Report special messages for path segment keywords in wrong positions.
if ident.is_path_segment_keyword() && i != 0 {
let name_str = if name == kw::PathRoot {
"crate root".to_string()
} else {
format!("`{}`", name)
};
let label = if i == 1 && path[0].ident.name == kw::PathRoot {
format!("global paths cannot start with {}", name_str)
} else {
format!("{} in paths can only be used in start position", name_str)
};
return PathResult::Failed {
span: ident.span,
label,
suggestion: None,
is_error_from_last_segment: false,
};
}
let binding = if let Some(module) = module {
self.resolve_ident_in_module(module, ident, ns, None, record_used, path_span)
} else if opt_ns.is_none() || opt_ns == Some(MacroNS) {
assert!(ns == TypeNS);
let scopes = if opt_ns.is_none() { ScopeSet::Import(ns) } else { ScopeSet::Module };
self.early_resolve_ident_in_lexical_scope(ident, scopes, parent_scope, record_used,
record_used, path_span)
} else {
let record_used_id =
if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None };
match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) {
// we found a locally-imported or available item/module
Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
// we found a local variable or type param
Some(LexicalScopeBinding::Res(res))
if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
record_segment_res(self, res);
return PathResult::NonModule(PartialRes::with_unresolved_segments(
res, path.len() - 1
));
}
_ => Err(Determinacy::determined(record_used)),
}
};
match binding {
Ok(binding) => {
if i == 1 {
second_binding = Some(binding);
}
let res = binding.res();
let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(res);
if let Some(next_module) = binding.module() {
module = Some(ModuleOrUniformRoot::Module(next_module));
record_segment_res(self, res);
} else if res == Res::ToolMod && i + 1 != path.len() {
if binding.is_import() {
self.session.struct_span_err(
ident.span, "cannot use a tool module through an import"
).span_note(
binding.span, "the tool module imported here"
).emit();
}
let res = Res::NonMacroAttr(NonMacroAttrKind::Tool);
return PathResult::NonModule(PartialRes::new(res));
} else if res == Res::Err {
return PathResult::NonModule(PartialRes::new(Res::Err));
} else if opt_ns.is_some() && (is_last || maybe_assoc) {
self.lint_if_path_starts_with_module(
crate_lint,
path,
path_span,
second_binding,
);
return PathResult::NonModule(PartialRes::with_unresolved_segments(
res, path.len() - i - 1
));
} else {
let label = format!(
"`{}` is {} {}, not a module",
ident,
res.article(),
res.descr(),
);
return PathResult::Failed {
span: ident.span,
label,
suggestion: None,
is_error_from_last_segment: is_last,
};
}
}
Err(Undetermined) => return PathResult::Indeterminate,
Err(Determined) => {
if let Some(ModuleOrUniformRoot::Module(module)) = module {
if opt_ns.is_some() && !module.is_normal() {
return PathResult::NonModule(PartialRes::with_unresolved_segments(
module.res().unwrap(), path.len() - i
));
}
}
let module_res = match module {
Some(ModuleOrUniformRoot::Module(module)) => module.res(),
_ => None,
};
let (label, suggestion) = if module_res == self.graph_root.res() {
let is_mod = |res| {
match res { Res::Def(DefKind::Mod, _) => true, _ => false }
};
let mut candidates =
self.lookup_import_candidates(ident, TypeNS, is_mod);
candidates.sort_by_cached_key(|c| {
(c.path.segments.len(), c.path.to_string())
});
if let Some(candidate) = candidates.get(0) {
(
String::from("unresolved import"),
Some((
vec![(ident.span, candidate.path.to_string())],
String::from("a similar path exists"),
Applicability::MaybeIncorrect,
)),
)
} else if !ident.is_reserved() {
(format!("maybe a missing `extern crate {};`?", ident), None)
} else {
// the parser will already have complained about the keyword being used
return PathResult::NonModule(PartialRes::new(Res::Err));
}
} else if i == 0 {
(format!("use of undeclared type or module `{}`", ident), None)
} else {
(format!("could not find `{}` in `{}`", ident, path[i - 1].ident), None)
};
return PathResult::Failed {
span: ident.span,
label,
suggestion,
is_error_from_last_segment: is_last,
};
}
}
}
self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding);
PathResult::Module(match module {
Some(module) => module,
None if path.is_empty() => ModuleOrUniformRoot::CurrentScope,
_ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path),
})
}
fn lint_if_path_starts_with_module(
&self,
crate_lint: CrateLint,
path: &[Segment],
path_span: Span,
second_binding: Option<&NameBinding<'_>>,
) {
let (diag_id, diag_span) = match crate_lint {
CrateLint::No => return,
CrateLint::SimplePath(id) => (id, path_span),
CrateLint::UsePath { root_id, root_span } => (root_id, root_span),
CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span),
};
let first_name = match path.get(0) {
// In the 2018 edition this lint is a hard error, so nothing to do
Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name,
_ => return,
};
// We're only interested in `use` paths which should start with
// `{{root}}` currently.
if first_name != kw::PathRoot {
return
}
match path.get(1) {
// If this import looks like `crate::...` it's already good
Some(Segment { ident, .. }) if ident.name == kw::Crate => return,
// Otherwise go below to see if it's an extern crate
Some(_) => {}
// If the path has length one (and it's `PathRoot` most likely)
// then we don't know whether we're gonna be importing a crate or an
// item in our crate. Defer this lint to elsewhere
None => return,
}
// If the first element of our path was actually resolved to an
// `ExternCrate` (also used for `crate::...`) then no need to issue a
// warning, this looks all good!
if let Some(binding) = second_binding {
if let NameBindingKind::Import { directive: d, .. } = binding.kind {
// Careful: we still want to rewrite paths from
// renamed extern crates.
if let ImportDirectiveSubclass::ExternCrate { source: None, .. } = d.subclass {
return
}
}
}
let diag = lint::builtin::BuiltinLintDiagnostics
::AbsPathWithModule(diag_span);
self.session.buffer_lint_with_diagnostic(
lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE,
diag_id, diag_span,
"absolute paths must start with `self`, `super`, \
`crate`, or an external crate name in the 2018 edition",
diag);
}
// Resolve a local definition, potentially adjusting for closures.
fn adjust_local_res(&mut self,
ns: Namespace,
rib_index: usize,
mut res: Res,
record_used: bool,
span: Span) -> Res {
debug!("adjust_local_res");
let ribs = &self.ribs[ns][rib_index + 1..];
// An invalid forward use of a type parameter from a previous default.
if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
if record_used {
resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam);
}
assert_eq!(res, Res::Err);
return Res::Err;
}
// An invalid use of a type parameter as the type of a const parameter.
if let TyParamAsConstParamTy = self.ribs[ns][rib_index].kind {
if record_used {
resolve_error(self, span, ResolutionError::ConstParamDependentOnTypeParam);
}
assert_eq!(res, Res::Err);
return Res::Err;
}
match res {
Res::Upvar(..) => {
span_bug!(span, "unexpected {:?} in bindings", res)
}
Res::Local(var_id) => {
use ResolutionError::*;
let mut res_err = None;
for rib in ribs {
match rib.kind {
NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
ForwardTyParamBanRibKind | TyParamAsConstParamTy => {
// Nothing to do. Continue.
}
ClosureRibKind(function_id) => {
let has_parent = match res {
Res::Upvar(..) => true,
_ => false,
};
res = Res::Upvar(var_id, function_id);
match self.upvars.entry(function_id).or_default().entry(var_id) {
indexmap::map::Entry::Occupied(_) => continue,
indexmap::map::Entry::Vacant(entry) => {
if record_used {
entry.insert(Upvar {
has_parent,
span,
});
}
}
}
}
ItemRibKind | FnItemRibKind | AssocItemRibKind => {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
if record_used {
// We don't immediately trigger a resolve error, because
// we want certain other resolution errors (namely those
// emitted for `ConstantItemRibKind` below) to take
// precedence.
res_err = Some(CannotCaptureDynamicEnvironmentInFnItem);
}
}
ConstantItemRibKind => {
// Still doesn't deal with upvars
if record_used {
resolve_error(self, span, AttemptToUseNonConstantValueInConstant);
}
return Res::Err;
}
}
}
if let Some(res_err) = res_err {
resolve_error(self, span, res_err);
return Res::Err;
}
}
Res::Def(DefKind::TyParam, _) | Res::SelfTy(..) => {
for rib in ribs {
match rib.kind {
NormalRibKind | AssocItemRibKind | ClosureRibKind(..) |
ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind |
ConstantItemRibKind | TyParamAsConstParamTy => {
// Nothing to do. Continue.
}
ItemRibKind | FnItemRibKind => {
// This was an attempt to use a type parameter outside its scope.
if record_used {
resolve_error(
self,
span,
ResolutionError::GenericParamsFromOuterFunction(res),
);
}
return Res::Err;
}
}
}
}
Res::Def(DefKind::ConstParam, _) => {
let mut ribs = ribs.iter().peekable();
if let Some(Rib { kind: FnItemRibKind, .. }) = ribs.peek() {
// When declaring const parameters inside function signatures, the first rib
// is always a `FnItemRibKind`. In this case, we can skip it, to avoid it
// (spuriously) conflicting with the const param.
ribs.next();
}
for rib in ribs {
if let ItemRibKind | FnItemRibKind = rib.kind {
// This was an attempt to use a const parameter outside its scope.
if record_used {
resolve_error(
self,
span,
ResolutionError::GenericParamsFromOuterFunction(res),
);
}
return Res::Err;
}
}
}
_ => {}
}
res
}
fn lookup_assoc_candidate<FilterFn>(&mut self,
ident: Ident,
ns: Namespace,
filter_fn: FilterFn)
-> Option<AssocSuggestion>
where FilterFn: Fn(Res) -> bool
{
fn extract_node_id(t: &Ty) -> Option<NodeId> {
match t.node {
TyKind::Path(None, _) => Some(t.id),
TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
// This doesn't handle the remaining `Ty` variants as they are not
// that commonly the self_type, it might be interesting to provide
// support for those in future.
_ => None,
}
}
// Fields are generally expected in the same contexts as locals.
if filter_fn(Res::Local(ast::DUMMY_NODE_ID)) {
if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
// Look for a field with the same name in the current self_type.
if let Some(resolution) = self.partial_res_map.get(&node_id) {
match resolution.base_res() {
Res::Def(DefKind::Struct, did) | Res::Def(DefKind::Union, did)
if resolution.unresolved_segments() == 0 => {
if let Some(field_names) = self.field_names.get(&did) {
if field_names.iter().any(|&field_name| ident.name == field_name) {
return Some(AssocSuggestion::Field);
}
}
}
_ => {}
}
}
}
}
// Look for associated items in the current trait.
if let Some((module, _)) = self.current_trait_ref {
if let Ok(binding) = self.resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
ns,
None,
false,
module.span,
) {
let res = binding.res();
if filter_fn(res) {
return Some(if self.has_self.contains(&res.def_id()) {
AssocSuggestion::MethodWithSelf
} else {
AssocSuggestion::AssocItem
});
}
}
}
None
}
fn lookup_typo_candidate<FilterFn>(
&mut self,
path: &[Segment],
ns: Namespace,
filter_fn: FilterFn,
span: Span,
) -> Option<TypoSuggestion>
where
FilterFn: Fn(Res) -> bool,
{
let add_module_candidates = |module: Module<'_>, names: &mut Vec<TypoSuggestion>| {
for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
if let Some(binding) = resolution.borrow().binding {
if !ident.is_gensymed() && filter_fn(binding.res()) {
names.push(TypoSuggestion {
candidate: ident.name,
article: binding.res().article(),
kind: binding.res().descr(),
});
}
}
}
};
let mut names = Vec::new();
if path.len() == 1 {
// Search in lexical scope.
// Walk backwards up the ribs in scope and collect candidates.
for rib in self.ribs[ns].iter().rev() {
// Locals and type parameters
for (ident, &res) in &rib.bindings {
if !ident.is_gensymed() && filter_fn(res) {
names.push(TypoSuggestion {
candidate: ident.name,
article: res.article(),
kind: res.descr(),
});
}
}
// Items in scope
if let ModuleRibKind(module) = rib.kind {
// Items from this module
add_module_candidates(module, &mut names);
if let ModuleKind::Block(..) = module.kind {
// We can see through blocks
} else {
// Items from the prelude
if !module.no_implicit_prelude {
names.extend(self.extern_prelude.clone().iter().flat_map(|(ident, _)| {
self.crate_loader
.maybe_process_path_extern(ident.name, ident.span)
.and_then(|crate_id| {
let crate_mod = Res::Def(
DefKind::Mod,
DefId {
krate: crate_id,
index: CRATE_DEF_INDEX,
},
);
if !ident.is_gensymed() && filter_fn(crate_mod) {
Some(TypoSuggestion {
candidate: ident.name,
article: "a",
kind: "crate",
})
} else {
None
}
})
}));
if let Some(prelude) = self.prelude {
add_module_candidates(prelude, &mut names);
}
}
break;
}
}
}
// Add primitive types to the mix
if filter_fn(Res::PrimTy(Bool)) {
names.extend(
self.primitive_type_table.primitive_types
.iter()
.map(|(name, _)| {
TypoSuggestion {
candidate: *name,
article: "a",
kind: "primitive type",
}
})
)
}
} else {
// Search in module.
let mod_path = &path[..path.len() - 1];
if let PathResult::Module(module) = self.resolve_path_without_parent_scope(
mod_path, Some(TypeNS), false, span, CrateLint::No
) {
if let ModuleOrUniformRoot::Module(module) = module {
add_module_candidates(module, &mut names);
}
}
}
let name = path[path.len() - 1].ident.name;
// Make sure error reporting is deterministic.
names.sort_by_cached_key(|suggestion| suggestion.candidate.as_str());
match find_best_match_for_name(
names.iter().map(|suggestion| &suggestion.candidate),
&name.as_str(),
None,
) {
Some(found) if found != name => names
.into_iter()
.find(|suggestion| suggestion.candidate == found),
_ => None,
}
}
fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F)
where F: FnOnce(&mut Resolver<'_>)
{
if let Some(label) = label {
self.unused_labels.insert(id, label.ident.span);
self.with_label_rib(|this| {
let ident = label.ident.modern_and_legacy();
this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
f(this);
});
} else {
f(self);
}
}
fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
self.with_resolved_label(label, id, |this| this.visit_block(block));
}
fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
// First, record candidate traits for this expression if it could
// result in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.node {
ExprKind::Path(ref qself, ref path) => {
self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
visit::walk_expr(self, expr);
}
ExprKind::Struct(ref path, ..) => {
self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
visit::walk_expr(self, expr);
}
ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
let node_id = self.search_label(label.ident, |rib, ident| {
rib.bindings.get(&ident.modern_and_legacy()).cloned()
});
match node_id {
None => {
// Search again for close matches...
// Picks the first label that is "close enough", which is not necessarily
// the closest match
let close_match = self.search_label(label.ident, |rib, ident| {
let names = rib.bindings.iter().filter_map(|(id, _)| {
if id.span.ctxt() == label.ident.span.ctxt() {
Some(&id.name)
} else {
None
}
});
find_best_match_for_name(names, &*ident.as_str(), None)
});
self.record_partial_res(expr.id, PartialRes::new(Res::Err));
resolve_error(self,
label.ident.span,
ResolutionError::UndeclaredLabel(&label.ident.as_str(),
close_match));
}
Some(node_id) => {
// Since this res is a label, it is never read.
self.label_res_map.insert(expr.id, node_id);
self.unused_labels.remove(&node_id);
}
}
// visit `break` argument if any
visit::walk_expr(self, expr);
}
ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => {
self.visit_expr(subexpression);
self.ribs[ValueNS].push(Rib::new(NormalRibKind));
let mut bindings_list = FxHashMap::default();
for pat in pats {
self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list);
}
// This has to happen *after* we determine which pat_idents are variants
self.check_consistent_bindings(pats);
self.visit_block(if_block);
self.ribs[ValueNS].pop();
optional_else.as_ref().map(|expr| self.visit_expr(expr));
}
ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
ExprKind::While(ref subexpression, ref block, label) => {
self.with_resolved_label(label, expr.id, |this| {
this.visit_expr(subexpression);
this.visit_block(block);
});
}
ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => {
self.with_resolved_label(label, expr.id, |this| {
this.visit_expr(subexpression);
this.ribs[ValueNS].push(Rib::new(NormalRibKind));
let mut bindings_list = FxHashMap::default();
for pat in pats {
this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list);
}
// This has to happen *after* we determine which pat_idents are variants.
this.check_consistent_bindings(pats);
this.visit_block(block);
this.ribs[ValueNS].pop();
});
}
ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
self.visit_expr(subexpression);
self.ribs[ValueNS].push(Rib::new(NormalRibKind));
self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap::default());
self.resolve_labeled_block(label, expr.id, block);
self.ribs[ValueNS].pop();
}
ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
// Equivalent to `visit::walk_expr` + passing some context to children.
ExprKind::Field(ref subexpression, _) => {
self.resolve_expr(subexpression, Some(expr));
}
ExprKind::MethodCall(ref segment, ref arguments) => {
let mut arguments = arguments.iter();
self.resolve_expr(arguments.next().unwrap(), Some(expr));
for argument in arguments {
self.resolve_expr(argument, None);
}
self.visit_path_segment(expr.span, segment);
}
ExprKind::Call(ref callee, ref arguments) => {
self.resolve_expr(callee, Some(expr));
for argument in arguments {
self.resolve_expr(argument, None);
}
}
ExprKind::Type(ref type_expr, _) => {
self.current_type_ascription.push(type_expr.span);
visit::walk_expr(self, expr);
self.current_type_ascription.pop();
}
// Resolve the body of async exprs inside the async closure to which they desugar
ExprKind::Async(_, async_closure_id, ref block) => {
let rib_kind = ClosureRibKind(async_closure_id);
self.ribs[ValueNS].push(Rib::new(rib_kind));
self.label_ribs.push(Rib::new(rib_kind));
self.visit_block(&block);
self.label_ribs.pop();
self.ribs[ValueNS].pop();
}
// `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
// resolve the arguments within the proper scopes so that usages of them inside the
// closure are detected as upvars rather than normal closure arg usages.
ExprKind::Closure(
_, IsAsync::Async { closure_id: inner_closure_id, .. }, _,
ref fn_decl, ref body, _span,
) => {
let rib_kind = ClosureRibKind(expr.id);
self.ribs[ValueNS].push(Rib::new(rib_kind));
self.label_ribs.push(Rib::new(rib_kind));
// Resolve arguments:
let mut bindings_list = FxHashMap::default();
for argument in &fn_decl.inputs {
self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);
self.visit_ty(&argument.ty);
}
// No need to resolve return type-- the outer closure return type is
// FunctionRetTy::Default
// Now resolve the inner closure
{
let rib_kind = ClosureRibKind(inner_closure_id);
self.ribs[ValueNS].push(Rib::new(rib_kind));
self.label_ribs.push(Rib::new(rib_kind));
// No need to resolve arguments: the inner closure has none.
// Resolve the return type:
visit::walk_fn_ret_ty(self, &fn_decl.output);
// Resolve the body
self.visit_expr(body);
self.label_ribs.pop();
self.ribs[ValueNS].pop();
}
self.label_ribs.pop();
self.ribs[ValueNS].pop();
}
_ => {
visit::walk_expr(self, expr);
}
}
}
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
match expr.node {
ExprKind::Field(_, ident) => {
// FIXME(#6890): Even though you can't treat a method like a
// field, we need to add any trait methods we find that match
// the field name so that we can do some nice error reporting
// later on in typeck.
let traits = self.get_traits_containing_item(ident, ValueNS);
self.trait_map.insert(expr.id, traits);
}
ExprKind::MethodCall(ref segment, ..) => {
debug!("(recording candidate traits for expr) recording traits for {}",
expr.id);
let traits = self.get_traits_containing_item(segment.ident, ValueNS);
self.trait_map.insert(expr.id, traits);
}
_ => {
// Nothing to do.
}
}
}
fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
-> Vec<TraitCandidate> {
debug!("(getting traits containing item) looking for '{}'", ident.name);
let mut found_traits = Vec::new();
// Look for the current trait.
if let Some((module, _)) = self.current_trait_ref {
if self.resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
ns,
None,
false,
module.span,
).is_ok() {
let def_id = module.def_id().unwrap();
found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
}
}
ident.span = ident.span.modern();
let mut search_module = self.current_module;
loop {
self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
search_module = unwrap_or!(
self.hygienic_lexical_parent(search_module, &mut ident.span), break
);
}
if let Some(prelude) = self.prelude {
if !search_module.no_implicit_prelude {
self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
}
}
found_traits
}
fn get_traits_in_module_containing_item(&mut self,
ident: Ident,
ns: Namespace,
module: Module<'a>,
found_traits: &mut Vec<TraitCandidate>) {
assert!(ns == TypeNS || ns == ValueNS);
let mut traits = module.traits.borrow_mut();
if traits.is_none() {
let mut collected_traits = Vec::new();
module.for_each_child(|name, ns, binding| {
if ns != TypeNS { return }
match binding.res() {
Res::Def(DefKind::Trait, _) |
Res::Def(DefKind::TraitAlias, _) => collected_traits.push((name, binding)),
_ => (),
}
});
*traits = Some(collected_traits.into_boxed_slice());
}
for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
// Traits have pseudo-modules that can be used to search for the given ident.
if let Some(module) = binding.module() {
let mut ident = ident;
if ident.span.glob_adjust(
module.expansion,
binding.span.ctxt().modern(),
).is_none() {
continue
}
if self.resolve_ident_in_module_unadjusted(
ModuleOrUniformRoot::Module(module),
ident,
ns,
false,
module.span,
).is_ok() {
let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
let trait_def_id = module.def_id().unwrap();
found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
}
} else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
// For now, just treat all trait aliases as possible candidates, since we don't
// know if the ident is somewhere in the transitive bounds.
let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
let trait_def_id = binding.res().def_id();
found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
} else {
bug!("candidate is not trait or trait alias?")
}
}
}
fn find_transitive_imports(&mut self, mut kind: &NameBindingKind<'_>,
trait_name: Ident) -> SmallVec<[NodeId; 1]> {
let mut import_ids = smallvec![];
while let NameBindingKind::Import { directive, binding, .. } = kind {
self.maybe_unused_trait_imports.insert(directive.id);
self.add_to_glob_map(&directive, trait_name);
import_ids.push(directive.id);
kind = &binding.kind;
};
import_ids
}
fn lookup_import_candidates_from_module<FilterFn>(&mut self,
lookup_ident: Ident,
namespace: Namespace,
start_module: &'a ModuleData<'a>,
crate_name: Ident,
filter_fn: FilterFn)
-> Vec<ImportSuggestion>
where FilterFn: Fn(Res) -> bool
{
let mut candidates = Vec::new();
let mut seen_modules = FxHashSet::default();
let not_local_module = crate_name.name != kw::Crate;
let mut worklist = vec![(start_module, Vec::<ast::PathSegment>::new(), not_local_module)];
while let Some((in_module,
path_segments,
in_module_is_extern)) = worklist.pop() {
self.populate_module_if_necessary(in_module);
// We have to visit module children in deterministic order to avoid
// instabilities in reported imports (#43552).
in_module.for_each_child_stable(|ident, ns, name_binding| {
// avoid imports entirely
if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
// avoid non-importable candidates as well
if !name_binding.is_importable() { return; }
// collect results based on the filter function
if ident.name == lookup_ident.name && ns == namespace {
let res = name_binding.res();
if filter_fn(res) {
// create the path
let mut segms = path_segments.clone();
if lookup_ident.span.rust_2018() {
// crate-local absolute paths start with `crate::` in edition 2018
// FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660)
segms.insert(
0, ast::PathSegment::from_ident(crate_name)
);
}
segms.push(ast::PathSegment::from_ident(ident));
let path = Path {
span: name_binding.span,
segments: segms,
};
// the entity is accessible in the following cases:
// 1. if it's defined in the same crate, it's always
// accessible (since private entities can be made public)
// 2. if it's defined in another crate, it's accessible
// only if both the module is public and the entity is
// declared as public (due to pruning, we don't explore
// outside crate private modules => no need to check this)
if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
let did = match res {
Res::Def(DefKind::Ctor(..), did) => self.parent(did),
_ => res.opt_def_id(),
};
candidates.push(ImportSuggestion { did, path });
}
}
}
// collect submodules to explore
if let Some(module) = name_binding.module() {
// form the path
let mut path_segments = path_segments.clone();
path_segments.push(ast::PathSegment::from_ident(ident));
let is_extern_crate_that_also_appears_in_prelude =
name_binding.is_extern_crate() &&
lookup_ident.span.rust_2018();
let is_visible_to_user =
!in_module_is_extern || name_binding.vis == ty::Visibility::Public;
if !is_extern_crate_that_also_appears_in_prelude && is_visible_to_user {
// add the module to the lookup
let is_extern = in_module_is_extern || name_binding.is_extern_crate();
if seen_modules.insert(module.def_id().unwrap()) {
worklist.push((module, path_segments, is_extern));
}
}
}
})
}
candidates
}
/// When name resolution fails, this method can be used to look up candidate
/// entities with the expected name. It allows filtering them using the
/// supplied predicate (which should be used to only accept the types of
/// definitions expected, e.g., traits). The lookup spans across all crates.
///
/// N.B., the method does not look into imports, but this is not a problem,
/// since we report the definitions (thus, the de-aliased imports).
fn lookup_import_candidates<FilterFn>(&mut self,
lookup_ident: Ident,
namespace: Namespace,
filter_fn: FilterFn)
-> Vec<ImportSuggestion>
where FilterFn: Fn(Res) -> bool
{
let mut suggestions = self.lookup_import_candidates_from_module(
lookup_ident, namespace, self.graph_root, Ident::with_empty_ctxt(kw::Crate), &filter_fn
);
if lookup_ident.span.rust_2018() {
let extern_prelude_names = self.extern_prelude.clone();
for (ident, _) in extern_prelude_names.into_iter() {
if let Some(crate_id) = self.crate_loader.maybe_process_path_extern(ident.name,
ident.span) {
let crate_root = self.get_module(DefId {
krate: crate_id,
index: CRATE_DEF_INDEX,
});
self.populate_module_if_necessary(&crate_root);
suggestions.extend(self.lookup_import_candidates_from_module(
lookup_ident, namespace, crate_root, ident, &filter_fn));
}
}
}
suggestions
}
fn find_module(&mut self, def_id: DefId) -> Option<(Module<'a>, ImportSuggestion)> {
let mut result = None;
let mut seen_modules = FxHashSet::default();
let mut worklist = vec![(self.graph_root, Vec::new())];
while let Some((in_module, path_segments)) = worklist.pop() {
// abort if the module is already found
if result.is_some() { break; }
self.populate_module_if_necessary(in_module);
in_module.for_each_child_stable(|ident, _, name_binding| {
// abort if the module is already found or if name_binding is private external
if result.is_some() || !name_binding.vis.is_visible_locally() {
return
}
if let Some(module) = name_binding.module() {
// form the path
let mut path_segments = path_segments.clone();
path_segments.push(ast::PathSegment::from_ident(ident));
let module_def_id = module.def_id().unwrap();
if module_def_id == def_id {
let path = Path {
span: name_binding.span,
segments: path_segments,
};
result = Some((module, ImportSuggestion { did: Some(def_id), path }));
} else {
// add the module to the lookup
if seen_modules.insert(module_def_id) {
worklist.push((module, path_segments));
}
}
}
});
}
result
}
fn collect_enum_variants(&mut self, def_id: DefId) -> Option<Vec<Path>> {
self.find_module(def_id).map(|(enum_module, enum_import_suggestion)| {
self.populate_module_if_necessary(enum_module);
let mut variants = Vec::new();
enum_module.for_each_child_stable(|ident, _, name_binding| {
if let Res::Def(DefKind::Variant, _) = name_binding.res() {
let mut segms = enum_import_suggestion.path.segments.clone();
segms.push(ast::PathSegment::from_ident(ident));
variants.push(Path {
span: name_binding.span,
segments: segms,
});
}
});
variants
})
}
fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
debug!("(recording res) recording {:?} for {}", resolution, node_id);
if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
}
}
fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
match vis.node {
ast::VisibilityKind::Public => ty::Visibility::Public,
ast::VisibilityKind::Crate(..) => {
ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
}
ast::VisibilityKind::Inherited => {
ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
}
ast::VisibilityKind::Restricted { ref path, id, .. } => {
// For visibilities we are not ready to provide correct implementation of "uniform
// paths" right now, so on 2018 edition we only allow module-relative paths for now.
// On 2015 edition visibilities are resolved as crate-relative by default,
// so we are prepending a root segment if necessary.
let ident = path.segments.get(0).expect("empty path in visibility").ident;
let crate_root = if ident.is_path_segment_keyword() {
None
} else if ident.span.rust_2018() {
let msg = "relative paths are not supported in visibilities on 2018 edition";
self.session.struct_span_err(ident.span, msg)
.span_suggestion(
path.span,
"try",
format!("crate::{}", path),
Applicability::MaybeIncorrect,
)
.emit();
return ty::Visibility::Public;
} else {
let ctxt = ident.span.ctxt();
Some(Segment::from_ident(Ident::new(
kw::PathRoot, path.span.shrink_to_lo().with_ctxt(ctxt)
)))
};
let segments = crate_root.into_iter()
.chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
let res = self.smart_resolve_path_fragment(
id,
None,
&segments,
path.span,
PathSource::Visibility,
CrateLint::SimplePath(id),
).base_res();
if res == Res::Err {
ty::Visibility::Public
} else {
let vis = ty::Visibility::Restricted(res.def_id());
if self.is_accessible(vis) {
vis
} else {
self.session.span_err(path.span, "visibilities can only be restricted \
to ancestor modules");
ty::Visibility::Public
}
}
}
}
}
fn is_accessible(&self, vis: ty::Visibility) -> bool {
vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
}
fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
vis.is_accessible_from(module.normal_ancestor_id, self)
}
fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) {
if !ptr::eq(module, old_module) {
span_bug!(binding.span, "parent module is reset for binding");
}
}
}
fn disambiguate_legacy_vs_modern(
&self,
legacy: &'a NameBinding<'a>,
modern: &'a NameBinding<'a>,
) -> bool {
// Some non-controversial subset of ambiguities "modern macro name" vs "macro_rules"
// is disambiguated to mitigate regressions from macro modularization.
// Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
match (self.binding_parent_modules.get(&PtrKey(legacy)),
self.binding_parent_modules.get(&PtrKey(modern))) {
(Some(legacy), Some(modern)) =>
legacy.normal_ancestor_id == modern.normal_ancestor_id &&
modern.is_ancestor_of(legacy),
_ => false,
}
}
fn binding_description(&self, b: &NameBinding<'_>, ident: Ident, from_prelude: bool) -> String {
if b.span.is_dummy() {
let add_built_in = match b.res() {
// These already contain the "built-in" prefix or look bad with it.
Res::NonMacroAttr(..) | Res::PrimTy(..) | Res::ToolMod => false,
_ => true,
};
let (built_in, from) = if from_prelude {
("", " from prelude")
} else if b.is_extern_crate() && !b.is_import() &&
self.session.opts.externs.get(&ident.as_str()).is_some() {
("", " passed with `--extern`")
} else if add_built_in {
(" built-in", "")
} else {
("", "")
};
let article = if built_in.is_empty() { b.article() } else { "a" };
format!("{a}{built_in} {thing}{from}",
a = article, thing = b.descr(), built_in = built_in, from = from)
} else {
let introduced = if b.is_import() { "imported" } else { "defined" };
format!("the {thing} {introduced} here",
thing = b.descr(), introduced = introduced)
}
}
fn report_ambiguity_error(&self, ambiguity_error: &AmbiguityError<'_>) {
let AmbiguityError { kind, ident, b1, b2, misc1, misc2 } = *ambiguity_error;
let (b1, b2, misc1, misc2, swapped) = if b2.span.is_dummy() && !b1.span.is_dummy() {
// We have to print the span-less alternative first, otherwise formatting looks bad.
(b2, b1, misc2, misc1, true)
} else {
(b1, b2, misc1, misc2, false)
};
let mut err = struct_span_err!(self.session, ident.span, E0659,
"`{ident}` is ambiguous ({why})",
ident = ident, why = kind.descr());
err.span_label(ident.span, "ambiguous name");
let mut could_refer_to = |b: &NameBinding<'_>, misc: AmbiguityErrorMisc, also: &str| {
let what = self.binding_description(b, ident, misc == AmbiguityErrorMisc::FromPrelude);
let note_msg = format!("`{ident}` could{also} refer to {what}",
ident = ident, also = also, what = what);
let mut help_msgs = Vec::new();
if b.is_glob_import() && (kind == AmbiguityKind::GlobVsGlob ||
kind == AmbiguityKind::GlobVsExpanded ||
kind == AmbiguityKind::GlobVsOuter &&
swapped != also.is_empty()) {
help_msgs.push(format!("consider adding an explicit import of \
`{ident}` to disambiguate", ident = ident))
}
if b.is_extern_crate() && ident.span.rust_2018() {
help_msgs.push(format!(
"use `::{ident}` to refer to this {thing} unambiguously",
ident = ident, thing = b.descr(),
))
}
if misc == AmbiguityErrorMisc::SuggestCrate {
help_msgs.push(format!(
"use `crate::{ident}` to refer to this {thing} unambiguously",
ident = ident, thing = b.descr(),
))
} else if misc == AmbiguityErrorMisc::SuggestSelf {
help_msgs.push(format!(
"use `self::{ident}` to refer to this {thing} unambiguously",
ident = ident, thing = b.descr(),
))
}
err.span_note(b.span, &note_msg);
for (i, help_msg) in help_msgs.iter().enumerate() {
let or = if i == 0 { "" } else { "or " };
err.help(&format!("{}{}", or, help_msg));
}
};
could_refer_to(b1, misc1, "");
could_refer_to(b2, misc2, " also");
err.emit();
}
fn report_errors(&mut self, krate: &Crate) {
self.report_with_use_injections(krate);
for &(span_use, span_def) in &self.macro_expanded_macro_export_errors {
let msg = "macro-expanded `macro_export` macros from the current crate \
cannot be referred to by absolute paths";
self.session.buffer_lint_with_diagnostic(
lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
CRATE_NODE_ID, span_use, msg,
lint::builtin::BuiltinLintDiagnostics::
MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def),
);
}
for ambiguity_error in &self.ambiguity_errors {
self.report_ambiguity_error(ambiguity_error);
}
let mut reported_spans = FxHashSet::default();
for &PrivacyError(dedup_span, ident, binding) in &self.privacy_errors {
if reported_spans.insert(dedup_span) {
span_err!(self.session, ident.span, E0603, "{} `{}` is private",
binding.descr(), ident.name);
}
}
}
fn report_with_use_injections(&mut self, krate: &Crate) {
for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) {
let (span, found_use) = UsePlacementFinder::check(krate, node_id);
if !candidates.is_empty() {
show_candidates(&mut err, span, &candidates, better, found_use);
}
err.emit();
}
}
fn report_conflict<'b>(&mut self,
parent: Module<'_>,
ident: Ident,
ns: Namespace,
new_binding: &NameBinding<'b>,
old_binding: &NameBinding<'b>) {
// Error on the second of two conflicting names
if old_binding.span.lo() > new_binding.span.lo() {
return self.report_conflict(parent, ident, ns, old_binding, new_binding);
}
let container = match parent.kind {
ModuleKind::Def(DefKind::Mod, _, _) => "module",
ModuleKind::Def(DefKind::Trait, _, _) => "trait",
ModuleKind::Block(..) => "block",
_ => "enum",
};
let old_noun = match old_binding.is_import() {
true => "import",
false => "definition",
};
let new_participle = match new_binding.is_import() {
true => "imported",
false => "defined",
};
let (name, span) = (ident.name, self.session.source_map().def_span(new_binding.span));
if let Some(s) = self.name_already_seen.get(&name) {
if s == &span {
return;
}
}
let old_kind = match (ns, old_binding.module()) {
(ValueNS, _) => "value",
(MacroNS, _) => "macro",
(TypeNS, _) if old_binding.is_extern_crate() => "extern crate",
(TypeNS, Some(module)) if module.is_normal() => "module",
(TypeNS, Some(module)) if module.is_trait() => "trait",
(TypeNS, _) => "type",
};
let msg = format!("the name `{}` is defined multiple times", name);
let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) {
(true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
(true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() {
true => struct_span_err!(self.session, span, E0254, "{}", msg),
false => struct_span_err!(self.session, span, E0260, "{}", msg),
},
_ => match (old_binding.is_import(), new_binding.is_import()) {
(false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
(true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
_ => struct_span_err!(self.session, span, E0255, "{}", msg),
},
};
err.note(&format!("`{}` must be defined only once in the {} namespace of this {}",
name,
ns.descr(),
container));
err.span_label(span, format!("`{}` re{} here", name, new_participle));
err.span_label(
self.session.source_map().def_span(old_binding.span),
format!("previous {} of the {} `{}` here", old_noun, old_kind, name),
);
// See https://github.com/rust-lang/rust/issues/32354
use NameBindingKind::Import;
let directive = match (&new_binding.kind, &old_binding.kind) {
// If there are two imports where one or both have attributes then prefer removing the
// import without attributes.
(Import { directive: new, .. }, Import { directive: old, .. }) if {
!new_binding.span.is_dummy() && !old_binding.span.is_dummy() &&
(new.has_attributes || old.has_attributes)
} => {
if old.has_attributes {
Some((new, new_binding.span, true))
} else {
Some((old, old_binding.span, true))
}
},
// Otherwise prioritize the new binding.
(Import { directive, .. }, other) if !new_binding.span.is_dummy() =>
Some((directive, new_binding.span, other.is_import())),
(other, Import { directive, .. }) if !old_binding.span.is_dummy() =>
Some((directive, old_binding.span, other.is_import())),
_ => None,
};
// Check if the target of the use for both bindings is the same.
let duplicate = new_binding.res().opt_def_id() == old_binding.res().opt_def_id();
let has_dummy_span = new_binding.span.is_dummy() || old_binding.span.is_dummy();
let from_item = self.extern_prelude.get(&ident)
.map(|entry| entry.introduced_by_item)
.unwrap_or(true);
// Only suggest removing an import if both bindings are to the same def, if both spans
// aren't dummy spans. Further, if both bindings are imports, then the ident must have
// been introduced by a item.
let should_remove_import = duplicate && !has_dummy_span &&
((new_binding.is_extern_crate() || old_binding.is_extern_crate()) || from_item);
match directive {
Some((directive, span, true)) if should_remove_import && directive.is_nested() =>
self.add_suggestion_for_duplicate_nested_use(&mut err, directive, span),
Some((directive, _, true)) if should_remove_import && !directive.is_glob() => {
// Simple case - remove the entire import. Due to the above match arm, this can
// only be a single use so just remove it entirely.
err.tool_only_span_suggestion(
directive.use_span_with_attributes,
"remove unnecessary import",
String::new(),
Applicability::MaybeIncorrect,
);
},
Some((directive, span, _)) =>
self.add_suggestion_for_rename_of_use(&mut err, name, directive, span),
_ => {},
}
err.emit();
self.name_already_seen.insert(name, span);
}
/// This function adds a suggestion to change the binding name of a new import that conflicts
/// with an existing import.
///
/// ```ignore (diagnostic)
/// help: you can use `as` to change the binding name of the import
/// |
/// LL | use foo::bar as other_bar;
/// | ^^^^^^^^^^^^^^^^^^^^^
/// ```
fn add_suggestion_for_rename_of_use(
&self,
err: &mut DiagnosticBuilder<'_>,
name: Symbol,
directive: &ImportDirective<'_>,
binding_span: Span,
) {
let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() {
format!("Other{}", name)
} else {
format!("other_{}", name)
};
let mut suggestion = None;
match directive.subclass {
ImportDirectiveSubclass::SingleImport { type_ns_only: true, .. } =>
suggestion = Some(format!("self as {}", suggested_name)),
ImportDirectiveSubclass::SingleImport { source, .. } => {
if let Some(pos) = source.span.hi().0.checked_sub(binding_span.lo().0)
.map(|pos| pos as usize) {
if let Ok(snippet) = self.session.source_map()
.span_to_snippet(binding_span) {
if pos <= snippet.len() {
suggestion = Some(format!(
"{} as {}{}",
&snippet[..pos],
suggested_name,
if snippet.ends_with(";") { ";" } else { "" }
))
}
}
}
}
ImportDirectiveSubclass::ExternCrate { source, target, .. } =>
suggestion = Some(format!(
"extern crate {} as {};",
source.unwrap_or(target.name),
suggested_name,
)),
_ => unreachable!(),
}
let rename_msg = "you can use `as` to change the binding name of the import";
if let Some(suggestion) = suggestion {
err.span_suggestion(
binding_span,
rename_msg,
suggestion,
Applicability::MaybeIncorrect,
);
} else {
err.span_label(binding_span, rename_msg);
}
}
/// This function adds a suggestion to remove a unnecessary binding from an import that is
/// nested. In the following example, this function will be invoked to remove the `a` binding
/// in the second use statement:
///
/// ```ignore (diagnostic)
/// use issue_52891::a;
/// use issue_52891::{d, a, e};
/// ```
///
/// The following suggestion will be added:
///
/// ```ignore (diagnostic)
/// use issue_52891::{d, a, e};
/// ^-- help: remove unnecessary import
/// ```
///
/// If the nested use contains only one import then the suggestion will remove the entire
/// line.
///
/// It is expected that the directive provided is a nested import - this isn't checked by the
/// function. If this invariant is not upheld, this function's behaviour will be unexpected
/// as characters expected by span manipulations won't be present.
fn add_suggestion_for_duplicate_nested_use(
&self,
err: &mut DiagnosticBuilder<'_>,
directive: &ImportDirective<'_>,
binding_span: Span,
) {
assert!(directive.is_nested());
let message = "remove unnecessary import";
// Two examples will be used to illustrate the span manipulations we're doing:
//
// - Given `use issue_52891::{d, a, e};` where `a` is a duplicate then `binding_span` is
// `a` and `directive.use_span` is `issue_52891::{d, a, e};`.
// - Given `use issue_52891::{d, e, a};` where `a` is a duplicate then `binding_span` is
// `a` and `directive.use_span` is `issue_52891::{d, e, a};`.
let (found_closing_brace, span) = find_span_of_binding_until_next_binding(
self.session, binding_span, directive.use_span,
);
// If there was a closing brace then identify the span to remove any trailing commas from
// previous imports.
if found_closing_brace {
if let Some(span) = extend_span_to_previous_binding(self.session, span) {
err.tool_only_span_suggestion(span, message, String::new(),
Applicability::MaybeIncorrect);
} else {
// Remove the entire line if we cannot extend the span back, this indicates a
// `issue_52891::{self}` case.
err.span_suggestion(directive.use_span_with_attributes, message, String::new(),
Applicability::MaybeIncorrect);
}
return;
}
err.span_suggestion(span, message, String::new(), Applicability::MachineApplicable);
}
fn extern_prelude_get(&mut self, ident: Ident, speculative: bool)
-> Option<&'a NameBinding<'a>> {
if ident.is_path_segment_keyword() {
// Make sure `self`, `super` etc produce an error when passed to here.
return None;
}
self.extern_prelude.get(&ident.modern()).cloned().and_then(|entry| {
if let Some(binding) = entry.extern_crate_item {
if !speculative && entry.introduced_by_item {
self.record_use(ident, TypeNS, binding, false);
}
Some(binding)
} else {
let crate_id = if !speculative {
self.crate_loader.process_path_extern(ident.name, ident.span)
} else if let Some(crate_id) =
self.crate_loader.maybe_process_path_extern(ident.name, ident.span) {
crate_id
} else {
return None;
};
let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX });
self.populate_module_if_necessary(&crate_root);
Some((crate_root, ty::Visibility::Public, DUMMY_SP, Mark::root())
.to_name_binding(self.arenas))
}
})
}
}
fn is_self_type(path: &[Segment], namespace: Namespace) -> bool {
namespace == TypeNS && path.len() == 1 && path[0].ident.name == kw::SelfUpper
}
fn is_self_value(path: &[Segment], namespace: Namespace) -> bool {
namespace == ValueNS && path.len() == 1 && path[0].ident.name == kw::SelfLower
}
fn names_to_string(idents: &[Ident]) -> String {
let mut result = String::new();
for (i, ident) in idents.iter()
.filter(|ident| ident.name != kw::PathRoot)
.enumerate() {
if i > 0 {
result.push_str("::");
}
result.push_str(&ident.as_str());
}
result
}
fn path_names_to_string(path: &Path) -> String {
names_to_string(&path.segments.iter()
.map(|seg| seg.ident)
.collect::<Vec<_>>())
}
/// Gets the stringified path for an enum from an `ImportSuggestion` for an enum variant.
fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) {
let variant_path = &suggestion.path;
let variant_path_string = path_names_to_string(variant_path);
let path_len = suggestion.path.segments.len();
let enum_path = ast::Path {
span: suggestion.path.span,
segments: suggestion.path.segments[0..path_len - 1].to_vec(),
};
let enum_path_string = path_names_to_string(&enum_path);
(variant_path_string, enum_path_string)
}
/// When an entity with a given name is not available in scope, we search for
/// entities with that name in all crates. This method allows outputting the
/// results of this search in a programmer-friendly way
fn show_candidates(err: &mut DiagnosticBuilder<'_>,
// This is `None` if all placement locations are inside expansions
span: Option<Span>,
candidates: &[ImportSuggestion],
better: bool,
found_use: bool) {
// we want consistent results across executions, but candidates are produced
// by iterating through a hash map, so make sure they are ordered:
let mut path_strings: Vec<_> =
candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
path_strings.sort();
let better = if better { "better " } else { "" };
let msg_diff = match path_strings.len() {
1 => " is found in another module, you can import it",
_ => "s are found in other modules, you can import them",
};
let msg = format!("possible {}candidate{} into scope", better, msg_diff);
if let Some(span) = span {
for candidate in &mut path_strings {
// produce an additional newline to separate the new use statement
// from the directly following item.
let additional_newline = if found_use {
""
} else {
"\n"
};
*candidate = format!("use {};\n{}", candidate, additional_newline);
}
err.span_suggestions(
span,
&msg,
path_strings.into_iter(),
Applicability::Unspecified,
);
} else {
let mut msg = msg;
msg.push(':');
for candidate in path_strings {
msg.push('\n');
msg.push_str(&candidate);
}
}
}
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string(module: Module<'_>) -> Option<String> {
let mut names = Vec::new();
fn collect_mod(names: &mut Vec<Ident>, module: Module<'_>) {
if let ModuleKind::Def(.., name) = module.kind {
if let Some(parent) = module.parent {
names.push(Ident::with_empty_ctxt(name));
collect_mod(names, parent);
}
} else {
// danger, shouldn't be ident?
names.push(Ident::from_str("<opaque>"));
collect_mod(names, module.parent.unwrap());
}
}
collect_mod(&mut names, module);
if names.is_empty() {
return None;
}
Some(names_to_string(&names.into_iter()
.rev()
.collect::<Vec<_>>()))
}
#[derive(Copy, Clone, Debug)]
enum CrateLint {
/// Do not issue the lint.
No,
/// This lint applies to some arbitrary path; e.g., `impl ::foo::Bar`.
/// In this case, we can take the span of that path.
SimplePath(NodeId),
/// This lint comes from a `use` statement. In this case, what we
/// care about really is the *root* `use` statement; e.g., if we
/// have nested things like `use a::{b, c}`, we care about the
/// `use a` part.
UsePath { root_id: NodeId, root_span: Span },
/// This is the "trait item" from a fully qualified path. For example,
/// we might be resolving `X::Y::Z` from a path like `<T as X::Y>::Z`.
/// The `path_span` is the span of the to the trait itself (`X::Y`).
QPathTrait { qpath_id: NodeId, qpath_span: Span },
}
impl CrateLint {
fn node_id(&self) -> Option<NodeId> {
match *self {
CrateLint::No => None,
CrateLint::SimplePath(id) |
CrateLint::UsePath { root_id: id, .. } |
CrateLint::QPathTrait { qpath_id: id, .. } => Some(id),
}
}
}
__build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }