I've been working on improving the diagnostic registration system so that it can: * Check uniqueness of error codes *across the whole compiler*. The current method using `errorck.py` is prone to failure as it relies on simple text search - I found that it breaks when referencing an error's ident within a string (e.g. `"See also E0303"`). * Provide JSON output of error metadata, to eventually facilitate HTML output, as well as tracking of which errors need descriptions. The current schema is: ``` <error code>: { "description": <long description>, "use_site": { "filename": <filename where error is used>, "line": <line in file where error is used> } } ``` [Here's][metadata-dump] a pretty-printed sample dump for `librustc`. One thing to note is that I had to move the diagnostics arrays out of the diagnostics modules. I really wanted to be able to capture error usage information, which only becomes available as a crate is compiled. Hence all invocations of `__build_diagnostics_array!` have been moved to the ends of their respective `lib.rs` files. I tried to avoid moving the array by making a plugin that expands to nothing but couldn't invoke it in item position and gave up on hackily generating a fake item. I also briefly considered using a lint, but it seemed like it would impossible to get access to the data stored in the thread-local storage. The next step will be to generate a web page that lists each error with its rendered description and use site. Simple mapping and filtering of the metadata files also allows us to work out which error numbers are absent, which errors are unused and which need descriptions. [metadata-dump]: https://gist.github.com/michaelsproul/3246846ff1bea71bd049
The Rust Programming Language
This is a compiler for Rust, including standard libraries, tools and documentation. Rust is a systems programming language that is fast, memory safe and multithreaded, but does not employ a garbage collector or otherwise impose significant runtime overhead.
Quick Start
Read "Installing Rust" from The Book.
Building from Source
-
Make sure you have installed the dependencies:
g++
4.7 orclang++
3.xpython
2.6 or later (but not 3.x)- GNU
make
3.81 or later curl
git
-
Clone the source with
git
:$ git clone https://github.com/rust-lang/rust.git $ cd rust
-
Build and install:
$ ./configure $ make && make install
Note: You may need to use
sudo make install
if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a--prefix
argument toconfigure
. Various other options are also supported – pass--help
for more information on them.When complete,
make install
will place several programs into/usr/local/bin
:rustc
, the Rust compiler, andrustdoc
, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.
Building on Windows
MSYS2 can be used to easily build Rust on Windows:
-
Grab the latest MSYS2 installer and go through the installer.
-
From the MSYS2 terminal, install the
mingw64
toolchain and other required tools.# Choose one based on platform: $ pacman -S mingw-w64-i686-toolchain $ pacman -S mingw-w64-x86_64-toolchain $ pacman -S base-devel
-
Run
mingw32_shell.bat
ormingw64_shell.bat
from wherever you installed MYSY2 (i.e.C:\msys
), depending on whether you want 32-bit or 64-bit Rust. -
Navigate to Rust's source code, configure and build it:
$ ./configure $ make && make install
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
- Windows (7, 8, Server 2008 R2), x86 and x86-64 (64-bit support added in Rust 0.12.0)
- Linux (2.6.18 or later, various distributions), x86 and x86-64
- OSX 10.7 (Lion) or greater, x86 and x86-64
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.
There is more advice about hacking on Rust in CONTRIBUTING.md.
Getting Help
The Rust community congregates in a few places:
- Stack Overflow - Direct questions about using the language.
- users.rust-lang.org - General discussion and broader questions.
- /r/rust - News and general discussion.
Contributing
To contribute to Rust, please see CONTRIBUTING.
Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust, and a good place to ask for help.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.