rust/src/librustc_driver/test.rs

856 lines
30 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Standalone Tests for the Inference Module
use driver;
use rustc::dep_graph::DepGraph;
use rustc_lint;
use rustc_resolve::MakeGlobMap;
use rustc_trans;
use rustc::middle::lang_items;
use rustc::middle::free_region::FreeRegionMap;
use rustc::middle::region::{CodeExtent, RegionMaps};
use rustc::middle::resolve_lifetime;
use rustc::middle::stability;
use rustc::ty::subst::{Kind, Subst};
use rustc::traits::{ObligationCause, Reveal};
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::infer::{self, InferOk, InferResult};
use rustc::infer::type_variable::TypeVariableOrigin;
use rustc_metadata::cstore::CStore;
use rustc::hir::map as hir_map;
use rustc::mir::transform::Passes;
use rustc::session::{self, config};
use std::rc::Rc;
use syntax::ast;
use syntax::abi::Abi;
use syntax::codemap::{CodeMap, FilePathMapping};
use errors;
use errors::emitter::Emitter;
use errors::{Level, DiagnosticBuilder};
use syntax::feature_gate::UnstableFeatures;
use syntax::symbol::Symbol;
use syntax_pos::DUMMY_SP;
use arena::DroplessArena;
use rustc::hir;
struct Env<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
infcx: &'a infer::InferCtxt<'a, 'gcx, 'tcx>,
region_maps: &'a mut RegionMaps,
param_env: ty::ParamEnv<'tcx>,
}
struct RH<'a> {
id: ast::NodeId,
sub: &'a [RH<'a>],
}
const EMPTY_SOURCE_STR: &'static str = "#![feature(no_core)] #![no_core]";
struct ExpectErrorEmitter {
messages: Vec<String>,
}
fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) {
match lvl {
Level::Bug | Level::Fatal | Level::Error => {}
_ => {
return;
}
}
debug!("Error: {}", msg);
match e.messages.iter().position(|m| msg.contains(m)) {
Some(i) => {
e.messages.remove(i);
}
None => {
debug!("Unexpected error: {} Expected: {:?}", msg, e.messages);
panic!("Unexpected error: {} Expected: {:?}", msg, e.messages);
}
}
}
impl Emitter for ExpectErrorEmitter {
fn emit(&mut self, db: &DiagnosticBuilder) {
remove_message(self, &db.message(), db.level);
for child in &db.children {
remove_message(self, &child.message(), child.level);
}
}
}
fn errors(msgs: &[&str]) -> (Box<Emitter + Send>, usize) {
let v = msgs.iter().map(|m| m.to_string()).collect();
(box ExpectErrorEmitter { messages: v } as Box<Emitter + Send>, msgs.len())
}
fn test_env<F>(source_string: &str,
(emitter, expected_err_count): (Box<Emitter + Send>, usize),
body: F)
where F: FnOnce(Env)
{
let mut options = config::basic_options();
options.debugging_opts.verbose = true;
options.unstable_features = UnstableFeatures::Allow;
let diagnostic_handler = errors::Handler::with_emitter(true, false, emitter);
let dep_graph = DepGraph::new(false);
let _ignore = dep_graph.in_ignore();
let cstore = Rc::new(CStore::new(&dep_graph, box ::MetadataLoader));
let sess = session::build_session_(options,
&dep_graph,
None,
diagnostic_handler,
Rc::new(CodeMap::new(FilePathMapping::empty())),
cstore.clone());
rustc_trans::init(&sess);
rustc_lint::register_builtins(&mut sess.lint_store.borrow_mut(), Some(&sess));
let input = config::Input::Str {
name: driver::anon_src(),
input: source_string.to_string(),
};
let krate = driver::phase_1_parse_input(&driver::CompileController::basic(),
&sess,
&input).unwrap();
let driver::ExpansionResult { defs, resolutions, mut hir_forest, .. } = {
driver::phase_2_configure_and_expand(&sess,
&cstore,
krate,
None,
"test",
None,
MakeGlobMap::No,
|_| Ok(()))
.expect("phase 2 aborted")
};
let _ignore = dep_graph.in_ignore();
let arena = DroplessArena::new();
let arenas = ty::GlobalArenas::new();
let hir_map = hir_map::map_crate(&mut hir_forest, defs);
// run just enough stuff to build a tcx:
let lang_items = lang_items::collect_language_items(&sess, &hir_map);
let named_region_map = resolve_lifetime::krate(&sess, &hir_map);
let index = stability::Index::new(&sess);
TyCtxt::create_and_enter(&sess,
ty::maps::Providers::default(),
ty::maps::Providers::default(),
Rc::new(Passes::new()),
&arenas,
&arena,
resolutions,
named_region_map.unwrap(),
hir_map,
lang_items,
index,
"test_crate",
|tcx| {
tcx.infer_ctxt().enter(|infcx| {
let mut region_maps = RegionMaps::new();
body(Env {
infcx: &infcx,
region_maps: &mut region_maps,
param_env: ty::ParamEnv::empty(Reveal::UserFacing),
});
let free_regions = FreeRegionMap::new();
let def_id = tcx.hir.local_def_id(ast::CRATE_NODE_ID);
infcx.resolve_regions_and_report_errors(def_id, &region_maps, &free_regions);
assert_eq!(tcx.sess.err_count(), expected_err_count);
});
});
}
impl<'a, 'gcx, 'tcx> Env<'a, 'gcx, 'tcx> {
pub fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx> {
self.infcx.tcx
}
pub fn create_region_hierarchy(&mut self, rh: &RH, parent: CodeExtent) {
let me = CodeExtent::Misc(rh.id);
self.region_maps.record_code_extent(me, Some(parent));
for child_rh in rh.sub {
self.create_region_hierarchy(child_rh, me);
}
}
pub fn create_simple_region_hierarchy(&mut self) {
// creates a region hierarchy where 1 is root, 10 and 11 are
// children of 1, etc
let node = ast::NodeId::from_u32;
let dscope = CodeExtent::DestructionScope(node(1));
self.region_maps.record_code_extent(dscope, None);
self.create_region_hierarchy(&RH {
id: node(1),
sub: &[RH {
id: node(10),
sub: &[],
},
RH {
id: node(11),
sub: &[],
}],
},
dscope);
}
#[allow(dead_code)] // this seems like it could be useful, even if we don't use it now
pub fn lookup_item(&self, names: &[String]) -> ast::NodeId {
return match search_mod(self, &self.infcx.tcx.hir.krate().module, 0, names) {
Some(id) => id,
None => {
panic!("no item found: `{}`", names.join("::"));
}
};
fn search_mod(this: &Env,
m: &hir::Mod,
idx: usize,
names: &[String])
-> Option<ast::NodeId> {
assert!(idx < names.len());
for item in &m.item_ids {
let item = this.infcx.tcx.hir.expect_item(item.id);
if item.name.to_string() == names[idx] {
return search(this, item, idx + 1, names);
}
}
return None;
}
fn search(this: &Env, it: &hir::Item, idx: usize, names: &[String]) -> Option<ast::NodeId> {
if idx == names.len() {
return Some(it.id);
}
return match it.node {
hir::ItemUse(..) |
hir::ItemExternCrate(..) |
hir::ItemConst(..) |
hir::ItemStatic(..) |
hir::ItemFn(..) |
hir::ItemForeignMod(..) |
hir::ItemGlobalAsm(..) |
hir::ItemTy(..) => None,
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemTrait(..) |
hir::ItemImpl(..) |
hir::ItemDefaultImpl(..) => None,
hir::ItemMod(ref m) => search_mod(this, m, idx, names),
};
}
}
pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match self.infcx.at(&ObligationCause::dummy(), self.param_env).sub(a, b) {
Ok(_) => true,
Err(ref e) => panic!("Encountered error: {}", e),
}
}
pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
self.infcx.can_sub(self.param_env, a, b).is_ok()
}
pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
if !self.is_subtype(a, b) {
panic!("{} is not a subtype of {}, but it should be", a, b);
}
}
pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.assert_subtype(a, b);
self.assert_subtype(b, a);
}
pub fn t_fn(&self, input_tys: &[Ty<'tcx>], output_ty: Ty<'tcx>) -> Ty<'tcx> {
self.infcx.tcx.mk_fn_ptr(ty::Binder(self.infcx.tcx.mk_fn_sig(
input_tys.iter().cloned(),
output_ty,
false,
hir::Unsafety::Normal,
Abi::Rust
)))
}
pub fn t_nil(&self) -> Ty<'tcx> {
self.infcx.tcx.mk_nil()
}
pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> {
self.infcx.tcx.intern_tup(&[ty1, ty2], false)
}
pub fn t_param(&self, index: u32) -> Ty<'tcx> {
let name = format!("T{}", index);
self.infcx.tcx.mk_param(index, Symbol::intern(&name))
}
pub fn re_early_bound(&self, index: u32, name: &'static str) -> ty::Region<'tcx> {
let name = Symbol::intern(name);
self.infcx.tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
def_id: self.infcx.tcx.hir.local_def_id(ast::CRATE_NODE_ID),
index,
name,
}))
}
pub fn re_late_bound_with_debruijn(&self,
id: u32,
debruijn: ty::DebruijnIndex)
-> ty::Region<'tcx> {
self.infcx.tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(id)))
}
pub fn t_rptr(&self, r: ty::Region<'tcx>) -> Ty<'tcx> {
self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize)
}
pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1));
self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize)
}
pub fn t_rptr_late_bound_with_debruijn(&self,
id: u32,
debruijn: ty::DebruijnIndex)
-> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, debruijn);
self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize)
}
pub fn t_rptr_scope(&self, id: u32) -> Ty<'tcx> {
let r = ty::ReScope(CodeExtent::Misc(ast::NodeId::from_u32(id)));
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.mk_region(r), self.tcx().types.isize)
}
pub fn re_free(&self, id: u32) -> ty::Region<'tcx> {
self.infcx.tcx.mk_region(ty::ReFree(ty::FreeRegion {
scope: self.infcx.tcx.hir.local_def_id(ast::CRATE_NODE_ID),
bound_region: ty::BrAnon(id),
}))
}
pub fn t_rptr_free(&self, id: u32) -> Ty<'tcx> {
let r = self.re_free(id);
self.infcx.tcx.mk_imm_ref(r, self.tcx().types.isize)
}
pub fn t_rptr_static(&self) -> Ty<'tcx> {
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.types.re_static,
self.tcx().types.isize)
}
pub fn t_rptr_empty(&self) -> Ty<'tcx> {
self.infcx.tcx.mk_imm_ref(self.infcx.tcx.types.re_empty,
self.tcx().types.isize)
}
pub fn sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> InferResult<'tcx, ()> {
self.infcx.at(&ObligationCause::dummy(), self.param_env).sub(t1, t2)
}
pub fn lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
self.infcx.at(&ObligationCause::dummy(), self.param_env).lub(t1, t2)
}
pub fn glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
self.infcx.at(&ObligationCause::dummy(), self.param_env).glb(t1, t2)
}
/// Checks that `t1 <: t2` is true (this may register additional
/// region checks).
pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub(t1, t2) {
Ok(InferOk { obligations, value: () }) => {
// None of these tests should require nested obligations:
assert!(obligations.is_empty());
}
Err(ref e) => {
panic!("unexpected error computing sub({:?},{:?}): {}", t1, t2, e);
}
}
}
/// Checks that `t1 <: t2` is false (this may register additional
/// region checks).
pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub(t1, t2) {
Err(_) => {}
Ok(_) => {
panic!("unexpected success computing sub({:?},{:?})", t1, t2);
}
}
}
/// Checks that `LUB(t1,t2) == t_lub`
pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) {
match self.lub(t1, t2) {
Ok(InferOk { obligations, value: t }) => {
// None of these tests should require nested obligations:
assert!(obligations.is_empty());
self.assert_eq(t, t_lub);
}
Err(ref e) => panic!("unexpected error in LUB: {}", e),
}
}
/// Checks that `GLB(t1,t2) == t_glb`
pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) {
debug!("check_glb(t1={}, t2={}, t_glb={})", t1, t2, t_glb);
match self.glb(t1, t2) {
Err(e) => panic!("unexpected error computing LUB: {:?}", e),
Ok(InferOk { obligations, value: t }) => {
// None of these tests should require nested obligations:
assert!(obligations.is_empty());
self.assert_eq(t, t_glb);
// sanity check for good measure:
self.assert_subtype(t, t1);
self.assert_subtype(t, t2);
}
}
}
}
#[test]
fn contravariant_region_ptr_ok() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
env.make_subtype(t_rptr1, t_rptr10);
})
}
#[test]
fn contravariant_region_ptr_err() {
test_env(EMPTY_SOURCE_STR, errors(&["mismatched types"]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
// will cause an error when regions are resolved
env.make_subtype(t_rptr10, t_rptr1);
})
}
#[test]
fn sub_free_bound_false() {
//! Test that:
//!
//! fn(&'a isize) <: for<'b> fn(&'b isize)
//!
//! does NOT hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_free1 = env.t_rptr_free(1);
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn sub_bound_free_true() {
//! Test that:
//!
//! for<'a> fn(&'a isize) <: fn(&'b isize)
//!
//! DOES hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1);
env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
})
}
#[test]
fn sub_free_bound_false_infer() {
//! Test that:
//!
//! fn(_#1) <: for<'b> fn(&'b isize)
//!
//! does NOT hold for any instantiation of `_#1`.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var(TypeVariableOrigin::MiscVariable(DUMMY_SP));
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn lub_free_bound_infer() {
//! Test result of:
//!
//! LUB(fn(_#1), for<'b> fn(&'b isize))
//!
//! This should yield `fn(&'_ isize)`. We check
//! that it yields `fn(&'x isize)` for some free `'x`,
//! anyhow.
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_infer1 = env.infcx.next_ty_var(TypeVariableOrigin::MiscVariable(DUMMY_SP));
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1);
env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
});
}
#[test]
fn lub_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound2], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_bound_inverse_order() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1),
env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1),
env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1));
})
}
#[test]
fn lub_free_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_free1 = env.t_rptr_free(1);
let t_rptr_free2 = env.t_rptr_free(2);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free2], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize));
})
}
#[test]
fn lub_returning_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_scope10 = env.t_rptr_scope(10);
let t_rptr_scope11 = env.t_rptr_scope(11);
let t_rptr_empty = env.t_rptr_empty();
env.check_lub(env.t_fn(&[t_rptr_scope10], env.tcx().types.isize),
env.t_fn(&[t_rptr_scope11], env.tcx().types.isize),
env.t_fn(&[t_rptr_empty], env.tcx().types.isize));
});
}
#[test]
fn glb_free_free_with_common_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_free1 = env.t_rptr_free(1);
let t_rptr_free2 = env.t_rptr_free(2);
let t_rptr_scope = env.t_rptr_scope(1);
env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free2], env.tcx().types.isize),
env.t_fn(&[t_rptr_scope], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound2], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
env.create_simple_region_hierarchy();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(1);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_free_infer() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_infer1 = env.infcx.next_ty_var(TypeVariableOrigin::MiscVariable(DUMMY_SP));
// compute GLB(fn(_) -> isize, for<'b> fn(&'b isize) -> isize),
// which should yield for<'b> fn(&'b isize) -> isize
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
// as a side-effect, computing GLB should unify `_` with
// `&'_ isize`
let t_resolve1 = env.infcx.shallow_resolve(t_infer1);
match t_resolve1.sty {
ty::TyRef(..) => {}
_ => {
panic!("t_resolve1={:?}", t_resolve1);
}
}
})
}
#[test]
fn glb_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = fn(A)
let t_source = {
let t_param = env.t_param(0);
env.t_fn(&[t_param], env.t_nil())
};
let substs = env.infcx.tcx.intern_substs(&[Kind::from(t_rptr_bound1)]);
let t_substituted = t_source.subst(env.infcx.tcx, substs);
// t_expected = fn(&'a isize)
let t_expected = {
let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_ptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}",
t_source,
substs,
t_substituted,
t_expected);
assert_eq!(t_substituted, t_expected);
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_some_bounds() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = (A, fn(A))
let t_source = {
let t_param = env.t_param(0);
env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil()))
};
let substs = env.infcx.tcx.intern_substs(&[Kind::from(t_rptr_bound1)]);
let t_substituted = t_source.subst(env.infcx.tcx, substs);
// t_expected = (&'a isize, fn(&'a isize))
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil()))
};
debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}",
t_source,
substs,
t_substituted,
t_expected);
assert_eq!(t_substituted, t_expected);
})
}
/// Test that we correctly compute whether a type has escaping regions or not.
#[test]
fn escaping() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |mut env| {
// Situation:
// Theta = [A -> &'a foo]
env.create_simple_region_hierarchy();
assert!(!env.t_nil().has_escaping_regions());
let t_rptr_free1 = env.t_rptr_free(1);
assert!(!t_rptr_free1.has_escaping_regions());
let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
assert!(t_rptr_bound1.has_escaping_regions());
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
assert!(t_rptr_bound2.has_escaping_regions());
// t_fn = fn(A)
let t_param = env.t_param(0);
assert!(!t_param.has_escaping_regions());
let t_fn = env.t_fn(&[t_param], env.t_nil());
assert!(!t_fn.has_escaping_regions());
})
}
/// Test applying a substitution where the value being substituted for an early-bound region is a
/// late-bound region.
#[test]
fn subst_region_renumber_region() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
// type t_source<'a> = fn(&'a isize)
let t_source = {
let re_early = env.re_early_bound(0, "'a");
env.t_fn(&[env.t_rptr(re_early)], env.t_nil())
};
let substs = env.infcx.tcx.intern_substs(&[Kind::from(re_bound1)]);
let t_substituted = t_source.subst(env.infcx.tcx, substs);
// t_expected = fn(&'a isize)
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_rptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={:?} substs={:?} t_substituted={:?} t_expected={:?}",
t_source,
substs,
t_substituted,
t_expected);
assert_eq!(t_substituted, t_expected);
})
}
#[test]
fn walk_ty() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.isize;
let uint_ty = tcx.types.usize;
let tup1_ty = tcx.intern_tup(&[int_ty, uint_ty, int_ty, uint_ty], false);
let tup2_ty = tcx.intern_tup(&[tup1_ty, tup1_ty, uint_ty], false);
let walked: Vec<_> = tup2_ty.walk().collect();
assert_eq!(walked,
[tup2_ty, tup1_ty, int_ty, uint_ty, int_ty, uint_ty, tup1_ty, int_ty,
uint_ty, int_ty, uint_ty, uint_ty]);
})
}
#[test]
fn walk_ty_skip_subtree() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.isize;
let uint_ty = tcx.types.usize;
let tup1_ty = tcx.intern_tup(&[int_ty, uint_ty, int_ty, uint_ty], false);
let tup2_ty = tcx.intern_tup(&[tup1_ty, tup1_ty, uint_ty], false);
// types we expect to see (in order), plus a boolean saying
// whether to skip the subtree.
let mut expected = vec![(tup2_ty, false),
(tup1_ty, false),
(int_ty, false),
(uint_ty, false),
(int_ty, false),
(uint_ty, false),
(tup1_ty, true), // skip the isize/usize/isize/usize
(uint_ty, false)];
expected.reverse();
let mut walker = tup2_ty.walk();
while let Some(t) = walker.next() {
debug!("walked to {:?}", t);
let (expected_ty, skip) = expected.pop().unwrap();
assert_eq!(t, expected_ty);
if skip {
walker.skip_current_subtree();
}
}
assert!(expected.is_empty());
})
}