rust/src/librustdoc/passes/collect_intra_doc_links.rs

1411 lines
58 KiB
Rust

use rustc_ast as ast;
use rustc_data_structures::stable_set::FxHashSet;
use rustc_errors::{Applicability, DiagnosticBuilder};
use rustc_expand::base::SyntaxExtensionKind;
use rustc_feature::UnstableFeatures;
use rustc_hir as hir;
use rustc_hir::def::{
DefKind,
Namespace::{self, *},
PerNS, Res,
};
use rustc_hir::def_id::DefId;
use rustc_middle::ty;
use rustc_resolve::ParentScope;
use rustc_session::lint;
use rustc_span::hygiene::MacroKind;
use rustc_span::symbol::Ident;
use rustc_span::symbol::Symbol;
use rustc_span::DUMMY_SP;
use smallvec::SmallVec;
use std::cell::Cell;
use std::ops::Range;
use crate::clean::*;
use crate::core::DocContext;
use crate::fold::DocFolder;
use crate::html::markdown::markdown_links;
use crate::passes::Pass;
use super::span_of_attrs;
pub const COLLECT_INTRA_DOC_LINKS: Pass = Pass {
name: "collect-intra-doc-links",
run: collect_intra_doc_links,
description: "reads a crate's documentation to resolve intra-doc-links",
};
pub fn collect_intra_doc_links(krate: Crate, cx: &DocContext<'_>) -> Crate {
if !UnstableFeatures::from_environment().is_nightly_build() {
krate
} else {
let mut coll = LinkCollector::new(cx);
coll.fold_crate(krate)
}
}
enum ErrorKind {
ResolutionFailure,
AnchorFailure(AnchorFailure),
}
enum AnchorFailure {
MultipleAnchors,
Primitive,
Variant,
AssocConstant,
AssocType,
Field,
Method,
}
struct LinkCollector<'a, 'tcx> {
cx: &'a DocContext<'tcx>,
// NOTE: this may not necessarily be a module in the current crate
mod_ids: Vec<DefId>,
/// This is used to store the kind of associated items,
/// because `clean` and the disambiguator code expect them to be different.
/// See the code for associated items on inherent impls for details.
kind_side_channel: Cell<Option<DefKind>>,
}
impl<'a, 'tcx> LinkCollector<'a, 'tcx> {
fn new(cx: &'a DocContext<'tcx>) -> Self {
LinkCollector { cx, mod_ids: Vec::new(), kind_side_channel: Cell::new(None) }
}
fn variant_field(
&self,
path_str: &str,
current_item: &Option<String>,
module_id: DefId,
) -> Result<(Res, Option<String>), ErrorKind> {
let cx = self.cx;
let mut split = path_str.rsplitn(3, "::");
let variant_field_name =
split.next().map(|f| Symbol::intern(f)).ok_or(ErrorKind::ResolutionFailure)?;
let variant_name =
split.next().map(|f| Symbol::intern(f)).ok_or(ErrorKind::ResolutionFailure)?;
let path = split
.next()
.map(|f| {
if f == "self" || f == "Self" {
if let Some(name) = current_item.as_ref() {
return name.clone();
}
}
f.to_owned()
})
.ok_or(ErrorKind::ResolutionFailure)?;
let (_, ty_res) = cx
.enter_resolver(|resolver| {
resolver.resolve_str_path_error(DUMMY_SP, &path, TypeNS, module_id)
})
.map_err(|_| ErrorKind::ResolutionFailure)?;
if let Res::Err = ty_res {
return Err(ErrorKind::ResolutionFailure);
}
let ty_res = ty_res.map_id(|_| panic!("unexpected node_id"));
match ty_res {
Res::Def(DefKind::Enum, did) => {
if cx
.tcx
.inherent_impls(did)
.iter()
.flat_map(|imp| cx.tcx.associated_items(*imp).in_definition_order())
.any(|item| item.ident.name == variant_name)
{
return Err(ErrorKind::ResolutionFailure);
}
match cx.tcx.type_of(did).kind {
ty::Adt(def, _) if def.is_enum() => {
if def.all_fields().any(|item| item.ident.name == variant_field_name) {
Ok((
ty_res,
Some(format!(
"variant.{}.field.{}",
variant_name, variant_field_name
)),
))
} else {
Err(ErrorKind::ResolutionFailure)
}
}
_ => Err(ErrorKind::ResolutionFailure),
}
}
_ => Err(ErrorKind::ResolutionFailure),
}
}
/// Resolves a string as a macro.
fn macro_resolve(&self, path_str: &str, parent_id: Option<DefId>) -> Option<Res> {
let cx = self.cx;
let path = ast::Path::from_ident(Ident::from_str(path_str));
cx.enter_resolver(|resolver| {
if let Ok((Some(ext), res)) = resolver.resolve_macro_path(
&path,
None,
&ParentScope::module(resolver.graph_root()),
false,
false,
) {
if let SyntaxExtensionKind::LegacyBang { .. } = ext.kind {
return Some(res.map_id(|_| panic!("unexpected id")));
}
}
if let Some(res) = resolver.all_macros().get(&Symbol::intern(path_str)) {
return Some(res.map_id(|_| panic!("unexpected id")));
}
if let Some(module_id) = parent_id {
if let Ok((_, res)) =
resolver.resolve_str_path_error(DUMMY_SP, path_str, MacroNS, module_id)
{
// don't resolve builtins like `#[derive]`
if let Res::Def(..) = res {
let res = res.map_id(|_| panic!("unexpected node_id"));
return Some(res);
}
}
} else {
debug!("attempting to resolve item without parent module: {}", path_str);
}
None
})
}
/// Resolves a string as a path within a particular namespace. Also returns an optional
/// URL fragment in the case of variants and methods.
fn resolve(
&self,
path_str: &str,
ns: Namespace,
current_item: &Option<String>,
parent_id: Option<DefId>,
extra_fragment: &Option<String>,
) -> Result<(Res, Option<String>), ErrorKind> {
let cx = self.cx;
// In case we're in a module, try to resolve the relative path.
if let Some(module_id) = parent_id {
let result = cx.enter_resolver(|resolver| {
resolver.resolve_str_path_error(DUMMY_SP, &path_str, ns, module_id)
});
debug!("{} resolved to {:?} in namespace {:?}", path_str, result, ns);
let result = match result {
Ok((_, Res::Err)) => Err(ErrorKind::ResolutionFailure),
_ => result.map_err(|_| ErrorKind::ResolutionFailure),
};
if let Ok((_, res)) = result {
let res = res.map_id(|_| panic!("unexpected node_id"));
// In case this is a trait item, skip the
// early return and try looking for the trait.
let value = match res {
Res::Def(DefKind::AssocFn | DefKind::AssocConst, _) => true,
Res::Def(DefKind::AssocTy, _) => false,
Res::Def(DefKind::Variant, _) => {
return handle_variant(cx, res, extra_fragment);
}
// Not a trait item; just return what we found.
Res::PrimTy(..) => {
if extra_fragment.is_some() {
return Err(ErrorKind::AnchorFailure(AnchorFailure::Primitive));
}
return Ok((res, Some(path_str.to_owned())));
}
Res::Def(DefKind::Mod, _) => {
return Ok((res, extra_fragment.clone()));
}
_ => {
return Ok((res, extra_fragment.clone()));
}
};
if value != (ns == ValueNS) {
return Err(ErrorKind::ResolutionFailure);
}
} else if let Some((path, prim)) = is_primitive(path_str, ns) {
if extra_fragment.is_some() {
return Err(ErrorKind::AnchorFailure(AnchorFailure::Primitive));
}
return Ok((prim, Some(path.to_owned())));
}
// Try looking for methods and associated items.
let mut split = path_str.rsplitn(2, "::");
let item_name =
split.next().map(|f| Symbol::intern(f)).ok_or(ErrorKind::ResolutionFailure)?;
let path = split
.next()
.map(|f| {
if f == "self" || f == "Self" {
if let Some(name) = current_item.as_ref() {
return name.clone();
}
}
f.to_owned()
})
.ok_or(ErrorKind::ResolutionFailure)?;
if let Some((path, prim)) = is_primitive(&path, TypeNS) {
for &impl_ in primitive_impl(cx, &path).ok_or(ErrorKind::ResolutionFailure)? {
let link = cx
.tcx
.associated_items(impl_)
.find_by_name_and_namespace(
cx.tcx,
Ident::with_dummy_span(item_name),
ns,
impl_,
)
.and_then(|item| match item.kind {
ty::AssocKind::Fn => Some("method"),
_ => None,
})
.map(|out| (prim, Some(format!("{}#{}.{}", path, out, item_name))));
if let Some(link) = link {
return Ok(link);
}
}
return Err(ErrorKind::ResolutionFailure);
}
let (_, ty_res) = cx
.enter_resolver(|resolver| {
resolver.resolve_str_path_error(DUMMY_SP, &path, TypeNS, module_id)
})
.map_err(|_| ErrorKind::ResolutionFailure)?;
if let Res::Err = ty_res {
return if ns == Namespace::ValueNS {
self.variant_field(path_str, current_item, module_id)
} else {
Err(ErrorKind::ResolutionFailure)
};
}
let ty_res = ty_res.map_id(|_| panic!("unexpected node_id"));
let res = match ty_res {
Res::Def(
DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::TyAlias,
did,
) => {
debug!("looking for associated item named {} for item {:?}", item_name, did);
// Checks if item_name belongs to `impl SomeItem`
let kind = cx
.tcx
.inherent_impls(did)
.iter()
.flat_map(|&imp| {
cx.tcx.associated_items(imp).find_by_name_and_namespace(
cx.tcx,
Ident::with_dummy_span(item_name),
ns,
imp,
)
})
.map(|item| item.kind)
// There should only ever be one associated item that matches from any inherent impl
.next()
// Check if item_name belongs to `impl SomeTrait for SomeItem`
// This gives precedence to `impl SomeItem`:
// Although having both would be ambiguous, use impl version for compat. sake.
// To handle that properly resolve() would have to support
// something like [`ambi_fn`](<SomeStruct as SomeTrait>::ambi_fn)
.or_else(|| {
let kind = resolve_associated_trait_item(
did, module_id, item_name, ns, &self.cx,
);
debug!("got associated item kind {:?}", kind);
kind
});
if let Some(kind) = kind {
let out = match kind {
ty::AssocKind::Fn => "method",
ty::AssocKind::Const => "associatedconstant",
ty::AssocKind::Type => "associatedtype",
};
Some(if extra_fragment.is_some() {
Err(ErrorKind::AnchorFailure(if kind == ty::AssocKind::Fn {
AnchorFailure::Method
} else {
AnchorFailure::AssocConstant
}))
} else {
// HACK(jynelson): `clean` expects the type, not the associated item.
// but the disambiguator logic expects the associated item.
// Store the kind in a side channel so that only the disambiguator logic looks at it.
self.kind_side_channel.set(Some(kind.as_def_kind()));
Ok((ty_res, Some(format!("{}.{}", out, item_name))))
})
} else if ns == Namespace::ValueNS {
match cx.tcx.type_of(did).kind {
ty::Adt(def, _) => {
let field = if def.is_enum() {
def.all_fields().find(|item| item.ident.name == item_name)
} else {
def.non_enum_variant()
.fields
.iter()
.find(|item| item.ident.name == item_name)
};
field.map(|item| {
if extra_fragment.is_some() {
Err(ErrorKind::AnchorFailure(if def.is_enum() {
AnchorFailure::Variant
} else {
AnchorFailure::Field
}))
} else {
Ok((
ty_res,
Some(format!(
"{}.{}",
if def.is_enum() {
"variant"
} else {
"structfield"
},
item.ident
)),
))
}
})
}
_ => None,
}
} else {
// We already know this isn't in ValueNS, so no need to check variant_field
return Err(ErrorKind::ResolutionFailure);
}
}
Res::Def(DefKind::Trait, did) => cx
.tcx
.associated_items(did)
.find_by_name_and_namespace(cx.tcx, Ident::with_dummy_span(item_name), ns, did)
.map(|item| {
let kind = match item.kind {
ty::AssocKind::Const => "associatedconstant",
ty::AssocKind::Type => "associatedtype",
ty::AssocKind::Fn => {
if item.defaultness.has_value() {
"method"
} else {
"tymethod"
}
}
};
if extra_fragment.is_some() {
Err(ErrorKind::AnchorFailure(if item.kind == ty::AssocKind::Const {
AnchorFailure::AssocConstant
} else if item.kind == ty::AssocKind::Type {
AnchorFailure::AssocType
} else {
AnchorFailure::Method
}))
} else {
let res = Res::Def(item.kind.as_def_kind(), item.def_id);
Ok((res, Some(format!("{}.{}", kind, item_name))))
}
}),
_ => None,
};
res.unwrap_or_else(|| {
if ns == Namespace::ValueNS {
self.variant_field(path_str, current_item, module_id)
} else {
Err(ErrorKind::ResolutionFailure)
}
})
} else {
debug!("attempting to resolve item without parent module: {}", path_str);
Err(ErrorKind::ResolutionFailure)
}
}
}
fn resolve_associated_trait_item(
did: DefId,
module: DefId,
item_name: Symbol,
ns: Namespace,
cx: &DocContext<'_>,
) -> Option<ty::AssocKind> {
let ty = cx.tcx.type_of(did);
// First consider automatic impls: `impl From<T> for T`
let implicit_impls = crate::clean::get_auto_trait_and_blanket_impls(cx, ty, did);
let mut candidates: Vec<_> = implicit_impls
.flat_map(|impl_outer| {
match impl_outer.inner {
ImplItem(impl_) => {
debug!("considering auto or blanket impl for trait {:?}", impl_.trait_);
// Give precedence to methods that were overridden
if !impl_.provided_trait_methods.contains(&*item_name.as_str()) {
let mut items = impl_.items.into_iter().filter_map(|assoc| {
if assoc.name.as_deref() != Some(&*item_name.as_str()) {
return None;
}
let kind = assoc
.inner
.as_assoc_kind()
.expect("inner items for a trait should be associated items");
if kind.namespace() != ns {
return None;
}
trace!("considering associated item {:?}", assoc.inner);
// We have a slight issue: normal methods come from `clean` types,
// but provided methods come directly from `tcx`.
// Fortunately, we don't need the whole method, we just need to know
// what kind of associated item it is.
Some((assoc.def_id, kind))
});
let assoc = items.next();
debug_assert_eq!(items.count(), 0);
assoc
} else {
// These are provided methods or default types:
// ```
// trait T {
// type A = usize;
// fn has_default() -> A { 0 }
// }
// ```
let trait_ = impl_.trait_.unwrap().def_id().unwrap();
cx.tcx
.associated_items(trait_)
.find_by_name_and_namespace(
cx.tcx,
Ident::with_dummy_span(item_name),
ns,
trait_,
)
.map(|assoc| (assoc.def_id, assoc.kind))
}
}
_ => panic!("get_impls returned something that wasn't an impl"),
}
})
.collect();
// Next consider explicit impls: `impl MyTrait for MyType`
// Give precedence to inherent impls.
if candidates.is_empty() {
let traits = traits_implemented_by(cx, did, module);
debug!("considering traits {:?}", traits);
candidates.extend(traits.iter().filter_map(|&trait_| {
cx.tcx
.associated_items(trait_)
.find_by_name_and_namespace(cx.tcx, Ident::with_dummy_span(item_name), ns, trait_)
.map(|assoc| (assoc.def_id, assoc.kind))
}));
}
// FIXME: warn about ambiguity
debug!("the candidates were {:?}", candidates);
candidates.pop().map(|(_, kind)| kind)
}
/// Given a type, return all traits in scope in `module` implemented by that type.
///
/// NOTE: this cannot be a query because more traits could be available when more crates are compiled!
/// So it is not stable to serialize cross-crate.
fn traits_implemented_by(cx: &DocContext<'_>, type_: DefId, module: DefId) -> FxHashSet<DefId> {
let mut cache = cx.module_trait_cache.borrow_mut();
let in_scope_traits = cache.entry(module).or_insert_with(|| {
cx.enter_resolver(|resolver| {
resolver.traits_in_scope(module).into_iter().map(|candidate| candidate.def_id).collect()
})
});
let ty = cx.tcx.type_of(type_);
let iter = in_scope_traits.iter().flat_map(|&trait_| {
trace!("considering explicit impl for trait {:?}", trait_);
let mut saw_impl = false;
// Look at each trait implementation to see if it's an impl for `did`
cx.tcx.for_each_relevant_impl(trait_, ty, |impl_| {
// FIXME: this is inefficient, find a way to short-circuit for_each_* so this doesn't take as long
if saw_impl {
return;
}
let trait_ref = cx.tcx.impl_trait_ref(impl_).expect("this is not an inherent impl");
// Check if these are the same type.
let impl_type = trait_ref.self_ty();
debug!(
"comparing type {} with kind {:?} against type {:?}",
impl_type, impl_type.kind, type_
);
// Fast path: if this is a primitive simple `==` will work
saw_impl = impl_type == ty
|| match impl_type.kind {
// Check if these are the same def_id
ty::Adt(def, _) => {
debug!("adt def_id: {:?}", def.did);
def.did == type_
}
ty::Foreign(def_id) => def_id == type_,
_ => false,
};
});
if saw_impl { Some(trait_) } else { None }
});
iter.collect()
}
/// Check for resolve collisions between a trait and its derive
///
/// These are common and we should just resolve to the trait in that case
fn is_derive_trait_collision<T>(ns: &PerNS<Option<(Res, T)>>) -> bool {
if let PerNS {
type_ns: Some((Res::Def(DefKind::Trait, _), _)),
macro_ns: Some((Res::Def(DefKind::Macro(MacroKind::Derive), _), _)),
..
} = *ns
{
true
} else {
false
}
}
impl<'a, 'tcx> DocFolder for LinkCollector<'a, 'tcx> {
fn fold_item(&mut self, mut item: Item) -> Option<Item> {
use rustc_middle::ty::DefIdTree;
let parent_node = if item.is_fake() {
// FIXME: is this correct?
None
} else {
let mut current = item.def_id;
// The immediate parent might not always be a module.
// Find the first parent which is.
loop {
if let Some(parent) = self.cx.tcx.parent(current) {
if self.cx.tcx.def_kind(parent) == DefKind::Mod {
break Some(parent);
}
current = parent;
} else {
break None;
}
}
};
if parent_node.is_some() {
trace!("got parent node for {:?} {:?}, id {:?}", item.type_(), item.name, item.def_id);
}
let current_item = match item.inner {
ModuleItem(..) => {
if item.attrs.inner_docs {
if item.def_id.is_top_level_module() { item.name.clone() } else { None }
} else {
match parent_node.or(self.mod_ids.last().copied()) {
Some(parent) if !parent.is_top_level_module() => {
// FIXME: can we pull the parent module's name from elsewhere?
Some(self.cx.tcx.item_name(parent).to_string())
}
_ => None,
}
}
}
ImplItem(Impl { ref for_, .. }) => {
for_.def_id().map(|did| self.cx.tcx.item_name(did).to_string())
}
// we don't display docs on `extern crate` items anyway, so don't process them.
ExternCrateItem(..) => {
debug!("ignoring extern crate item {:?}", item.def_id);
return self.fold_item_recur(item);
}
ImportItem(Import::Simple(ref name, ..)) => Some(name.clone()),
MacroItem(..) => None,
_ => item.name.clone(),
};
if item.is_mod() && item.attrs.inner_docs {
self.mod_ids.push(item.def_id);
}
let cx = self.cx;
let dox = item.attrs.collapsed_doc_value().unwrap_or_else(String::new);
trace!("got documentation '{}'", dox);
// find item's parent to resolve `Self` in item's docs below
let parent_name = self.cx.as_local_hir_id(item.def_id).and_then(|item_hir| {
let parent_hir = self.cx.tcx.hir().get_parent_item(item_hir);
let item_parent = self.cx.tcx.hir().find(parent_hir);
match item_parent {
Some(hir::Node::Item(hir::Item {
kind:
hir::ItemKind::Impl {
self_ty:
hir::Ty {
kind:
hir::TyKind::Path(hir::QPath::Resolved(
_,
hir::Path { segments, .. },
)),
..
},
..
},
..
})) => segments.first().map(|seg| seg.ident.to_string()),
Some(hir::Node::Item(hir::Item {
ident, kind: hir::ItemKind::Enum(..), ..
}))
| Some(hir::Node::Item(hir::Item {
ident, kind: hir::ItemKind::Struct(..), ..
}))
| Some(hir::Node::Item(hir::Item {
ident, kind: hir::ItemKind::Union(..), ..
}))
| Some(hir::Node::Item(hir::Item {
ident, kind: hir::ItemKind::Trait(..), ..
})) => Some(ident.to_string()),
_ => None,
}
});
for (ori_link, link_range) in markdown_links(&dox) {
trace!("considering link '{}'", ori_link);
// Bail early for real links.
if ori_link.contains('/') {
continue;
}
// [] is mostly likely not supposed to be a link
if ori_link.is_empty() {
continue;
}
let link = ori_link.replace("`", "");
let parts = link.split('#').collect::<Vec<_>>();
let (link, extra_fragment) = if parts.len() > 2 {
anchor_failure(cx, &item, &link, &dox, link_range, AnchorFailure::MultipleAnchors);
continue;
} else if parts.len() == 2 {
if parts[0].trim().is_empty() {
// This is an anchor to an element of the current page, nothing to do in here!
continue;
}
(parts[0].to_owned(), Some(parts[1].to_owned()))
} else {
(parts[0].to_owned(), None)
};
let resolved_self;
let mut path_str;
let disambiguator;
let (mut res, mut fragment) = {
path_str = if let Ok((d, path)) = Disambiguator::from_str(&link) {
disambiguator = Some(d);
path
} else {
disambiguator = None;
&link
}
.trim();
if path_str.contains(|ch: char| !(ch.is_alphanumeric() || ch == ':' || ch == '_')) {
continue;
}
// In order to correctly resolve intra-doc-links we need to
// pick a base AST node to work from. If the documentation for
// this module came from an inner comment (//!) then we anchor
// our name resolution *inside* the module. If, on the other
// hand it was an outer comment (///) then we anchor the name
// resolution in the parent module on the basis that the names
// used are more likely to be intended to be parent names. For
// this, we set base_node to None for inner comments since
// we've already pushed this node onto the resolution stack but
// for outer comments we explicitly try and resolve against the
// parent_node first.
let base_node = if item.is_mod() && item.attrs.inner_docs {
self.mod_ids.last().copied()
} else {
parent_node
};
// replace `Self` with suitable item's parent name
if path_str.starts_with("Self::") {
if let Some(ref name) = parent_name {
resolved_self = format!("{}::{}", name, &path_str[6..]);
path_str = &resolved_self;
}
}
match disambiguator.map(Disambiguator::ns) {
Some(ns @ (ValueNS | TypeNS)) => {
match self.resolve(path_str, ns, &current_item, base_node, &extra_fragment)
{
Ok(res) => res,
Err(ErrorKind::ResolutionFailure) => {
resolution_failure(cx, &item, path_str, &dox, link_range);
// This could just be a normal link or a broken link
// we could potentially check if something is
// "intra-doc-link-like" and warn in that case.
continue;
}
Err(ErrorKind::AnchorFailure(msg)) => {
anchor_failure(cx, &item, &ori_link, &dox, link_range, msg);
continue;
}
}
}
None => {
// Try everything!
let mut candidates = PerNS {
macro_ns: self
.macro_resolve(path_str, base_node)
.map(|res| (res, extra_fragment.clone())),
type_ns: match self.resolve(
path_str,
TypeNS,
&current_item,
base_node,
&extra_fragment,
) {
Ok(res) => {
debug!("got res in TypeNS: {:?}", res);
Some(res)
}
Err(ErrorKind::AnchorFailure(msg)) => {
anchor_failure(cx, &item, &ori_link, &dox, link_range, msg);
continue;
}
Err(ErrorKind::ResolutionFailure) => None,
},
value_ns: match self.resolve(
path_str,
ValueNS,
&current_item,
base_node,
&extra_fragment,
) {
Ok(res) => Some(res),
Err(ErrorKind::AnchorFailure(msg)) => {
anchor_failure(cx, &item, &ori_link, &dox, link_range, msg);
continue;
}
Err(ErrorKind::ResolutionFailure) => None,
}
.and_then(|(res, fragment)| {
// Constructors are picked up in the type namespace.
match res {
Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => None,
_ => match (fragment, extra_fragment) {
(Some(fragment), Some(_)) => {
// Shouldn't happen but who knows?
Some((res, Some(fragment)))
}
(fragment, None) | (None, fragment) => {
Some((res, fragment))
}
},
}
}),
};
if candidates.is_empty() {
resolution_failure(cx, &item, path_str, &dox, link_range);
// this could just be a normal link
continue;
}
let len = candidates.clone().present_items().count();
if len == 1 {
candidates.present_items().next().unwrap()
} else if len == 2 && is_derive_trait_collision(&candidates) {
candidates.type_ns.unwrap()
} else {
if is_derive_trait_collision(&candidates) {
candidates.macro_ns = None;
}
let candidates =
candidates.map(|candidate| candidate.map(|(res, _)| res));
let candidates = [TypeNS, ValueNS, MacroNS]
.iter()
.filter_map(|&ns| candidates[ns].map(|res| (res, ns)));
ambiguity_error(
cx,
&item,
path_str,
&dox,
link_range,
candidates.collect(),
);
continue;
}
}
Some(MacroNS) => {
if let Some(res) = self.macro_resolve(path_str, base_node) {
(res, extra_fragment)
} else {
resolution_failure(cx, &item, path_str, &dox, link_range);
continue;
}
}
}
};
// Check for a primitive which might conflict with a module
// Report the ambiguity and require that the user specify which one they meant.
// FIXME: could there ever be a primitive not in the type namespace?
if matches!(
disambiguator,
None | Some(Disambiguator::Namespace(Namespace::TypeNS) | Disambiguator::Primitive)
) && !matches!(res, Res::PrimTy(_))
{
if let Some((path, prim)) = is_primitive(path_str, TypeNS) {
// `prim@char`
if matches!(disambiguator, Some(Disambiguator::Primitive)) {
if fragment.is_some() {
anchor_failure(
cx,
&item,
path_str,
&dox,
link_range,
AnchorFailure::Primitive,
);
continue;
}
res = prim;
fragment = Some(path.to_owned());
} else {
// `[char]` when a `char` module is in scope
let candidates = vec![(res, TypeNS), (prim, TypeNS)];
ambiguity_error(cx, &item, path_str, &dox, link_range, candidates);
continue;
}
}
}
let report_mismatch = |specified: Disambiguator, resolved: Disambiguator| {
// The resolved item did not match the disambiguator; give a better error than 'not found'
let msg = format!("incompatible link kind for `{}`", path_str);
report_diagnostic(cx, &msg, &item, &dox, link_range.clone(), |diag, sp| {
let note = format!(
"this link resolved to {} {}, which is not {} {}",
resolved.article(),
resolved.descr(),
specified.article(),
specified.descr()
);
let suggestion = resolved.display_for(path_str);
let help_msg =
format!("to link to the {}, use its disambiguator", resolved.descr());
diag.note(&note);
if let Some(sp) = sp {
diag.span_suggestion(
sp,
&help_msg,
suggestion,
Applicability::MaybeIncorrect,
);
} else {
diag.help(&format!("{}: {}", help_msg, suggestion));
}
});
};
if let Res::PrimTy(_) = res {
match disambiguator {
Some(Disambiguator::Primitive | Disambiguator::Namespace(_)) | None => {
item.attrs.links.push((ori_link, None, fragment))
}
Some(other) => {
report_mismatch(other, Disambiguator::Primitive);
continue;
}
}
} else {
debug!("intra-doc link to {} resolved to {:?}", path_str, res);
// Disallow e.g. linking to enums with `struct@`
if let Res::Def(kind, _) = res {
debug!("saw kind {:?} with disambiguator {:?}", kind, disambiguator);
match (self.kind_side_channel.take().unwrap_or(kind), disambiguator) {
| (DefKind::Const | DefKind::ConstParam | DefKind::AssocConst | DefKind::AnonConst, Some(Disambiguator::Kind(DefKind::Const)))
// NOTE: this allows 'method' to mean both normal functions and associated functions
// This can't cause ambiguity because both are in the same namespace.
| (DefKind::Fn | DefKind::AssocFn, Some(Disambiguator::Kind(DefKind::Fn)))
// These are namespaces; allow anything in the namespace to match
| (_, Some(Disambiguator::Namespace(_)))
// If no disambiguator given, allow anything
| (_, None)
// All of these are valid, so do nothing
=> {}
(actual, Some(Disambiguator::Kind(expected))) if actual == expected => {}
(_, Some(specified @ Disambiguator::Kind(_) | specified @ Disambiguator::Primitive)) => {
report_mismatch(specified, Disambiguator::Kind(kind));
continue;
}
}
}
// item can be non-local e.g. when using #[doc(primitive = "pointer")]
if let Some((src_id, dst_id)) = res
.opt_def_id()
.and_then(|def_id| def_id.as_local())
.and_then(|dst_id| item.def_id.as_local().map(|src_id| (src_id, dst_id)))
{
use rustc_hir::def_id::LOCAL_CRATE;
let hir_src = self.cx.tcx.hir().local_def_id_to_hir_id(src_id);
let hir_dst = self.cx.tcx.hir().local_def_id_to_hir_id(dst_id);
if self.cx.tcx.privacy_access_levels(LOCAL_CRATE).is_exported(hir_src)
&& !self.cx.tcx.privacy_access_levels(LOCAL_CRATE).is_exported(hir_dst)
{
privacy_error(cx, &item, &path_str, &dox, link_range);
continue;
}
}
let id = register_res(cx, res);
item.attrs.links.push((ori_link, Some(id), fragment));
}
}
if item.is_mod() && !item.attrs.inner_docs {
self.mod_ids.push(item.def_id);
}
if item.is_mod() {
let ret = self.fold_item_recur(item);
self.mod_ids.pop();
ret
} else {
self.fold_item_recur(item)
}
}
// FIXME: if we can resolve intra-doc links from other crates, we can use the stock
// `fold_crate`, but until then we should avoid scanning `krate.external_traits` since those
// will never resolve properly
fn fold_crate(&mut self, mut c: Crate) -> Crate {
c.module = c.module.take().and_then(|module| self.fold_item(module));
c
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum Disambiguator {
Primitive,
Kind(DefKind),
Namespace(Namespace),
}
impl Disambiguator {
/// (disambiguator, path_str)
fn from_str(link: &str) -> Result<(Self, &str), ()> {
use Disambiguator::{Kind, Namespace as NS, Primitive};
let find_suffix = || {
let suffixes = [
("!()", DefKind::Macro(MacroKind::Bang)),
("()", DefKind::Fn),
("!", DefKind::Macro(MacroKind::Bang)),
];
for &(suffix, kind) in &suffixes {
if link.ends_with(suffix) {
return Ok((Kind(kind), link.trim_end_matches(suffix)));
}
}
Err(())
};
if let Some(idx) = link.find('@') {
let (prefix, rest) = link.split_at(idx);
let d = match prefix {
"struct" => Kind(DefKind::Struct),
"enum" => Kind(DefKind::Enum),
"trait" => Kind(DefKind::Trait),
"union" => Kind(DefKind::Union),
"module" | "mod" => Kind(DefKind::Mod),
"const" | "constant" => Kind(DefKind::Const),
"static" => Kind(DefKind::Static),
"function" | "fn" | "method" => Kind(DefKind::Fn),
"derive" => Kind(DefKind::Macro(MacroKind::Derive)),
"type" => NS(Namespace::TypeNS),
"value" => NS(Namespace::ValueNS),
"macro" => NS(Namespace::MacroNS),
"prim" | "primitive" => Primitive,
_ => return find_suffix(),
};
Ok((d, &rest[1..]))
} else {
find_suffix()
}
}
fn display_for(self, path_str: &str) -> String {
let kind = match self {
Disambiguator::Primitive => return format!("prim@{}", path_str),
Disambiguator::Kind(kind) => kind,
Disambiguator::Namespace(_) => panic!("display_for cannot be used on namespaces"),
};
if kind == DefKind::Macro(MacroKind::Bang) {
return format!("{}!", path_str);
} else if kind == DefKind::Fn || kind == DefKind::AssocFn {
return format!("{}()", path_str);
}
let prefix = match kind {
DefKind::Struct => "struct",
DefKind::Enum => "enum",
DefKind::Trait => "trait",
DefKind::Union => "union",
DefKind::Mod => "mod",
DefKind::Const | DefKind::ConstParam | DefKind::AssocConst | DefKind::AnonConst => {
"const"
}
DefKind::Static => "static",
DefKind::Macro(MacroKind::Derive) => "derive",
// Now handle things that don't have a specific disambiguator
_ => match kind
.ns()
.expect("tried to calculate a disambiguator for a def without a namespace?")
{
Namespace::TypeNS => "type",
Namespace::ValueNS => "value",
Namespace::MacroNS => "macro",
},
};
format!("{}@{}", prefix, path_str)
}
fn ns(self) -> Namespace {
match self {
Self::Namespace(n) => n,
Self::Kind(k) => {
k.ns().expect("only DefKinds with a valid namespace can be disambiguators")
}
Self::Primitive => TypeNS,
}
}
fn article(self) -> &'static str {
match self {
Self::Namespace(_) => panic!("article() doesn't make sense for namespaces"),
Self::Kind(k) => k.article(),
Self::Primitive => "a",
}
}
fn descr(self) -> &'static str {
match self {
Self::Namespace(n) => n.descr(),
// HACK(jynelson): by looking at the source I saw the DefId we pass
// for `expected.descr()` doesn't matter, since it's not a crate
Self::Kind(k) => k.descr(DefId::local(hir::def_id::DefIndex::from_usize(0))),
Self::Primitive => "builtin type",
}
}
}
/// Reports a diagnostic for an intra-doc link.
///
/// If no link range is provided, or the source span of the link cannot be determined, the span of
/// the entire documentation block is used for the lint. If a range is provided but the span
/// calculation fails, a note is added to the diagnostic pointing to the link in the markdown.
///
/// The `decorate` callback is invoked in all cases to allow further customization of the
/// diagnostic before emission. If the span of the link was able to be determined, the second
/// parameter of the callback will contain it, and the primary span of the diagnostic will be set
/// to it.
fn report_diagnostic(
cx: &DocContext<'_>,
msg: &str,
item: &Item,
dox: &str,
link_range: Option<Range<usize>>,
decorate: impl FnOnce(&mut DiagnosticBuilder<'_>, Option<rustc_span::Span>),
) {
let hir_id = match cx.as_local_hir_id(item.def_id) {
Some(hir_id) => hir_id,
None => {
// If non-local, no need to check anything.
info!("ignoring warning from parent crate: {}", msg);
return;
}
};
let attrs = &item.attrs;
let sp = span_of_attrs(attrs).unwrap_or(item.source.span());
cx.tcx.struct_span_lint_hir(lint::builtin::BROKEN_INTRA_DOC_LINKS, hir_id, sp, |lint| {
let mut diag = lint.build(msg);
let span = link_range
.as_ref()
.and_then(|range| super::source_span_for_markdown_range(cx, dox, range, attrs));
if let Some(link_range) = link_range {
if let Some(sp) = span {
diag.set_span(sp);
} else {
// blah blah blah\nblah\nblah [blah] blah blah\nblah blah
// ^ ~~~~
// | link_range
// last_new_line_offset
let last_new_line_offset = dox[..link_range.start].rfind('\n').map_or(0, |n| n + 1);
let line = dox[last_new_line_offset..].lines().next().unwrap_or("");
// Print the line containing the `link_range` and manually mark it with '^'s.
diag.note(&format!(
"the link appears in this line:\n\n{line}\n\
{indicator: <before$}{indicator:^<found$}",
line = line,
indicator = "",
before = link_range.start - last_new_line_offset,
found = link_range.len(),
));
}
}
decorate(&mut diag, span);
diag.emit();
});
}
fn resolution_failure(
cx: &DocContext<'_>,
item: &Item,
path_str: &str,
dox: &str,
link_range: Option<Range<usize>>,
) {
report_diagnostic(
cx,
&format!("unresolved link to `{}`", path_str),
item,
dox,
link_range,
|diag, sp| {
if let Some(sp) = sp {
diag.span_label(sp, "unresolved link");
}
diag.help(r#"to escape `[` and `]` characters, add '\' before them like `\[` or `\]`"#);
},
);
}
fn anchor_failure(
cx: &DocContext<'_>,
item: &Item,
path_str: &str,
dox: &str,
link_range: Option<Range<usize>>,
failure: AnchorFailure,
) {
let msg = match failure {
AnchorFailure::MultipleAnchors => format!("`{}` contains multiple anchors", path_str),
AnchorFailure::Primitive
| AnchorFailure::Variant
| AnchorFailure::AssocConstant
| AnchorFailure::AssocType
| AnchorFailure::Field
| AnchorFailure::Method => {
let kind = match failure {
AnchorFailure::Primitive => "primitive type",
AnchorFailure::Variant => "enum variant",
AnchorFailure::AssocConstant => "associated constant",
AnchorFailure::AssocType => "associated type",
AnchorFailure::Field => "struct field",
AnchorFailure::Method => "method",
AnchorFailure::MultipleAnchors => unreachable!("should be handled already"),
};
format!(
"`{}` contains an anchor, but links to {kind}s are already anchored",
path_str,
kind = kind
)
}
};
report_diagnostic(cx, &msg, item, dox, link_range, |diag, sp| {
if let Some(sp) = sp {
diag.span_label(sp, "contains invalid anchor");
}
});
}
fn ambiguity_error(
cx: &DocContext<'_>,
item: &Item,
path_str: &str,
dox: &str,
link_range: Option<Range<usize>>,
candidates: Vec<(Res, Namespace)>,
) {
let mut msg = format!("`{}` is ", path_str);
match candidates.as_slice() {
[(first_def, _), (second_def, _)] => {
msg += &format!(
"both {} {} and {} {}",
first_def.article(),
first_def.descr(),
second_def.article(),
second_def.descr(),
);
}
_ => {
let mut candidates = candidates.iter().peekable();
while let Some((res, _)) = candidates.next() {
if candidates.peek().is_some() {
msg += &format!("{} {}, ", res.article(), res.descr());
} else {
msg += &format!("and {} {}", res.article(), res.descr());
}
}
}
}
report_diagnostic(cx, &msg, item, dox, link_range.clone(), |diag, sp| {
if let Some(sp) = sp {
diag.span_label(sp, "ambiguous link");
let link_range = link_range.expect("must have a link range if we have a span");
for (res, ns) in candidates {
let (action, mut suggestion) = match res {
Res::Def(DefKind::AssocFn | DefKind::Fn, _) => {
("add parentheses", format!("{}()", path_str))
}
Res::Def(DefKind::Macro(MacroKind::Bang), _) => {
("add an exclamation mark", format!("{}!", path_str))
}
_ => {
let type_ = match (res, ns) {
(Res::PrimTy(_), _) => "prim",
(Res::Def(DefKind::Const, _), _) => "const",
(Res::Def(DefKind::Static, _), _) => "static",
(Res::Def(DefKind::Struct, _), _) => "struct",
(Res::Def(DefKind::Enum, _), _) => "enum",
(Res::Def(DefKind::Union, _), _) => "union",
(Res::Def(DefKind::Trait, _), _) => "trait",
(Res::Def(DefKind::Mod, _), _) => "module",
(_, TypeNS) => "type",
(_, ValueNS) => "value",
(Res::Def(DefKind::Macro(MacroKind::Derive), _), MacroNS) => "derive",
(_, MacroNS) => "macro",
};
// FIXME: if this is an implied shortcut link, it's bad style to suggest `@`
("prefix with the item type", format!("{}@{}", type_, path_str))
}
};
if dox.bytes().nth(link_range.start) == Some(b'`') {
suggestion = format!("`{}`", suggestion);
}
// FIXME: Create a version of this suggestion for when we don't have the span.
diag.span_suggestion(
sp,
&format!("to link to the {}, {}", res.descr(), action),
suggestion,
Applicability::MaybeIncorrect,
);
}
}
});
}
fn privacy_error(
cx: &DocContext<'_>,
item: &Item,
path_str: &str,
dox: &str,
link_range: Option<Range<usize>>,
) {
let item_name = item.name.as_deref().unwrap_or("<unknown>");
let msg =
format!("public documentation for `{}` links to private item `{}`", item_name, path_str);
report_diagnostic(cx, &msg, item, dox, link_range, |diag, sp| {
if let Some(sp) = sp {
diag.span_label(sp, "this item is private");
}
let note_msg = if cx.render_options.document_private {
"this link resolves only because you passed `--document-private-items`, but will break without"
} else {
"this link will resolve properly if you pass `--document-private-items`"
};
diag.note(note_msg);
});
}
/// Given an enum variant's res, return the res of its enum and the associated fragment.
fn handle_variant(
cx: &DocContext<'_>,
res: Res,
extra_fragment: &Option<String>,
) -> Result<(Res, Option<String>), ErrorKind> {
use rustc_middle::ty::DefIdTree;
if extra_fragment.is_some() {
return Err(ErrorKind::AnchorFailure(AnchorFailure::Variant));
}
let parent = if let Some(parent) = cx.tcx.parent(res.def_id()) {
parent
} else {
return Err(ErrorKind::ResolutionFailure);
};
let parent_def = Res::Def(DefKind::Enum, parent);
let variant = cx.tcx.expect_variant_res(res);
Ok((parent_def, Some(format!("variant.{}", variant.ident.name))))
}
const PRIMITIVES: &[(&str, Res)] = &[
("u8", Res::PrimTy(hir::PrimTy::Uint(rustc_ast::UintTy::U8))),
("u16", Res::PrimTy(hir::PrimTy::Uint(rustc_ast::UintTy::U16))),
("u32", Res::PrimTy(hir::PrimTy::Uint(rustc_ast::UintTy::U32))),
("u64", Res::PrimTy(hir::PrimTy::Uint(rustc_ast::UintTy::U64))),
("u128", Res::PrimTy(hir::PrimTy::Uint(rustc_ast::UintTy::U128))),
("usize", Res::PrimTy(hir::PrimTy::Uint(rustc_ast::UintTy::Usize))),
("i8", Res::PrimTy(hir::PrimTy::Int(rustc_ast::IntTy::I8))),
("i16", Res::PrimTy(hir::PrimTy::Int(rustc_ast::IntTy::I16))),
("i32", Res::PrimTy(hir::PrimTy::Int(rustc_ast::IntTy::I32))),
("i64", Res::PrimTy(hir::PrimTy::Int(rustc_ast::IntTy::I64))),
("i128", Res::PrimTy(hir::PrimTy::Int(rustc_ast::IntTy::I128))),
("isize", Res::PrimTy(hir::PrimTy::Int(rustc_ast::IntTy::Isize))),
("f32", Res::PrimTy(hir::PrimTy::Float(rustc_ast::FloatTy::F32))),
("f64", Res::PrimTy(hir::PrimTy::Float(rustc_ast::FloatTy::F64))),
("str", Res::PrimTy(hir::PrimTy::Str)),
("bool", Res::PrimTy(hir::PrimTy::Bool)),
("true", Res::PrimTy(hir::PrimTy::Bool)),
("false", Res::PrimTy(hir::PrimTy::Bool)),
("char", Res::PrimTy(hir::PrimTy::Char)),
];
fn is_primitive(path_str: &str, ns: Namespace) -> Option<(&'static str, Res)> {
if ns == TypeNS {
PRIMITIVES
.iter()
.filter(|x| x.0 == path_str)
.copied()
.map(|x| if x.0 == "true" || x.0 == "false" { ("bool", x.1) } else { x })
.next()
} else {
None
}
}
fn primitive_impl(cx: &DocContext<'_>, path_str: &str) -> Option<&'static SmallVec<[DefId; 4]>> {
Some(PrimitiveType::from_symbol(Symbol::intern(path_str))?.impls(cx.tcx))
}