rust/src/tools/clippy/clippy_lints/src/pattern_type_mismatch.rs

312 lines
11 KiB
Rust

use crate::utils::{last_path_segment, span_lint_and_help};
use rustc_hir::{
intravisit, Body, Expr, ExprKind, PatField, FnDecl, HirId, LocalSource, MatchSource, Mutability, Pat, PatKind,
QPath, Stmt, StmtKind,
};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{AdtDef, FieldDef, Ty, TyKind, VariantDef};
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::source_map::Span;
declare_clippy_lint! {
/// **What it does:** Checks for patterns that aren't exact representations of the types
/// they are applied to.
///
/// To satisfy this lint, you will have to adjust either the expression that is matched
/// against or the pattern itself, as well as the bindings that are introduced by the
/// adjusted patterns. For matching you will have to either dereference the expression
/// with the `*` operator, or amend the patterns to explicitly match against `&<pattern>`
/// or `&mut <pattern>` depending on the reference mutability. For the bindings you need
/// to use the inverse. You can leave them as plain bindings if you wish for the value
/// to be copied, but you must use `ref mut <variable>` or `ref <variable>` to construct
/// a reference into the matched structure.
///
/// If you are looking for a way to learn about ownership semantics in more detail, it
/// is recommended to look at IDE options available to you to highlight types, lifetimes
/// and reference semantics in your code. The available tooling would expose these things
/// in a general way even outside of the various pattern matching mechanics. Of course
/// this lint can still be used to highlight areas of interest and ensure a good understanding
/// of ownership semantics.
///
/// **Why is this bad?** It isn't bad in general. But in some contexts it can be desirable
/// because it increases ownership hints in the code, and will guard against some changes
/// in ownership.
///
/// **Known problems:** None.
///
/// **Example:**
///
/// This example shows the basic adjustments necessary to satisfy the lint. Note how
/// the matched expression is explicitly dereferenced with `*` and the `inner` variable
/// is bound to a shared borrow via `ref inner`.
///
/// ```rust,ignore
/// // Bad
/// let value = &Some(Box::new(23));
/// match value {
/// Some(inner) => println!("{}", inner),
/// None => println!("none"),
/// }
///
/// // Good
/// let value = &Some(Box::new(23));
/// match *value {
/// Some(ref inner) => println!("{}", inner),
/// None => println!("none"),
/// }
/// ```
///
/// The following example demonstrates one of the advantages of the more verbose style.
/// Note how the second version uses `ref mut a` to explicitly declare `a` a shared mutable
/// borrow, while `b` is simply taken by value. This ensures that the loop body cannot
/// accidentally modify the wrong part of the structure.
///
/// ```rust,ignore
/// // Bad
/// let mut values = vec![(2, 3), (3, 4)];
/// for (a, b) in &mut values {
/// *a += *b;
/// }
///
/// // Good
/// let mut values = vec![(2, 3), (3, 4)];
/// for &mut (ref mut a, b) in &mut values {
/// *a += b;
/// }
/// ```
pub PATTERN_TYPE_MISMATCH,
restriction,
"type of pattern does not match the expression type"
}
declare_lint_pass!(PatternTypeMismatch => [PATTERN_TYPE_MISMATCH]);
impl<'tcx> LateLintPass<'tcx> for PatternTypeMismatch {
fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) {
if let StmtKind::Local(ref local) = stmt.kind {
if let Some(init) = &local.init {
if let Some(init_ty) = cx.typeck_results().node_type_opt(init.hir_id) {
let pat = &local.pat;
if in_external_macro(cx.sess(), pat.span) {
return;
}
let deref_possible = match local.source {
LocalSource::Normal => DerefPossible::Possible,
_ => DerefPossible::Impossible,
};
apply_lint(cx, pat, init_ty, deref_possible);
}
}
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if let ExprKind::Match(ref expr, arms, source) = expr.kind {
match source {
MatchSource::Normal | MatchSource::IfLetDesugar { .. } | MatchSource::WhileLetDesugar => {
if let Some(expr_ty) = cx.typeck_results().node_type_opt(expr.hir_id) {
'pattern_checks: for arm in arms {
let pat = &arm.pat;
if in_external_macro(cx.sess(), pat.span) {
continue 'pattern_checks;
}
if apply_lint(cx, pat, expr_ty, DerefPossible::Possible) {
break 'pattern_checks;
}
}
}
},
_ => (),
}
}
}
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
_: intravisit::FnKind<'tcx>,
_: &'tcx FnDecl<'_>,
body: &'tcx Body<'_>,
_: Span,
hir_id: HirId,
) {
if let Some(fn_sig) = cx.typeck_results().liberated_fn_sigs().get(hir_id) {
for (param, ty) in body.params.iter().zip(fn_sig.inputs().iter()) {
apply_lint(cx, &param.pat, ty, DerefPossible::Impossible);
}
}
}
}
#[derive(Debug, Clone, Copy)]
enum DerefPossible {
Possible,
Impossible,
}
fn apply_lint<'tcx>(cx: &LateContext<'tcx>, pat: &Pat<'_>, expr_ty: Ty<'tcx>, deref_possible: DerefPossible) -> bool {
let maybe_mismatch = find_first_mismatch(cx, pat, expr_ty, Level::Top);
if let Some((span, mutability, level)) = maybe_mismatch {
span_lint_and_help(
cx,
PATTERN_TYPE_MISMATCH,
span,
"type of pattern does not match the expression type",
None,
&format!(
"{}explicitly match against a `{}` pattern and adjust the enclosed variable bindings",
match (deref_possible, level) {
(DerefPossible::Possible, Level::Top) => "use `*` to dereference the match expression or ",
_ => "",
},
match mutability {
Mutability::Mut => "&mut _",
Mutability::Not => "&_",
},
),
);
true
} else {
false
}
}
#[derive(Debug, Copy, Clone)]
enum Level {
Top,
Lower,
}
#[allow(rustc::usage_of_ty_tykind)]
fn find_first_mismatch<'tcx>(
cx: &LateContext<'tcx>,
pat: &Pat<'_>,
ty: Ty<'tcx>,
level: Level,
) -> Option<(Span, Mutability, Level)> {
if let PatKind::Ref(ref sub_pat, _) = pat.kind {
if let TyKind::Ref(_, sub_ty, _) = ty.kind() {
return find_first_mismatch(cx, sub_pat, sub_ty, Level::Lower);
}
}
if let TyKind::Ref(_, _, mutability) = *ty.kind() {
if is_non_ref_pattern(&pat.kind) {
return Some((pat.span, mutability, level));
}
}
if let PatKind::Struct(ref qpath, ref field_pats, _) = pat.kind {
if let TyKind::Adt(ref adt_def, ref substs_ref) = ty.kind() {
if let Some(variant) = get_variant(adt_def, qpath) {
let field_defs = &variant.fields;
return find_first_mismatch_in_struct(cx, field_pats, field_defs, substs_ref);
}
}
}
if let PatKind::TupleStruct(ref qpath, ref pats, _) = pat.kind {
if let TyKind::Adt(ref adt_def, ref substs_ref) = ty.kind() {
if let Some(variant) = get_variant(adt_def, qpath) {
let field_defs = &variant.fields;
let ty_iter = field_defs.iter().map(|field_def| field_def.ty(cx.tcx, substs_ref));
return find_first_mismatch_in_tuple(cx, pats, ty_iter);
}
}
}
if let PatKind::Tuple(ref pats, _) = pat.kind {
if let TyKind::Tuple(..) = ty.kind() {
return find_first_mismatch_in_tuple(cx, pats, ty.tuple_fields());
}
}
if let PatKind::Or(sub_pats) = pat.kind {
for pat in sub_pats {
let maybe_mismatch = find_first_mismatch(cx, pat, ty, level);
if let Some(mismatch) = maybe_mismatch {
return Some(mismatch);
}
}
}
None
}
fn get_variant<'a>(adt_def: &'a AdtDef, qpath: &QPath<'_>) -> Option<&'a VariantDef> {
if adt_def.is_struct() {
if let Some(variant) = adt_def.variants.iter().next() {
return Some(variant);
}
}
if adt_def.is_enum() {
let pat_ident = last_path_segment(qpath).ident;
for variant in &adt_def.variants {
if variant.ident == pat_ident {
return Some(variant);
}
}
}
None
}
fn find_first_mismatch_in_tuple<'tcx, I>(
cx: &LateContext<'tcx>,
pats: &[&Pat<'_>],
ty_iter_src: I,
) -> Option<(Span, Mutability, Level)>
where
I: IntoIterator<Item = Ty<'tcx>>,
{
let mut field_tys = ty_iter_src.into_iter();
'fields: for pat in pats {
let field_ty = if let Some(ty) = field_tys.next() {
ty
} else {
break 'fields;
};
let maybe_mismatch = find_first_mismatch(cx, pat, field_ty, Level::Lower);
if let Some(mismatch) = maybe_mismatch {
return Some(mismatch);
}
}
None
}
fn find_first_mismatch_in_struct<'tcx>(
cx: &LateContext<'tcx>,
field_pats: &[PatField<'_>],
field_defs: &[FieldDef],
substs_ref: SubstsRef<'tcx>,
) -> Option<(Span, Mutability, Level)> {
for field_pat in field_pats {
'definitions: for field_def in field_defs {
if field_pat.ident == field_def.ident {
let field_ty = field_def.ty(cx.tcx, substs_ref);
let pat = &field_pat.pat;
let maybe_mismatch = find_first_mismatch(cx, pat, field_ty, Level::Lower);
if let Some(mismatch) = maybe_mismatch {
return Some(mismatch);
}
break 'definitions;
}
}
}
None
}
fn is_non_ref_pattern(pat_kind: &PatKind<'_>) -> bool {
match pat_kind {
PatKind::Struct(..) | PatKind::Tuple(..) | PatKind::TupleStruct(..) | PatKind::Path(..) => true,
PatKind::Or(sub_pats) => sub_pats.iter().any(|pat| is_non_ref_pattern(&pat.kind)),
_ => false,
}
}