rust/src/librustc/dep_graph/graph.rs

1139 lines
45 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use errors::DiagnosticBuilder;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use smallvec::SmallVec;
use rustc_data_structures::sync::{Lrc, Lock};
use std::env;
use std::hash::Hash;
use ty::{self, TyCtxt};
use util::common::{ProfileQueriesMsg, profq_msg};
use ich::{StableHashingContext, StableHashingContextProvider, Fingerprint};
use super::debug::EdgeFilter;
use super::dep_node::{DepNode, DepKind, WorkProductId};
use super::query::DepGraphQuery;
use super::safe::DepGraphSafe;
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::prev::PreviousDepGraph;
#[derive(Clone)]
pub struct DepGraph {
data: Option<Lrc<DepGraphData>>,
// A vector mapping depnodes from the current graph to their associated
// result value fingerprints. Do not rely on the length of this vector
// being the same as the number of nodes in the graph. The vector can
// contain an arbitrary number of zero-entries at the end.
fingerprints: Lrc<Lock<IndexVec<DepNodeIndex, Fingerprint>>>
}
newtype_index!(DepNodeIndex);
impl DepNodeIndex {
const INVALID: DepNodeIndex = DepNodeIndex(::std::u32::MAX);
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum DepNodeColor {
Red,
Green(DepNodeIndex)
}
impl DepNodeColor {
pub fn is_green(self) -> bool {
match self {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}
}
struct DepGraphData {
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore.
current: Lock<CurrentDepGraph>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: PreviousDepGraph,
colors: Lock<DepNodeColorMap>,
/// When we load, there may be `.o` files, cached mir, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: FxHashMap<WorkProductId, WorkProduct>,
dep_node_debug: Lock<FxHashMap<DepNode, String>>,
// Used for testing, only populated when -Zquery-dep-graph is specified.
loaded_from_cache: Lock<FxHashMap<DepNodeIndex, bool>>,
}
impl DepGraph {
pub fn new(prev_graph: PreviousDepGraph,
prev_work_products: FxHashMap<WorkProductId, WorkProduct>) -> DepGraph {
// Pre-allocate the fingerprints array. We over-allocate a little so
// that we hopefully don't have to re-allocate during this compilation
// session.
let prev_graph_node_count = prev_graph.node_count();
let fingerprints = IndexVec::from_elem_n(Fingerprint::ZERO,
(prev_graph_node_count * 115) / 100);
DepGraph {
data: Some(Lrc::new(DepGraphData {
previous_work_products: prev_work_products,
dep_node_debug: Lock::new(FxHashMap()),
current: Lock::new(CurrentDepGraph::new()),
previous: prev_graph,
colors: Lock::new(DepNodeColorMap::new(prev_graph_node_count)),
loaded_from_cache: Lock::new(FxHashMap()),
})),
fingerprints: Lrc::new(Lock::new(fingerprints)),
}
}
pub fn new_disabled() -> DepGraph {
DepGraph {
data: None,
fingerprints: Lrc::new(Lock::new(IndexVec::new())),
}
}
/// True if we are actually building the full dep-graph.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn query(&self) -> DepGraphQuery {
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
let nodes: Vec<_> = current_dep_graph.nodes.iter().cloned().collect();
let mut edges = Vec::new();
for (index, edge_targets) in current_dep_graph.edges.iter_enumerated() {
let from = current_dep_graph.nodes[index];
for &edge_target in edge_targets.iter() {
let to = current_dep_graph.nodes[edge_target];
edges.push((from, to));
}
}
DepGraphQuery::new(&nodes[..], &edges[..])
}
pub fn assert_ignored(&self)
{
if let Some(..) = self.data {
ty::tls::with_context_opt(|icx| {
let icx = if let Some(icx) = icx { icx } else { return };
match *icx.task {
OpenTask::Ignore => {
// ignored
}
_ => panic!("expected an ignore context")
}
})
}
}
pub fn with_ignore<OP,R>(&self, op: OP) -> R
where OP: FnOnce() -> R
{
ty::tls::with_context(|icx| {
let icx = ty::tls::ImplicitCtxt {
task: &OpenTask::Ignore,
..icx.clone()
};
ty::tls::enter_context(&icx, |_| {
op()
})
})
}
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [rustc guide] for more details on
/// the dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [rustc guide]: https://rust-lang-nursery.github.io/rustc-guide/incremental-compilation.html
pub fn with_task<'gcx, C, A, R>(&self,
key: DepNode,
cx: C,
arg: A,
task: fn(C, A) -> R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
self.with_task_impl(key, cx, arg, false, task,
|key| OpenTask::Regular(Lock::new(RegularOpenTask {
node: key,
reads: SmallVec::new(),
read_set: FxHashSet(),
})),
|data, key, task| data.borrow_mut().complete_task(key, task))
}
/// Creates a new dep-graph input with value `input`
pub fn input_task<'gcx, C, R>(&self,
key: DepNode,
cx: C,
input: R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
fn identity_fn<C, A>(_: C, arg: A) -> A {
arg
}
self.with_task_impl(key, cx, input, true, identity_fn,
|_| OpenTask::Ignore,
|data, key, _| data.borrow_mut().alloc_node(key, SmallVec::new()))
}
fn with_task_impl<'gcx, C, A, R>(
&self,
key: DepNode,
cx: C,
arg: A,
no_tcx: bool,
task: fn(C, A) -> R,
create_task: fn(DepNode) -> OpenTask,
finish_task_and_alloc_depnode: fn(&Lock<CurrentDepGraph>,
DepNode,
OpenTask) -> DepNodeIndex
) -> (R, DepNodeIndex)
where
C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
if let Some(ref data) = self.data {
let open_task = create_task(key);
// In incremental mode, hash the result of the task. We don't
// do anything with the hash yet, but we are computing it
// anyway so that
// - we make sure that the infrastructure works and
// - we can get an idea of the runtime cost.
let mut hcx = cx.get_stable_hashing_context();
if cfg!(debug_assertions) {
profq_msg(hcx.sess(), ProfileQueriesMsg::TaskBegin(key.clone()))
};
let result = if no_tcx {
task(cx, arg)
} else {
ty::tls::with_context(|icx| {
let icx = ty::tls::ImplicitCtxt {
task: &open_task,
..icx.clone()
};
ty::tls::enter_context(&icx, |_| {
task(cx, arg)
})
})
};
if cfg!(debug_assertions) {
profq_msg(hcx.sess(), ProfileQueriesMsg::TaskEnd)
};
let dep_node_index = finish_task_and_alloc_depnode(&data.current, key, open_task);
let mut stable_hasher = StableHasher::new();
result.hash_stable(&mut hcx, &mut stable_hasher);
let current_fingerprint = stable_hasher.finish();
// Store the current fingerprint
{
let mut fingerprints = self.fingerprints.borrow_mut();
if dep_node_index.index() >= fingerprints.len() {
fingerprints.resize(dep_node_index.index() + 1, Fingerprint::ZERO);
}
debug_assert!(fingerprints[dep_node_index] == Fingerprint::ZERO,
"DepGraph::with_task() - Duplicate fingerprint \
insertion for {:?}", key);
fingerprints[dep_node_index] = current_fingerprint;
}
// Determine the color of the new DepNode.
if let Some(prev_index) = data.previous.node_to_index_opt(&key) {
let prev_fingerprint = data.previous.fingerprint_by_index(prev_index);
let color = if current_fingerprint == prev_fingerprint {
DepNodeColor::Green(dep_node_index)
} else {
DepNodeColor::Red
};
let mut colors = data.colors.borrow_mut();
debug_assert!(colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor \
insertion for {:?}", key);
colors.insert(prev_index, color);
}
(result, dep_node_index)
} else {
if key.kind.fingerprint_needed_for_crate_hash() {
let mut hcx = cx.get_stable_hashing_context();
let result = task(cx, arg);
let mut stable_hasher = StableHasher::new();
result.hash_stable(&mut hcx, &mut stable_hasher);
let fingerprint = stable_hasher.finish();
let mut fingerprints = self.fingerprints.borrow_mut();
let dep_node_index = DepNodeIndex::new(fingerprints.len());
fingerprints.push(fingerprint);
debug_assert!(fingerprints[dep_node_index] == fingerprint,
"DepGraph::with_task() - Assigned fingerprint to \
unexpected index for {:?}", key);
(result, dep_node_index)
} else {
(task(cx, arg), DepNodeIndex::INVALID)
}
}
}
/// Execute something within an "anonymous" task, that is, a task the
/// DepNode of which is determined by the list of inputs it read from.
pub fn with_anon_task<OP,R>(&self, dep_kind: DepKind, op: OP) -> (R, DepNodeIndex)
where OP: FnOnce() -> R
{
if let Some(ref data) = self.data {
let (result, open_task) = ty::tls::with_context(|icx| {
let task = OpenTask::Anon(Lock::new(AnonOpenTask {
reads: SmallVec::new(),
read_set: FxHashSet(),
}));
let r = {
let icx = ty::tls::ImplicitCtxt {
task: &task,
..icx.clone()
};
ty::tls::enter_context(&icx, |_| {
op()
})
};
(r, task)
});
let dep_node_index = data.current
.borrow_mut()
.pop_anon_task(dep_kind, open_task);
(result, dep_node_index)
} else {
(op(), DepNodeIndex::INVALID)
}
}
/// Execute something within an "eval-always" task which is a task
// that runs whenever anything changes.
pub fn with_eval_always_task<'gcx, C, A, R>(&self,
key: DepNode,
cx: C,
arg: A,
task: fn(C, A) -> R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
self.with_task_impl(key, cx, arg, false, task,
|key| OpenTask::EvalAlways { node: key },
|data, key, task| data.borrow_mut().complete_eval_always_task(key, task))
}
#[inline]
pub fn read(&self, v: DepNode) {
if let Some(ref data) = self.data {
let mut current = data.current.borrow_mut();
if let Some(&dep_node_index) = current.node_to_node_index.get(&v) {
current.read_index(dep_node_index);
} else {
bug!("DepKind {:?} should be pre-allocated but isn't.", v.kind)
}
}
}
#[inline]
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
if let Some(ref data) = self.data {
data.current.borrow_mut().read_index(dep_node_index);
}
}
#[inline]
pub fn dep_node_index_of(&self, dep_node: &DepNode) -> DepNodeIndex {
self.data
.as_ref()
.unwrap()
.current
.borrow_mut()
.node_to_node_index
.get(dep_node)
.cloned()
.unwrap()
}
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode) -> bool {
if let Some(ref data) = self.data {
data.current.borrow_mut().node_to_node_index.contains_key(dep_node)
} else {
false
}
}
#[inline]
pub fn fingerprint_of(&self, dep_node_index: DepNodeIndex) -> Fingerprint {
match self.fingerprints.borrow().get(dep_node_index) {
Some(&fingerprint) => fingerprint,
None => {
if let Some(ref data) = self.data {
let dep_node = data.current.borrow().nodes[dep_node_index];
bug!("Could not find current fingerprint for {:?}", dep_node)
} else {
bug!("Could not find current fingerprint for {:?}", dep_node_index)
}
}
}
}
pub fn prev_fingerprint_of(&self, dep_node: &DepNode) -> Option<Fingerprint> {
self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
}
#[inline]
pub fn prev_dep_node_index_of(&self, dep_node: &DepNode) -> SerializedDepNodeIndex {
self.data.as_ref().unwrap().previous.node_to_index(dep_node)
}
/// Check whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data
.as_ref()
.and_then(|data| {
data.previous_work_products.get(v).cloned()
})
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
&self.data.as_ref().unwrap().previous_work_products
}
#[inline(always)]
pub fn register_dep_node_debug_str<F>(&self,
dep_node: DepNode,
debug_str_gen: F)
where F: FnOnce() -> String
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return
}
let debug_str = debug_str_gen();
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub(super) fn dep_node_debug_str(&self, dep_node: DepNode) -> Option<String> {
self.data
.as_ref()?
.dep_node_debug
.borrow()
.get(&dep_node)
.cloned()
}
pub fn edge_deduplication_data(&self) -> (u64, u64) {
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
(current_dep_graph.total_read_count, current_dep_graph.total_duplicate_read_count)
}
pub fn serialize(&self) -> SerializedDepGraph {
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
let fingerprints = self.fingerprints.borrow().clone().convert_index_type();
let nodes = current_dep_graph.nodes.clone().convert_index_type();
let total_edge_count: usize = current_dep_graph.edges.iter()
.map(|v| v.len())
.sum();
let mut edge_list_indices = IndexVec::with_capacity(nodes.len());
let mut edge_list_data = Vec::with_capacity(total_edge_count);
for (current_dep_node_index, edges) in current_dep_graph.edges.iter_enumerated() {
let start = edge_list_data.len() as u32;
// This should really just be a memcpy :/
edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex::new(i.index())));
let end = edge_list_data.len() as u32;
debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len());
edge_list_indices.push((start, end));
}
debug_assert!(edge_list_data.len() <= ::std::u32::MAX as usize);
debug_assert_eq!(edge_list_data.len(), total_edge_count);
SerializedDepGraph {
nodes,
fingerprints,
edge_list_indices,
edge_list_data,
}
}
pub fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
return data.colors.borrow().get(prev_index)
} else {
// This is a node that did not exist in the previous compilation
// session, so we consider it to be red.
return Some(DepNodeColor::Red)
}
}
None
}
pub fn try_mark_green<'tcx>(&self,
tcx: TyCtxt<'_, 'tcx, 'tcx>,
dep_node: &DepNode)
-> Option<DepNodeIndex> {
debug!("try_mark_green({:?}) - BEGIN", dep_node);
let data = self.data.as_ref().unwrap();
#[cfg(not(parallel_queries))]
debug_assert!(!data.current.borrow().node_to_node_index.contains_key(dep_node));
if dep_node.kind.is_input() {
// We should only hit try_mark_green() for inputs that do not exist
// anymore in the current compilation session. Existing inputs are
// eagerly marked as either red/green before any queries are
// executed.
debug_assert!(dep_node.extract_def_id(tcx).is_none());
debug!("try_mark_green({:?}) - END - DepNode is deleted input", dep_node);
return None;
}
let (prev_deps, prev_dep_node_index) = match data.previous.edges_from(dep_node) {
Some(prev) => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
prev
}
None => {
// This DepNode did not exist in the previous compilation session,
// so we cannot mark it as green.
debug!("try_mark_green({:?}) - END - DepNode does not exist in \
current compilation session anymore", dep_node);
return None
}
};
debug_assert!(data.colors.borrow().get(prev_dep_node_index).is_none());
let mut current_deps = SmallVec::new();
for &dep_dep_node_index in prev_deps {
let dep_dep_node_color = data.colors.borrow().get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
debug!("try_mark_green({:?}) --- found dependency {:?} to \
be immediately green",
dep_node,
data.previous.index_to_node(dep_dep_node_index));
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
debug!("try_mark_green({:?}) - END - dependency {:?} was \
immediately red",
dep_node,
data.previous.index_to_node(dep_dep_node_index));
return None
}
None => {
let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);
// We don't know the state of this dependency. If it isn't
// an input node, let's try to mark it green recursively.
if !dep_dep_node.kind.is_input() {
debug!("try_mark_green({:?}) --- state of dependency {:?} \
is unknown, trying to mark it green", dep_node,
dep_dep_node);
if let Some(node_index) = self.try_mark_green(tcx, dep_dep_node) {
debug!("try_mark_green({:?}) --- managed to MARK \
dependency {:?} as green", dep_node, dep_dep_node);
current_deps.push(node_index);
continue;
}
} else {
match dep_dep_node.kind {
DepKind::Hir |
DepKind::HirBody |
DepKind::CrateMetadata => {
if dep_node.extract_def_id(tcx).is_none() {
// If the node does not exist anymore, we
// just fail to mark green.
return None
} else {
// If the node does exist, it should have
// been pre-allocated.
bug!("DepNode {:?} should have been \
pre-allocated but wasn't.",
dep_dep_node)
}
}
_ => {
// For other kinds of inputs it's OK to be
// forced.
}
}
}
// We failed to mark it green, so we try to force the query.
debug!("try_mark_green({:?}) --- trying to force \
dependency {:?}", dep_node, dep_dep_node);
if ::ty::query::force_from_dep_node(tcx, dep_dep_node) {
let dep_dep_node_color = data.colors.borrow().get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
debug!("try_mark_green({:?}) --- managed to \
FORCE dependency {:?} to green",
dep_node, dep_dep_node);
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
debug!("try_mark_green({:?}) - END - \
dependency {:?} was red after forcing",
dep_node,
dep_dep_node);
return None
}
None => {
if !tcx.sess.has_errors() {
bug!("try_mark_green() - Forcing the DepNode \
should have set its color")
} else {
// If the query we just forced has resulted
// in some kind of compilation error, we
// don't expect that the corresponding
// dep-node color has been updated.
}
}
}
} else {
// The DepNode could not be forced.
debug!("try_mark_green({:?}) - END - dependency {:?} \
could not be forced", dep_node, dep_dep_node);
return None
}
}
}
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green.
// There may be multiple threads trying to mark the same dep node green concurrently
let (dep_node_index, did_allocation) = {
let mut current = data.current.borrow_mut();
if let Some(&dep_node_index) = current.node_to_node_index.get(&dep_node) {
// Someone else allocated it before us
(dep_node_index, false)
} else {
// We allocating an entry for the node in the current dependency graph and
// adding all the appropriate edges imported from the previous graph
(current.alloc_node(*dep_node, current_deps), true)
}
};
// ... copying the fingerprint from the previous graph too, so we don't
// have to recompute it ...
{
let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index);
let mut fingerprints = self.fingerprints.borrow_mut();
if dep_node_index.index() >= fingerprints.len() {
fingerprints.resize(dep_node_index.index() + 1, Fingerprint::ZERO);
}
// Multiple threads can all write the same fingerprint here
#[cfg(not(parallel_queries))]
debug_assert!(fingerprints[dep_node_index] == Fingerprint::ZERO,
"DepGraph::try_mark_green() - Duplicate fingerprint \
insertion for {:?}", dep_node);
fingerprints[dep_node_index] = fingerprint;
}
// ... emitting any stored diagnostic ...
if did_allocation {
// Only the thread which did the allocation emits the error messages
// FIXME: Ensure that these are printed before returning for all threads.
// Currently threads where did_allocation = false can continue on
// and emit other diagnostics before these diagnostics are emitted.
// Such diagnostics should be emitted after these.
// See https://github.com/rust-lang/rust/issues/48685
let diagnostics = tcx.queries.on_disk_cache
.load_diagnostics(tcx, prev_dep_node_index);
if diagnostics.len() > 0 {
let handle = tcx.sess.diagnostic();
// Promote the previous diagnostics to the current session.
tcx.queries.on_disk_cache
.store_diagnostics(dep_node_index, diagnostics.clone());
for diagnostic in diagnostics {
DiagnosticBuilder::new_diagnostic(handle, diagnostic).emit();
}
}
}
// ... and finally storing a "Green" entry in the color map.
let mut colors = data.colors.borrow_mut();
// Multiple threads can all write the same color here
#[cfg(not(parallel_queries))]
debug_assert!(colors.get(prev_dep_node_index).is_none(),
"DepGraph::try_mark_green() - Duplicate DepNodeColor \
insertion for {:?}", dep_node);
colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
debug!("try_mark_green({:?}) - END - successfully marked as green", dep_node);
Some(dep_node_index)
}
// Returns true if the given node has been marked as green during the
// current compilation session. Used in various assertions
pub fn is_green(&self, dep_node: &DepNode) -> bool {
self.node_color(dep_node).map(|c| c.is_green()).unwrap_or(false)
}
// This method loads all on-disk cacheable query results into memory, so
// they can be written out to the new cache file again. Most query results
// will already be in memory but in the case where we marked something as
// green but then did not need the value, that value will never have been
// loaded from disk.
//
// This method will only load queries that will end up in the disk cache.
// Other queries will not be executed.
pub fn exec_cache_promotions<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let green_nodes: Vec<DepNode> = {
let data = self.data.as_ref().unwrap();
let colors = data.colors.borrow();
colors.values.indices().filter_map(|prev_index| {
match colors.get(prev_index) {
Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
if dep_node.cache_on_disk(tcx) {
Some(dep_node)
} else {
None
}
}
None |
Some(DepNodeColor::Red) => {
// We can skip red nodes because a node can only be marked
// as red if the query result was recomputed and thus is
// already in memory.
None
}
}
}).collect()
};
for dep_node in green_nodes {
dep_node.load_from_on_disk_cache(tcx);
}
}
pub fn mark_loaded_from_cache(&self, dep_node_index: DepNodeIndex, state: bool) {
debug!("mark_loaded_from_cache({:?}, {})",
self.data.as_ref().unwrap().current.borrow().nodes[dep_node_index],
state);
self.data
.as_ref()
.unwrap()
.loaded_from_cache
.borrow_mut()
.insert(dep_node_index, state);
}
pub fn was_loaded_from_cache(&self, dep_node: &DepNode) -> Option<bool> {
let data = self.data.as_ref().unwrap();
let dep_node_index = data.current.borrow().node_to_node_index[dep_node];
data.loaded_from_cache.borrow().get(&dep_node_index).cloned()
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Saved files associated with this CGU
pub saved_files: Vec<(WorkProductFileKind, String)>,
}
#[derive(Clone, Copy, Debug, RustcEncodable, RustcDecodable, PartialEq)]
pub enum WorkProductFileKind {
Object,
Bytecode,
BytecodeCompressed,
}
pub(super) struct CurrentDepGraph {
nodes: IndexVec<DepNodeIndex, DepNode>,
edges: IndexVec<DepNodeIndex, SmallVec<[DepNodeIndex; 8]>>,
node_to_node_index: FxHashMap<DepNode, DepNodeIndex>,
forbidden_edge: Option<EdgeFilter>,
// Anonymous DepNodes are nodes the ID of which we compute from the list of
// their edges. This has the beneficial side-effect that multiple anonymous
// nodes can be coalesced into one without changing the semantics of the
// dependency graph. However, the merging of nodes can lead to a subtle
// problem during red-green marking: The color of an anonymous node from
// the current session might "shadow" the color of the node with the same
// ID from the previous session. In order to side-step this problem, we make
// sure that anon-node IDs allocated in different sessions don't overlap.
// This is implemented by mixing a session-key into the ID fingerprint of
// each anon node. The session-key is just a random number generated when
// the DepGraph is created.
anon_id_seed: Fingerprint,
total_read_count: u64,
total_duplicate_read_count: u64,
}
impl CurrentDepGraph {
fn new() -> CurrentDepGraph {
use std::time::{SystemTime, UNIX_EPOCH};
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let nanos = duration.as_secs() * 1_000_000_000 +
duration.subsec_nanos() as u64;
let mut stable_hasher = StableHasher::new();
nanos.hash(&mut stable_hasher);
let forbidden_edge = if cfg!(debug_assertions) {
match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
Ok(s) => {
match EdgeFilter::new(&s) {
Ok(f) => Some(f),
Err(err) => bug!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
}
}
Err(_) => None,
}
} else {
None
};
CurrentDepGraph {
nodes: IndexVec::new(),
edges: IndexVec::new(),
node_to_node_index: FxHashMap(),
anon_id_seed: stable_hasher.finish(),
forbidden_edge,
total_read_count: 0,
total_duplicate_read_count: 0,
}
}
fn complete_task(&mut self, key: DepNode, task: OpenTask) -> DepNodeIndex {
if let OpenTask::Regular(task) = task {
let RegularOpenTask {
node,
read_set: _,
reads
} = task.into_inner();
assert_eq!(node, key);
// If this is an input node, we expect that it either has no
// dependencies, or that it just depends on DepKind::CrateMetadata
// or DepKind::Krate. This happens for some "thin wrapper queries"
// like `crate_disambiguator` which sometimes have zero deps (for
// when called for LOCAL_CRATE) or they depend on a CrateMetadata
// node.
if cfg!(debug_assertions) {
if node.kind.is_input() && reads.len() > 0 &&
// FIXME(mw): Special case for DefSpan until Spans are handled
// better in general.
node.kind != DepKind::DefSpan &&
reads.iter().any(|&i| {
!(self.nodes[i].kind == DepKind::CrateMetadata ||
self.nodes[i].kind == DepKind::Krate)
})
{
bug!("Input node {:?} with unexpected reads: {:?}",
node,
reads.iter().map(|&i| self.nodes[i]).collect::<Vec<_>>())
}
}
self.alloc_node(node, reads)
} else {
bug!("complete_task() - Expected regular task to be popped")
}
}
fn pop_anon_task(&mut self, kind: DepKind, task: OpenTask) -> DepNodeIndex {
if let OpenTask::Anon(task) = task {
let AnonOpenTask {
read_set: _,
reads
} = task.into_inner();
debug_assert!(!kind.is_input());
let mut fingerprint = self.anon_id_seed;
let mut hasher = StableHasher::new();
for &read in reads.iter() {
let read_dep_node = self.nodes[read];
::std::mem::discriminant(&read_dep_node.kind).hash(&mut hasher);
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
fingerprint = fingerprint.combine(read_dep_node.hash);
}
fingerprint = fingerprint.combine(hasher.finish());
let target_dep_node = DepNode {
kind,
hash: fingerprint,
};
if let Some(&index) = self.node_to_node_index.get(&target_dep_node) {
index
} else {
self.alloc_node(target_dep_node, reads)
}
} else {
bug!("pop_anon_task() - Expected anonymous task to be popped")
}
}
fn complete_eval_always_task(&mut self, key: DepNode, task: OpenTask) -> DepNodeIndex {
if let OpenTask::EvalAlways {
node,
} = task {
debug_assert_eq!(node, key);
let krate_idx = self.node_to_node_index[&DepNode::new_no_params(DepKind::Krate)];
self.alloc_node(node, smallvec![krate_idx])
} else {
bug!("complete_eval_always_task() - Expected eval always task to be popped");
}
}
fn read_index(&mut self, source: DepNodeIndex) {
ty::tls::with_context_opt(|icx| {
let icx = if let Some(icx) = icx { icx } else { return };
match *icx.task {
OpenTask::Regular(ref task) => {
let mut task = task.lock();
self.total_read_count += 1;
if task.read_set.insert(source) {
task.reads.push(source);
if cfg!(debug_assertions) {
if let Some(ref forbidden_edge) = self.forbidden_edge {
let target = &task.node;
let source = self.nodes[source];
if forbidden_edge.test(&source, &target) {
bug!("forbidden edge {:?} -> {:?} created",
source,
target)
}
}
}
} else {
self.total_duplicate_read_count += 1;
}
}
OpenTask::Anon(ref task) => {
let mut task = task.lock();
if task.read_set.insert(source) {
task.reads.push(source);
}
}
OpenTask::Ignore | OpenTask::EvalAlways { .. } => {
// ignore
}
}
})
}
fn alloc_node(&mut self,
dep_node: DepNode,
edges: SmallVec<[DepNodeIndex; 8]>)
-> DepNodeIndex {
debug_assert_eq!(self.edges.len(), self.nodes.len());
debug_assert_eq!(self.node_to_node_index.len(), self.nodes.len());
debug_assert!(!self.node_to_node_index.contains_key(&dep_node));
let dep_node_index = DepNodeIndex::new(self.nodes.len());
self.nodes.push(dep_node);
self.node_to_node_index.insert(dep_node, dep_node_index);
self.edges.push(edges);
dep_node_index
}
}
pub struct RegularOpenTask {
node: DepNode,
reads: SmallVec<[DepNodeIndex; 8]>,
read_set: FxHashSet<DepNodeIndex>,
}
pub struct AnonOpenTask {
reads: SmallVec<[DepNodeIndex; 8]>,
read_set: FxHashSet<DepNodeIndex>,
}
pub enum OpenTask {
Regular(Lock<RegularOpenTask>),
Anon(Lock<AnonOpenTask>),
Ignore,
EvalAlways {
node: DepNode,
},
}
// A data structure that stores Option<DepNodeColor> values as a contiguous
// array, using one u32 per entry.
struct DepNodeColorMap {
values: IndexVec<SerializedDepNodeIndex, u32>,
}
const COMPRESSED_NONE: u32 = 0;
const COMPRESSED_RED: u32 = 1;
const COMPRESSED_FIRST_GREEN: u32 = 2;
impl DepNodeColorMap {
fn new(size: usize) -> DepNodeColorMap {
DepNodeColorMap {
values: IndexVec::from_elem_n(COMPRESSED_NONE, size)
}
}
fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
match self.values[index] {
COMPRESSED_NONE => None,
COMPRESSED_RED => Some(DepNodeColor::Red),
value => Some(DepNodeColor::Green(DepNodeIndex(value - COMPRESSED_FIRST_GREEN)))
}
}
fn insert(&mut self, index: SerializedDepNodeIndex, color: DepNodeColor) {
self.values[index] = match color {
DepNodeColor::Red => COMPRESSED_RED,
DepNodeColor::Green(index) => index.0 + COMPRESSED_FIRST_GREEN,
}
}
}