rust/src/libsyntax/parse/lexer/mod.rs

1957 lines
71 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ast::{self, Ident};
use syntax_pos::{self, BytePos, CharPos, Pos, Span, NO_EXPANSION};
use codemap::{CodeMap, FilePathMapping};
use errors::{FatalError, DiagnosticBuilder};
use parse::{token, ParseSess};
use str::char_at;
use symbol::Symbol;
use std_unicode::property::Pattern_White_Space;
use std::borrow::Cow;
use std::char;
use std::mem::replace;
use std::rc::Rc;
pub mod comments;
mod tokentrees;
mod unicode_chars;
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct TokenAndSpan {
pub tok: token::Token,
pub sp: Span,
}
impl Default for TokenAndSpan {
fn default() -> Self {
TokenAndSpan { tok: token::Underscore, sp: syntax_pos::DUMMY_SP }
}
}
pub struct StringReader<'a> {
pub sess: &'a ParseSess,
/// The absolute offset within the codemap of the next character to read
pub next_pos: BytePos,
/// The absolute offset within the codemap of the current character
pub pos: BytePos,
/// The column of the next character to read
pub col: CharPos,
/// The current character (which has been read from self.pos)
pub ch: Option<char>,
pub filemap: Rc<syntax_pos::FileMap>,
/// If Some, stop reading the source at this position (inclusive).
pub terminator: Option<BytePos>,
/// Whether to record new-lines and multibyte chars in filemap.
/// This is only necessary the first time a filemap is lexed.
/// If part of a filemap is being re-lexed, this should be set to false.
pub save_new_lines_and_multibyte: bool,
// cached:
pub peek_tok: token::Token,
pub peek_span: Span,
pub fatal_errs: Vec<DiagnosticBuilder<'a>>,
// cache a direct reference to the source text, so that we don't have to
// retrieve it via `self.filemap.src.as_ref().unwrap()` all the time.
source_text: Rc<String>,
/// Stack of open delimiters and their spans. Used for error message.
token: token::Token,
span: Span,
open_braces: Vec<(token::DelimToken, Span)>,
pub override_span: Option<Span>,
}
impl<'a> StringReader<'a> {
fn mk_sp(&self, lo: BytePos, hi: BytePos) -> Span {
unwrap_or!(self.override_span, Span::new(lo, hi, NO_EXPANSION))
}
fn mk_ident(&self, string: &str) -> Ident {
let mut ident = Ident::from_str(string);
if let Some(span) = self.override_span {
ident.ctxt = span.ctxt();
}
ident
}
fn next_token(&mut self) -> TokenAndSpan where Self: Sized {
let res = self.try_next_token();
self.unwrap_or_abort(res)
}
fn unwrap_or_abort(&mut self, res: Result<TokenAndSpan, ()>) -> TokenAndSpan {
match res {
Ok(tok) => tok,
Err(_) => {
self.emit_fatal_errors();
panic!(FatalError);
}
}
}
fn try_real_token(&mut self) -> Result<TokenAndSpan, ()> {
let mut t = self.try_next_token()?;
loop {
match t.tok {
token::Whitespace | token::Comment | token::Shebang(_) => {
t = self.try_next_token()?;
}
_ => break,
}
}
self.token = t.tok.clone();
self.span = t.sp;
Ok(t)
}
pub fn real_token(&mut self) -> TokenAndSpan {
let res = self.try_real_token();
self.unwrap_or_abort(res)
}
fn is_eof(&self) -> bool {
if self.ch.is_none() {
return true;
}
match self.terminator {
Some(t) => self.next_pos > t,
None => false,
}
}
/// Return the next token. EFFECT: advances the string_reader.
pub fn try_next_token(&mut self) -> Result<TokenAndSpan, ()> {
assert!(self.fatal_errs.is_empty());
let ret_val = TokenAndSpan {
tok: replace(&mut self.peek_tok, token::Underscore),
sp: self.peek_span,
};
self.advance_token()?;
Ok(ret_val)
}
fn fatal(&self, m: &str) -> FatalError {
self.fatal_span(self.peek_span, m)
}
pub fn emit_fatal_errors(&mut self) {
for err in &mut self.fatal_errs {
err.emit();
}
self.fatal_errs.clear();
}
pub fn peek(&self) -> TokenAndSpan {
// FIXME(pcwalton): Bad copy!
TokenAndSpan {
tok: self.peek_tok.clone(),
sp: self.peek_span,
}
}
}
impl<'a> StringReader<'a> {
/// For comments.rs, which hackily pokes into next_pos and ch
pub fn new_raw(sess: &'a ParseSess, filemap: Rc<syntax_pos::FileMap>) -> Self {
let mut sr = StringReader::new_raw_internal(sess, filemap);
sr.bump();
sr
}
fn new_raw_internal(sess: &'a ParseSess, filemap: Rc<syntax_pos::FileMap>) -> Self {
if filemap.src.is_none() {
sess.span_diagnostic.bug(&format!("Cannot lex filemap without source: {}",
filemap.name));
}
let source_text = (*filemap.src.as_ref().unwrap()).clone();
StringReader {
sess,
next_pos: filemap.start_pos,
pos: filemap.start_pos,
col: CharPos(0),
ch: Some('\n'),
filemap,
terminator: None,
save_new_lines_and_multibyte: true,
// dummy values; not read
peek_tok: token::Eof,
peek_span: syntax_pos::DUMMY_SP,
source_text,
fatal_errs: Vec::new(),
token: token::Eof,
span: syntax_pos::DUMMY_SP,
open_braces: Vec::new(),
override_span: None,
}
}
pub fn new(sess: &'a ParseSess, filemap: Rc<syntax_pos::FileMap>) -> Self {
let mut sr = StringReader::new_raw(sess, filemap);
if sr.advance_token().is_err() {
sr.emit_fatal_errors();
panic!(FatalError);
}
sr
}
pub fn retokenize(sess: &'a ParseSess, mut span: Span) -> Self {
let begin = sess.codemap().lookup_byte_offset(span.lo());
let end = sess.codemap().lookup_byte_offset(span.hi());
// Make the range zero-length if the span is invalid.
if span.lo() > span.hi() || begin.fm.start_pos != end.fm.start_pos {
span = span.with_hi(span.lo());
}
let mut sr = StringReader::new_raw_internal(sess, begin.fm);
// Seek the lexer to the right byte range.
sr.save_new_lines_and_multibyte = false;
sr.next_pos = span.lo();
sr.terminator = Some(span.hi());
sr.bump();
if sr.advance_token().is_err() {
sr.emit_fatal_errors();
panic!(FatalError);
}
sr
}
pub fn ch_is(&self, c: char) -> bool {
self.ch == Some(c)
}
/// Report a fatal lexical error with a given span.
pub fn fatal_span(&self, sp: Span, m: &str) -> FatalError {
self.sess.span_diagnostic.span_fatal(sp, m)
}
/// Report a lexical error with a given span.
pub fn err_span(&self, sp: Span, m: &str) {
self.sess.span_diagnostic.span_err(sp, m)
}
/// Report a fatal error spanning [`from_pos`, `to_pos`).
fn fatal_span_(&self, from_pos: BytePos, to_pos: BytePos, m: &str) -> FatalError {
self.fatal_span(self.mk_sp(from_pos, to_pos), m)
}
/// Report a lexical error spanning [`from_pos`, `to_pos`).
fn err_span_(&self, from_pos: BytePos, to_pos: BytePos, m: &str) {
self.err_span(self.mk_sp(from_pos, to_pos), m)
}
/// Report a lexical error spanning [`from_pos`, `to_pos`), appending an
/// escaped character to the error message
fn fatal_span_char(&self, from_pos: BytePos, to_pos: BytePos, m: &str, c: char) -> FatalError {
let mut m = m.to_string();
m.push_str(": ");
for c in c.escape_default() {
m.push(c)
}
self.fatal_span_(from_pos, to_pos, &m[..])
}
fn struct_fatal_span_char(&self,
from_pos: BytePos,
to_pos: BytePos,
m: &str,
c: char)
-> DiagnosticBuilder<'a> {
let mut m = m.to_string();
m.push_str(": ");
for c in c.escape_default() {
m.push(c)
}
self.sess.span_diagnostic.struct_span_fatal(self.mk_sp(from_pos, to_pos), &m[..])
}
/// Report a lexical error spanning [`from_pos`, `to_pos`), appending an
/// escaped character to the error message
fn err_span_char(&self, from_pos: BytePos, to_pos: BytePos, m: &str, c: char) {
let mut m = m.to_string();
m.push_str(": ");
for c in c.escape_default() {
m.push(c)
}
self.err_span_(from_pos, to_pos, &m[..]);
}
fn struct_err_span_char(&self,
from_pos: BytePos,
to_pos: BytePos,
m: &str,
c: char)
-> DiagnosticBuilder<'a> {
let mut m = m.to_string();
m.push_str(": ");
for c in c.escape_default() {
m.push(c)
}
self.sess.span_diagnostic.struct_span_err(self.mk_sp(from_pos, to_pos), &m[..])
}
/// Report a lexical error spanning [`from_pos`, `to_pos`), appending the
/// offending string to the error message
fn fatal_span_verbose(&self, from_pos: BytePos, to_pos: BytePos, mut m: String) -> FatalError {
m.push_str(": ");
let from = self.byte_offset(from_pos).to_usize();
let to = self.byte_offset(to_pos).to_usize();
m.push_str(&self.source_text[from..to]);
self.fatal_span_(from_pos, to_pos, &m[..])
}
/// Advance peek_tok and peek_span to refer to the next token, and
/// possibly update the interner.
fn advance_token(&mut self) -> Result<(), ()> {
match self.scan_whitespace_or_comment() {
Some(comment) => {
self.peek_span = comment.sp;
self.peek_tok = comment.tok;
}
None => {
if self.is_eof() {
self.peek_tok = token::Eof;
self.peek_span = self.mk_sp(self.filemap.end_pos, self.filemap.end_pos);
} else {
let start_bytepos = self.pos;
self.peek_tok = self.next_token_inner()?;
self.peek_span = self.mk_sp(start_bytepos, self.pos);
};
}
}
Ok(())
}
fn byte_offset(&self, pos: BytePos) -> BytePos {
(pos - self.filemap.start_pos)
}
/// Calls `f` with a string slice of the source text spanning from `start`
/// up to but excluding `self.pos`, meaning the slice does not include
/// the character `self.ch`.
pub fn with_str_from<T, F>(&self, start: BytePos, f: F) -> T
where F: FnOnce(&str) -> T
{
self.with_str_from_to(start, self.pos, f)
}
/// Create a Name from a given offset to the current offset, each
/// adjusted 1 towards each other (assumes that on either side there is a
/// single-byte delimiter).
pub fn name_from(&self, start: BytePos) -> ast::Name {
debug!("taking an ident from {:?} to {:?}", start, self.pos);
self.with_str_from(start, Symbol::intern)
}
/// As name_from, with an explicit endpoint.
pub fn name_from_to(&self, start: BytePos, end: BytePos) -> ast::Name {
debug!("taking an ident from {:?} to {:?}", start, end);
self.with_str_from_to(start, end, Symbol::intern)
}
/// Calls `f` with a string slice of the source text spanning from `start`
/// up to but excluding `end`.
fn with_str_from_to<T, F>(&self, start: BytePos, end: BytePos, f: F) -> T
where F: FnOnce(&str) -> T
{
f(&self.source_text[self.byte_offset(start).to_usize()..self.byte_offset(end).to_usize()])
}
/// Converts CRLF to LF in the given string, raising an error on bare CR.
fn translate_crlf<'b>(&self, start: BytePos, s: &'b str, errmsg: &'b str) -> Cow<'b, str> {
let mut i = 0;
while i < s.len() {
let ch = char_at(s, i);
let next = i + ch.len_utf8();
if ch == '\r' {
if next < s.len() && char_at(s, next) == '\n' {
return translate_crlf_(self, start, s, errmsg, i).into();
}
let pos = start + BytePos(i as u32);
let end_pos = start + BytePos(next as u32);
self.err_span_(pos, end_pos, errmsg);
}
i = next;
}
return s.into();
fn translate_crlf_(rdr: &StringReader,
start: BytePos,
s: &str,
errmsg: &str,
mut i: usize)
-> String {
let mut buf = String::with_capacity(s.len());
let mut j = 0;
while i < s.len() {
let ch = char_at(s, i);
let next = i + ch.len_utf8();
if ch == '\r' {
if j < i {
buf.push_str(&s[j..i]);
}
j = next;
if next >= s.len() || char_at(s, next) != '\n' {
let pos = start + BytePos(i as u32);
let end_pos = start + BytePos(next as u32);
rdr.err_span_(pos, end_pos, errmsg);
}
}
i = next;
}
if j < s.len() {
buf.push_str(&s[j..]);
}
buf
}
}
/// Advance the StringReader by one character. If a newline is
/// discovered, add it to the FileMap's list of line start offsets.
pub fn bump(&mut self) {
let new_pos = self.next_pos;
let new_byte_offset = self.byte_offset(new_pos).to_usize();
let end = self.terminator.map_or(self.source_text.len(), |t| {
self.byte_offset(t).to_usize()
});
if new_byte_offset < end {
let old_ch_is_newline = self.ch.unwrap() == '\n';
let new_ch = char_at(&self.source_text, new_byte_offset);
let new_ch_len = new_ch.len_utf8();
self.ch = Some(new_ch);
self.pos = new_pos;
self.next_pos = new_pos + Pos::from_usize(new_ch_len);
if old_ch_is_newline {
if self.save_new_lines_and_multibyte {
self.filemap.next_line(self.pos);
}
self.col = CharPos(0);
} else {
self.col = self.col + CharPos(1);
}
if new_ch_len > 1 {
if self.save_new_lines_and_multibyte {
self.filemap.record_multibyte_char(self.pos, new_ch_len);
}
}
self.filemap.record_width(self.pos, new_ch);
} else {
self.ch = None;
self.pos = new_pos;
}
}
pub fn nextch(&self) -> Option<char> {
let offset = self.byte_offset(self.next_pos).to_usize();
if offset < self.source_text.len() {
Some(char_at(&self.source_text, offset))
} else {
None
}
}
pub fn nextch_is(&self, c: char) -> bool {
self.nextch() == Some(c)
}
pub fn nextnextch(&self) -> Option<char> {
let offset = self.byte_offset(self.next_pos).to_usize();
let s = &self.source_text[..];
if offset >= s.len() {
return None;
}
let next = offset + char_at(s, offset).len_utf8();
if next < s.len() {
Some(char_at(s, next))
} else {
None
}
}
pub fn nextnextch_is(&self, c: char) -> bool {
self.nextnextch() == Some(c)
}
/// Eats <XID_start><XID_continue>*, if possible.
fn scan_optional_raw_name(&mut self) -> Option<ast::Name> {
if !ident_start(self.ch) {
return None;
}
let start = self.pos;
while ident_continue(self.ch) {
self.bump();
}
self.with_str_from(start, |string| {
if string == "_" {
self.sess.span_diagnostic
.struct_span_warn(self.mk_sp(start, self.pos),
"underscore literal suffix is not allowed")
.warn("this was previously accepted by the compiler but is \
being phased out; it will become a hard error in \
a future release!")
.note("for more information, see issue #42326 \
<https://github.com/rust-lang/rust/issues/42326>")
.emit();
None
} else {
Some(Symbol::intern(string))
}
})
}
/// PRECONDITION: self.ch is not whitespace
/// Eats any kind of comment.
fn scan_comment(&mut self) -> Option<TokenAndSpan> {
if let Some(c) = self.ch {
if c.is_whitespace() {
let msg = "called consume_any_line_comment, but there was whitespace";
self.sess.span_diagnostic.span_err(self.mk_sp(self.pos, self.pos), msg);
}
}
if self.ch_is('/') {
match self.nextch() {
Some('/') => {
self.bump();
self.bump();
// line comments starting with "///" or "//!" are doc-comments
let doc_comment = (self.ch_is('/') && !self.nextch_is('/')) || self.ch_is('!');
let start_bpos = self.pos - BytePos(2);
while !self.is_eof() {
match self.ch.unwrap() {
'\n' => break,
'\r' => {
if self.nextch_is('\n') {
// CRLF
break;
} else if doc_comment {
self.err_span_(self.pos,
self.next_pos,
"bare CR not allowed in doc-comment");
}
}
_ => (),
}
self.bump();
}
if doc_comment {
self.with_str_from(start_bpos, |string| {
// comments with only more "/"s are not doc comments
let tok = if is_doc_comment(string) {
token::DocComment(Symbol::intern(string))
} else {
token::Comment
};
Some(TokenAndSpan {
tok,
sp: self.mk_sp(start_bpos, self.pos),
})
})
} else {
Some(TokenAndSpan {
tok: token::Comment,
sp: self.mk_sp(start_bpos, self.pos),
})
}
}
Some('*') => {
self.bump();
self.bump();
self.scan_block_comment()
}
_ => None,
}
} else if self.ch_is('#') {
if self.nextch_is('!') {
// Parse an inner attribute.
if self.nextnextch_is('[') {
return None;
}
// I guess this is the only way to figure out if
// we're at the beginning of the file...
let cmap = CodeMap::new(FilePathMapping::empty());
cmap.files.borrow_mut().push(self.filemap.clone());
let loc = cmap.lookup_char_pos_adj(self.pos);
debug!("Skipping a shebang");
if loc.line == 1 && loc.col == CharPos(0) {
// FIXME: Add shebang "token", return it
let start = self.pos;
while !self.ch_is('\n') && !self.is_eof() {
self.bump();
}
return Some(TokenAndSpan {
tok: token::Shebang(self.name_from(start)),
sp: self.mk_sp(start, self.pos),
});
}
}
None
} else {
None
}
}
/// If there is whitespace, shebang, or a comment, scan it. Otherwise,
/// return None.
fn scan_whitespace_or_comment(&mut self) -> Option<TokenAndSpan> {
match self.ch.unwrap_or('\0') {
// # to handle shebang at start of file -- this is the entry point
// for skipping over all "junk"
'/' | '#' => {
let c = self.scan_comment();
debug!("scanning a comment {:?}", c);
c
},
c if is_pattern_whitespace(Some(c)) => {
let start_bpos = self.pos;
while is_pattern_whitespace(self.ch) {
self.bump();
}
let c = Some(TokenAndSpan {
tok: token::Whitespace,
sp: self.mk_sp(start_bpos, self.pos),
});
debug!("scanning whitespace: {:?}", c);
c
}
_ => None,
}
}
/// Might return a sugared-doc-attr
fn scan_block_comment(&mut self) -> Option<TokenAndSpan> {
// block comments starting with "/**" or "/*!" are doc-comments
let is_doc_comment = self.ch_is('*') || self.ch_is('!');
let start_bpos = self.pos - BytePos(2);
let mut level: isize = 1;
let mut has_cr = false;
while level > 0 {
if self.is_eof() {
let msg = if is_doc_comment {
"unterminated block doc-comment"
} else {
"unterminated block comment"
};
let last_bpos = self.pos;
panic!(self.fatal_span_(start_bpos, last_bpos, msg));
}
let n = self.ch.unwrap();
match n {
'/' if self.nextch_is('*') => {
level += 1;
self.bump();
}
'*' if self.nextch_is('/') => {
level -= 1;
self.bump();
}
'\r' => {
has_cr = true;
}
_ => (),
}
self.bump();
}
self.with_str_from(start_bpos, |string| {
// but comments with only "*"s between two "/"s are not
let tok = if is_block_doc_comment(string) {
let string = if has_cr {
self.translate_crlf(start_bpos,
string,
"bare CR not allowed in block doc-comment")
} else {
string.into()
};
token::DocComment(Symbol::intern(&string[..]))
} else {
token::Comment
};
Some(TokenAndSpan {
tok,
sp: self.mk_sp(start_bpos, self.pos),
})
})
}
/// Scan through any digits (base `scan_radix`) or underscores,
/// and return how many digits there were.
///
/// `real_radix` represents the true radix of the number we're
/// interested in, and errors will be emitted for any digits
/// between `real_radix` and `scan_radix`.
fn scan_digits(&mut self, real_radix: u32, scan_radix: u32) -> usize {
assert!(real_radix <= scan_radix);
let mut len = 0;
loop {
let c = self.ch;
if c == Some('_') {
debug!("skipping a _");
self.bump();
continue;
}
match c.and_then(|cc| cc.to_digit(scan_radix)) {
Some(_) => {
debug!("{:?} in scan_digits", c);
// check that the hypothetical digit is actually
// in range for the true radix
if c.unwrap().to_digit(real_radix).is_none() {
self.err_span_(self.pos,
self.next_pos,
&format!("invalid digit for a base {} literal", real_radix));
}
len += 1;
self.bump();
}
_ => return len,
}
}
}
/// Lex a LIT_INTEGER or a LIT_FLOAT
fn scan_number(&mut self, c: char) -> token::Lit {
let num_digits;
let mut base = 10;
let start_bpos = self.pos;
self.bump();
if c == '0' {
match self.ch.unwrap_or('\0') {
'b' => {
self.bump();
base = 2;
num_digits = self.scan_digits(2, 10);
}
'o' => {
self.bump();
base = 8;
num_digits = self.scan_digits(8, 10);
}
'x' => {
self.bump();
base = 16;
num_digits = self.scan_digits(16, 16);
}
'0'...'9' | '_' | '.' | 'e' | 'E' => {
num_digits = self.scan_digits(10, 10) + 1;
}
_ => {
// just a 0
return token::Integer(self.name_from(start_bpos));
}
}
} else if c.is_digit(10) {
num_digits = self.scan_digits(10, 10) + 1;
} else {
num_digits = 0;
}
if num_digits == 0 {
self.err_span_(start_bpos,
self.pos,
"no valid digits found for number");
return token::Integer(Symbol::intern("0"));
}
// might be a float, but don't be greedy if this is actually an
// integer literal followed by field/method access or a range pattern
// (`0..2` and `12.foo()`)
if self.ch_is('.') && !self.nextch_is('.') &&
!ident_start(self.nextch()) {
// might have stuff after the ., and if it does, it needs to start
// with a number
self.bump();
if self.ch.unwrap_or('\0').is_digit(10) {
self.scan_digits(10, 10);
self.scan_float_exponent();
}
let pos = self.pos;
self.check_float_base(start_bpos, pos, base);
token::Float(self.name_from(start_bpos))
} else {
// it might be a float if it has an exponent
if self.ch_is('e') || self.ch_is('E') {
self.scan_float_exponent();
let pos = self.pos;
self.check_float_base(start_bpos, pos, base);
return token::Float(self.name_from(start_bpos));
}
// but we certainly have an integer!
token::Integer(self.name_from(start_bpos))
}
}
/// Scan over `n_digits` hex digits, stopping at `delim`, reporting an
/// error if too many or too few digits are encountered.
fn scan_hex_digits(&mut self, n_digits: usize, delim: char, below_0x7f_only: bool) -> bool {
debug!("scanning {} digits until {:?}", n_digits, delim);
let start_bpos = self.pos;
let mut accum_int = 0;
let mut valid = true;
for _ in 0..n_digits {
if self.is_eof() {
let last_bpos = self.pos;
panic!(self.fatal_span_(start_bpos,
last_bpos,
"unterminated numeric character escape"));
}
if self.ch_is(delim) {
let last_bpos = self.pos;
self.err_span_(start_bpos,
last_bpos,
"numeric character escape is too short");
valid = false;
break;
}
let c = self.ch.unwrap_or('\x00');
accum_int *= 16;
accum_int += c.to_digit(16).unwrap_or_else(|| {
self.err_span_char(self.pos,
self.next_pos,
"invalid character in numeric character escape",
c);
valid = false;
0
});
self.bump();
}
if below_0x7f_only && accum_int >= 0x80 {
self.err_span_(start_bpos,
self.pos,
"this form of character escape may only be used with characters in \
the range [\\x00-\\x7f]");
valid = false;
}
match char::from_u32(accum_int) {
Some(_) => valid,
None => {
let last_bpos = self.pos;
self.err_span_(start_bpos, last_bpos, "invalid numeric character escape");
false
}
}
}
/// Scan for a single (possibly escaped) byte or char
/// in a byte, (non-raw) byte string, char, or (non-raw) string literal.
/// `start` is the position of `first_source_char`, which is already consumed.
///
/// Returns true if there was a valid char/byte, false otherwise.
fn scan_char_or_byte(&mut self,
start: BytePos,
first_source_char: char,
ascii_only: bool,
delim: char)
-> bool {
match first_source_char {
'\\' => {
// '\X' for some X must be a character constant:
let escaped = self.ch;
let escaped_pos = self.pos;
self.bump();
match escaped {
None => {} // EOF here is an error that will be checked later.
Some(e) => {
return match e {
'n' | 'r' | 't' | '\\' | '\'' | '"' | '0' => true,
'x' => self.scan_byte_escape(delim, !ascii_only),
'u' => {
let valid = if self.ch_is('{') {
self.scan_unicode_escape(delim) && !ascii_only
} else {
let span = self.mk_sp(start, self.pos);
self.sess.span_diagnostic
.struct_span_err(span, "incorrect unicode escape sequence")
.span_help(span,
"format of unicode escape sequences is \
`\\u{…}`")
.emit();
false
};
if ascii_only {
self.err_span_(start,
self.pos,
"unicode escape sequences cannot be used as a \
byte or in a byte string");
}
valid
}
'\n' if delim == '"' => {
self.consume_whitespace();
true
}
'\r' if delim == '"' && self.ch_is('\n') => {
self.consume_whitespace();
true
}
c => {
let pos = self.pos;
let mut err = self.struct_err_span_char(escaped_pos,
pos,
if ascii_only {
"unknown byte escape"
} else {
"unknown character \
escape"
},
c);
if e == '\r' {
err.span_help(self.mk_sp(escaped_pos, pos),
"this is an isolated carriage return; consider \
checking your editor and version control \
settings");
}
if (e == '{' || e == '}') && !ascii_only {
err.span_help(self.mk_sp(escaped_pos, pos),
"if used in a formatting string, curly braces \
are escaped with `{{` and `}}`");
}
err.emit();
false
}
}
}
}
}
'\t' | '\n' | '\r' | '\'' if delim == '\'' => {
let pos = self.pos;
self.err_span_char(start,
pos,
if ascii_only {
"byte constant must be escaped"
} else {
"character constant must be escaped"
},
first_source_char);
return false;
}
'\r' => {
if self.ch_is('\n') {
self.bump();
return true;
} else {
self.err_span_(start,
self.pos,
"bare CR not allowed in string, use \\r instead");
return false;
}
}
_ => {
if ascii_only && first_source_char > '\x7F' {
let pos = self.pos;
self.err_span_(start,
pos,
"byte constant must be ASCII. Use a \\xHH escape for a \
non-ASCII byte");
return false;
}
}
}
true
}
/// Scan over a `\u{...}` escape
///
/// At this point, we have already seen the `\` and the `u`, the `{` is the current character.
/// We will read a hex number (with `_` separators), with 1 to 6 actual digits,
/// and pass over the `}`.
fn scan_unicode_escape(&mut self, delim: char) -> bool {
self.bump(); // past the {
let start_bpos = self.pos;
let mut valid = true;
if let Some('_') = self.ch {
// disallow leading `_`
self.err_span_(self.pos,
self.next_pos,
"invalid start of unicode escape");
valid = false;
}
let count = self.scan_digits(16, 16);
if count > 6 {
self.err_span_(start_bpos,
self.pos,
"overlong unicode escape (must have at most 6 hex digits)");
valid = false;
}
loop {
match self.ch {
Some('}') => {
if valid && count == 0 {
self.err_span_(start_bpos,
self.pos,
"empty unicode escape (must have at least 1 hex digit)");
valid = false;
}
self.bump(); // past the ending `}`
break;
},
Some(c) => {
if c == delim {
self.err_span_(self.pos,
self.pos,
"unterminated unicode escape (needed a `}`)");
valid = false;
break;
} else if valid {
self.err_span_char(start_bpos,
self.pos,
"invalid character in unicode escape",
c);
valid = false;
}
},
None => {
panic!(self.fatal_span_(start_bpos,
self.pos,
"unterminated unicode escape (found EOF)"));
}
}
self.bump();
}
valid
}
/// Scan over a float exponent.
fn scan_float_exponent(&mut self) {
if self.ch_is('e') || self.ch_is('E') {
self.bump();
if self.ch_is('-') || self.ch_is('+') {
self.bump();
}
if self.scan_digits(10, 10) == 0 {
self.err_span_(self.pos,
self.next_pos,
"expected at least one digit in exponent")
}
}
}
/// Check that a base is valid for a floating literal, emitting a nice
/// error if it isn't.
fn check_float_base(&mut self, start_bpos: BytePos, last_bpos: BytePos, base: usize) {
match base {
16 => {
self.err_span_(start_bpos,
last_bpos,
"hexadecimal float literal is not supported")
}
8 => {
self.err_span_(start_bpos,
last_bpos,
"octal float literal is not supported")
}
2 => {
self.err_span_(start_bpos,
last_bpos,
"binary float literal is not supported")
}
_ => (),
}
}
fn binop(&mut self, op: token::BinOpToken) -> token::Token {
self.bump();
if self.ch_is('=') {
self.bump();
token::BinOpEq(op)
} else {
token::BinOp(op)
}
}
/// Return the next token from the string, advances the input past that
/// token, and updates the interner
fn next_token_inner(&mut self) -> Result<token::Token, ()> {
let c = self.ch;
if ident_start(c) &&
match (c.unwrap(), self.nextch(), self.nextnextch()) {
// Note: r as in r" or r#" is part of a raw string literal,
// b as in b' is part of a byte literal.
// They are not identifiers, and are handled further down.
('r', Some('"'), _) |
('r', Some('#'), _) |
('b', Some('"'), _) |
('b', Some('\''), _) |
('b', Some('r'), Some('"')) |
('b', Some('r'), Some('#')) => false,
_ => true,
} {
let start = self.pos;
while ident_continue(self.ch) {
self.bump();
}
return Ok(self.with_str_from(start, |string| {
if string == "_" {
token::Underscore
} else {
// FIXME: perform NFKC normalization here. (Issue #2253)
token::Ident(self.mk_ident(string))
}
}));
}
if is_dec_digit(c) {
let num = self.scan_number(c.unwrap());
let suffix = self.scan_optional_raw_name();
debug!("next_token_inner: scanned number {:?}, {:?}", num, suffix);
return Ok(token::Literal(num, suffix));
}
match c.expect("next_token_inner called at EOF") {
// One-byte tokens.
';' => {
self.bump();
Ok(token::Semi)
}
',' => {
self.bump();
Ok(token::Comma)
}
'.' => {
self.bump();
if self.ch_is('.') {
self.bump();
if self.ch_is('.') {
self.bump();
Ok(token::DotDotDot)
} else if self.ch_is('=') {
self.bump();
Ok(token::DotDotEq)
} else {
Ok(token::DotDot)
}
} else {
Ok(token::Dot)
}
}
'(' => {
self.bump();
Ok(token::OpenDelim(token::Paren))
}
')' => {
self.bump();
Ok(token::CloseDelim(token::Paren))
}
'{' => {
self.bump();
Ok(token::OpenDelim(token::Brace))
}
'}' => {
self.bump();
Ok(token::CloseDelim(token::Brace))
}
'[' => {
self.bump();
Ok(token::OpenDelim(token::Bracket))
}
']' => {
self.bump();
Ok(token::CloseDelim(token::Bracket))
}
'@' => {
self.bump();
Ok(token::At)
}
'#' => {
self.bump();
Ok(token::Pound)
}
'~' => {
self.bump();
Ok(token::Tilde)
}
'?' => {
self.bump();
Ok(token::Question)
}
':' => {
self.bump();
if self.ch_is(':') {
self.bump();
Ok(token::ModSep)
} else {
Ok(token::Colon)
}
}
'$' => {
self.bump();
Ok(token::Dollar)
}
// Multi-byte tokens.
'=' => {
self.bump();
if self.ch_is('=') {
self.bump();
Ok(token::EqEq)
} else if self.ch_is('>') {
self.bump();
Ok(token::FatArrow)
} else {
Ok(token::Eq)
}
}
'!' => {
self.bump();
if self.ch_is('=') {
self.bump();
Ok(token::Ne)
} else {
Ok(token::Not)
}
}
'<' => {
self.bump();
match self.ch.unwrap_or('\x00') {
'=' => {
self.bump();
Ok(token::Le)
}
'<' => {
Ok(self.binop(token::Shl))
}
'-' => {
self.bump();
match self.ch.unwrap_or('\x00') {
_ => {
Ok(token::LArrow)
}
}
}
_ => {
Ok(token::Lt)
}
}
}
'>' => {
self.bump();
match self.ch.unwrap_or('\x00') {
'=' => {
self.bump();
Ok(token::Ge)
}
'>' => {
Ok(self.binop(token::Shr))
}
_ => {
Ok(token::Gt)
}
}
}
'\'' => {
// Either a character constant 'a' OR a lifetime name 'abc
let start_with_quote = self.pos;
self.bump();
let start = self.pos;
// the eof will be picked up by the final `'` check below
let c2 = self.ch.unwrap_or('\x00');
self.bump();
// If the character is an ident start not followed by another single
// quote, then this is a lifetime name:
if ident_start(Some(c2)) && !self.ch_is('\'') {
while ident_continue(self.ch) {
self.bump();
}
// lifetimes shouldn't end with a single quote
// if we find one, then this is an invalid character literal
if self.ch_is('\'') {
panic!(self.fatal_span_verbose(
start_with_quote, self.next_pos,
String::from("character literal may only contain one codepoint")));
}
// Include the leading `'` in the real identifier, for macro
// expansion purposes. See #12512 for the gory details of why
// this is necessary.
let ident = self.with_str_from(start, |lifetime_name| {
self.mk_ident(&format!("'{}", lifetime_name))
});
return Ok(token::Lifetime(ident));
}
let valid = self.scan_char_or_byte(start,
c2,
// ascii_only =
false,
'\'');
if !self.ch_is('\'') {
let pos = self.pos;
loop {
self.bump();
if self.ch_is('\'') {
let start = self.byte_offset(start).to_usize();
let end = self.byte_offset(self.pos).to_usize();
self.bump();
let span = self.mk_sp(start_with_quote, self.pos);
self.sess.span_diagnostic
.struct_span_err(span,
"character literal may only contain one codepoint")
.span_suggestion(span,
"if you meant to write a `str` literal, \
use double quotes",
format!("\"{}\"",
&self.source_text[start..end]))
.emit();
return Ok(token::Literal(token::Str_(Symbol::intern("??")), None))
}
if self.ch_is('\n') || self.is_eof() || self.ch_is('/') {
// Only attempt to infer single line string literals. If we encounter
// a slash, bail out in order to avoid nonsensical suggestion when
// involving comments.
break;
}
}
panic!(self.fatal_span_verbose(
start_with_quote, pos,
String::from("character literal may only contain one codepoint")));
}
let id = if valid {
self.name_from(start)
} else {
Symbol::intern("0")
};
self.bump(); // advance ch past token
let suffix = self.scan_optional_raw_name();
Ok(token::Literal(token::Char(id), suffix))
}
'b' => {
self.bump();
let lit = match self.ch {
Some('\'') => self.scan_byte(),
Some('"') => self.scan_byte_string(),
Some('r') => self.scan_raw_byte_string(),
_ => unreachable!(), // Should have been a token::Ident above.
};
let suffix = self.scan_optional_raw_name();
Ok(token::Literal(lit, suffix))
}
'"' => {
let start_bpos = self.pos;
let mut valid = true;
self.bump();
while !self.ch_is('"') {
if self.is_eof() {
let last_bpos = self.pos;
panic!(self.fatal_span_(start_bpos,
last_bpos,
"unterminated double quote string"));
}
let ch_start = self.pos;
let ch = self.ch.unwrap();
self.bump();
valid &= self.scan_char_or_byte(ch_start,
ch,
// ascii_only =
false,
'"');
}
// adjust for the ASCII " at the start of the literal
let id = if valid {
self.name_from(start_bpos + BytePos(1))
} else {
Symbol::intern("??")
};
self.bump();
let suffix = self.scan_optional_raw_name();
Ok(token::Literal(token::Str_(id), suffix))
}
'r' => {
let start_bpos = self.pos;
self.bump();
let mut hash_count = 0;
while self.ch_is('#') {
self.bump();
hash_count += 1;
}
if self.is_eof() {
let last_bpos = self.pos;
panic!(self.fatal_span_(start_bpos, last_bpos, "unterminated raw string"));
} else if !self.ch_is('"') {
let last_bpos = self.pos;
let curr_char = self.ch.unwrap();
panic!(self.fatal_span_char(start_bpos,
last_bpos,
"found invalid character; only `#` is allowed \
in raw string delimitation",
curr_char));
}
self.bump();
let content_start_bpos = self.pos;
let mut content_end_bpos;
let mut valid = true;
'outer: loop {
if self.is_eof() {
let last_bpos = self.pos;
panic!(self.fatal_span_(start_bpos, last_bpos, "unterminated raw string"));
}
// if self.ch_is('"') {
// content_end_bpos = self.pos;
// for _ in 0..hash_count {
// self.bump();
// if !self.ch_is('#') {
// continue 'outer;
let c = self.ch.unwrap();
match c {
'"' => {
content_end_bpos = self.pos;
for _ in 0..hash_count {
self.bump();
if !self.ch_is('#') {
continue 'outer;
}
}
break;
}
'\r' => {
if !self.nextch_is('\n') {
let last_bpos = self.pos;
self.err_span_(start_bpos,
last_bpos,
"bare CR not allowed in raw string, use \\r \
instead");
valid = false;
}
}
_ => (),
}
self.bump();
}
self.bump();
let id = if valid {
self.name_from_to(content_start_bpos, content_end_bpos)
} else {
Symbol::intern("??")
};
let suffix = self.scan_optional_raw_name();
Ok(token::Literal(token::StrRaw(id, hash_count), suffix))
}
'-' => {
if self.nextch_is('>') {
self.bump();
self.bump();
Ok(token::RArrow)
} else {
Ok(self.binop(token::Minus))
}
}
'&' => {
if self.nextch_is('&') {
self.bump();
self.bump();
Ok(token::AndAnd)
} else {
Ok(self.binop(token::And))
}
}
'|' => {
match self.nextch() {
Some('|') => {
self.bump();
self.bump();
Ok(token::OrOr)
}
_ => {
Ok(self.binop(token::Or))
}
}
}
'+' => {
Ok(self.binop(token::Plus))
}
'*' => {
Ok(self.binop(token::Star))
}
'/' => {
Ok(self.binop(token::Slash))
}
'^' => {
Ok(self.binop(token::Caret))
}
'%' => {
Ok(self.binop(token::Percent))
}
c => {
let last_bpos = self.pos;
let bpos = self.next_pos;
let mut err = self.struct_fatal_span_char(last_bpos,
bpos,
"unknown start of token",
c);
unicode_chars::check_for_substitution(self, c, &mut err);
self.fatal_errs.push(err);
Err(())
}
}
}
fn consume_whitespace(&mut self) {
while is_pattern_whitespace(self.ch) && !self.is_eof() {
self.bump();
}
}
fn read_to_eol(&mut self) -> String {
let mut val = String::new();
while !self.ch_is('\n') && !self.is_eof() {
val.push(self.ch.unwrap());
self.bump();
}
if self.ch_is('\n') {
self.bump();
}
val
}
fn read_one_line_comment(&mut self) -> String {
let val = self.read_to_eol();
assert!((val.as_bytes()[0] == b'/' && val.as_bytes()[1] == b'/') ||
(val.as_bytes()[0] == b'#' && val.as_bytes()[1] == b'!'));
val
}
fn consume_non_eol_whitespace(&mut self) {
while is_pattern_whitespace(self.ch) && !self.ch_is('\n') && !self.is_eof() {
self.bump();
}
}
fn peeking_at_comment(&self) -> bool {
(self.ch_is('/') && self.nextch_is('/')) || (self.ch_is('/') && self.nextch_is('*')) ||
// consider shebangs comments, but not inner attributes
(self.ch_is('#') && self.nextch_is('!') && !self.nextnextch_is('['))
}
fn scan_byte(&mut self) -> token::Lit {
self.bump();
let start = self.pos;
// the eof will be picked up by the final `'` check below
let c2 = self.ch.unwrap_or('\x00');
self.bump();
let valid = self.scan_char_or_byte(start,
c2,
// ascii_only =
true,
'\'');
if !self.ch_is('\'') {
// Byte offsetting here is okay because the
// character before position `start` are an
// ascii single quote and ascii 'b'.
let pos = self.pos;
panic!(self.fatal_span_verbose(start - BytePos(2),
pos,
"unterminated byte constant".to_string()));
}
let id = if valid {
self.name_from(start)
} else {
Symbol::intern("?")
};
self.bump(); // advance ch past token
token::Byte(id)
}
fn scan_byte_escape(&mut self, delim: char, below_0x7f_only: bool) -> bool {
self.scan_hex_digits(2, delim, below_0x7f_only)
}
fn scan_byte_string(&mut self) -> token::Lit {
self.bump();
let start = self.pos;
let mut valid = true;
while !self.ch_is('"') {
if self.is_eof() {
let pos = self.pos;
panic!(self.fatal_span_(start, pos, "unterminated double quote byte string"));
}
let ch_start = self.pos;
let ch = self.ch.unwrap();
self.bump();
valid &= self.scan_char_or_byte(ch_start,
ch,
// ascii_only =
true,
'"');
}
let id = if valid {
self.name_from(start)
} else {
Symbol::intern("??")
};
self.bump();
token::ByteStr(id)
}
fn scan_raw_byte_string(&mut self) -> token::Lit {
let start_bpos = self.pos;
self.bump();
let mut hash_count = 0;
while self.ch_is('#') {
self.bump();
hash_count += 1;
}
if self.is_eof() {
let pos = self.pos;
panic!(self.fatal_span_(start_bpos, pos, "unterminated raw string"));
} else if !self.ch_is('"') {
let pos = self.pos;
let ch = self.ch.unwrap();
panic!(self.fatal_span_char(start_bpos,
pos,
"found invalid character; only `#` is allowed in raw \
string delimitation",
ch));
}
self.bump();
let content_start_bpos = self.pos;
let mut content_end_bpos;
'outer: loop {
match self.ch {
None => {
let pos = self.pos;
panic!(self.fatal_span_(start_bpos, pos, "unterminated raw string"))
}
Some('"') => {
content_end_bpos = self.pos;
for _ in 0..hash_count {
self.bump();
if !self.ch_is('#') {
continue 'outer;
}
}
break;
}
Some(c) => {
if c > '\x7F' {
let pos = self.pos;
self.err_span_char(pos, pos, "raw byte string must be ASCII", c);
}
}
}
self.bump();
}
self.bump();
token::ByteStrRaw(self.name_from_to(content_start_bpos, content_end_bpos),
hash_count)
}
}
// This tests the character for the unicode property 'PATTERN_WHITE_SPACE' which
// is guaranteed to be forward compatible. http://unicode.org/reports/tr31/#R3
pub fn is_pattern_whitespace(c: Option<char>) -> bool {
c.map_or(false, Pattern_White_Space)
}
fn in_range(c: Option<char>, lo: char, hi: char) -> bool {
match c {
Some(c) => lo <= c && c <= hi,
_ => false,
}
}
fn is_dec_digit(c: Option<char>) -> bool {
in_range(c, '0', '9')
}
pub fn is_doc_comment(s: &str) -> bool {
let res = (s.starts_with("///") && *s.as_bytes().get(3).unwrap_or(&b' ') != b'/') ||
s.starts_with("//!");
debug!("is {:?} a doc comment? {}", s, res);
res
}
pub fn is_block_doc_comment(s: &str) -> bool {
// Prevent `/**/` from being parsed as a doc comment
let res = ((s.starts_with("/**") && *s.as_bytes().get(3).unwrap_or(&b' ') != b'*') ||
s.starts_with("/*!")) && s.len() >= 5;
debug!("is {:?} a doc comment? {}", s, res);
res
}
fn ident_start(c: Option<char>) -> bool {
let c = match c {
Some(c) => c,
None => return false,
};
(c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_' || (c > '\x7f' && c.is_xid_start())
}
fn ident_continue(c: Option<char>) -> bool {
let c = match c {
Some(c) => c,
None => return false,
};
(c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_' ||
(c > '\x7f' && c.is_xid_continue())
}
#[cfg(test)]
mod tests {
use super::*;
use ast::{Ident, CrateConfig};
use symbol::Symbol;
use syntax_pos::{BytePos, Span, NO_EXPANSION};
use codemap::CodeMap;
use errors;
use feature_gate::UnstableFeatures;
use parse::token;
use std::cell::RefCell;
use std::collections::HashSet;
use std::io;
use std::path::PathBuf;
use std::rc::Rc;
fn mk_sess(cm: Rc<CodeMap>) -> ParseSess {
let emitter = errors::emitter::EmitterWriter::new(Box::new(io::sink()),
Some(cm.clone()),
false);
ParseSess {
span_diagnostic: errors::Handler::with_emitter(true, false, Box::new(emitter)),
unstable_features: UnstableFeatures::from_environment(),
config: CrateConfig::new(),
included_mod_stack: RefCell::new(Vec::new()),
code_map: cm,
missing_fragment_specifiers: RefCell::new(HashSet::new()),
}
}
// open a string reader for the given string
fn setup<'a>(cm: &CodeMap,
sess: &'a ParseSess,
teststr: String)
-> StringReader<'a> {
let fm = cm.new_filemap(PathBuf::from("zebra.rs").into(), teststr);
StringReader::new(sess, fm)
}
#[test]
fn t1() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
let mut string_reader = setup(&cm,
&sh,
"/* my source file */ fn main() { println!(\"zebra\"); }\n"
.to_string());
let id = Ident::from_str("fn");
assert_eq!(string_reader.next_token().tok, token::Comment);
assert_eq!(string_reader.next_token().tok, token::Whitespace);
let tok1 = string_reader.next_token();
let tok2 = TokenAndSpan {
tok: token::Ident(id),
sp: Span::new(BytePos(21), BytePos(23), NO_EXPANSION),
};
assert_eq!(tok1, tok2);
assert_eq!(string_reader.next_token().tok, token::Whitespace);
// the 'main' id is already read:
assert_eq!(string_reader.pos.clone(), BytePos(28));
// read another token:
let tok3 = string_reader.next_token();
let tok4 = TokenAndSpan {
tok: token::Ident(Ident::from_str("main")),
sp: Span::new(BytePos(24), BytePos(28), NO_EXPANSION),
};
assert_eq!(tok3, tok4);
// the lparen is already read:
assert_eq!(string_reader.pos.clone(), BytePos(29))
}
// check that the given reader produces the desired stream
// of tokens (stop checking after exhausting the expected vec)
fn check_tokenization(mut string_reader: StringReader, expected: Vec<token::Token>) {
for expected_tok in &expected {
assert_eq!(&string_reader.next_token().tok, expected_tok);
}
}
// make the identifier by looking up the string in the interner
fn mk_ident(id: &str) -> token::Token {
token::Ident(Ident::from_str(id))
}
#[test]
fn doublecolonparsing() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
check_tokenization(setup(&cm, &sh, "a b".to_string()),
vec![mk_ident("a"), token::Whitespace, mk_ident("b")]);
}
#[test]
fn dcparsing_2() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
check_tokenization(setup(&cm, &sh, "a::b".to_string()),
vec![mk_ident("a"), token::ModSep, mk_ident("b")]);
}
#[test]
fn dcparsing_3() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
check_tokenization(setup(&cm, &sh, "a ::b".to_string()),
vec![mk_ident("a"), token::Whitespace, token::ModSep, mk_ident("b")]);
}
#[test]
fn dcparsing_4() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
check_tokenization(setup(&cm, &sh, "a:: b".to_string()),
vec![mk_ident("a"), token::ModSep, token::Whitespace, mk_ident("b")]);
}
#[test]
fn character_a() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
assert_eq!(setup(&cm, &sh, "'a'".to_string()).next_token().tok,
token::Literal(token::Char(Symbol::intern("a")), None));
}
#[test]
fn character_space() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
assert_eq!(setup(&cm, &sh, "' '".to_string()).next_token().tok,
token::Literal(token::Char(Symbol::intern(" ")), None));
}
#[test]
fn character_escaped() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
assert_eq!(setup(&cm, &sh, "'\\n'".to_string()).next_token().tok,
token::Literal(token::Char(Symbol::intern("\\n")), None));
}
#[test]
fn lifetime_name() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
assert_eq!(setup(&cm, &sh, "'abc".to_string()).next_token().tok,
token::Lifetime(Ident::from_str("'abc")));
}
#[test]
fn raw_string() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
assert_eq!(setup(&cm, &sh, "r###\"\"#a\\b\x00c\"\"###".to_string())
.next_token()
.tok,
token::Literal(token::StrRaw(Symbol::intern("\"#a\\b\x00c\""), 3), None));
}
#[test]
fn literal_suffixes() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
macro_rules! test {
($input: expr, $tok_type: ident, $tok_contents: expr) => {{
assert_eq!(setup(&cm, &sh, format!("{}suffix", $input)).next_token().tok,
token::Literal(token::$tok_type(Symbol::intern($tok_contents)),
Some(Symbol::intern("suffix"))));
// with a whitespace separator:
assert_eq!(setup(&cm, &sh, format!("{} suffix", $input)).next_token().tok,
token::Literal(token::$tok_type(Symbol::intern($tok_contents)),
None));
}}
}
test!("'a'", Char, "a");
test!("b'a'", Byte, "a");
test!("\"a\"", Str_, "a");
test!("b\"a\"", ByteStr, "a");
test!("1234", Integer, "1234");
test!("0b101", Integer, "0b101");
test!("0xABC", Integer, "0xABC");
test!("1.0", Float, "1.0");
test!("1.0e10", Float, "1.0e10");
assert_eq!(setup(&cm, &sh, "2us".to_string()).next_token().tok,
token::Literal(token::Integer(Symbol::intern("2")),
Some(Symbol::intern("us"))));
assert_eq!(setup(&cm, &sh, "r###\"raw\"###suffix".to_string()).next_token().tok,
token::Literal(token::StrRaw(Symbol::intern("raw"), 3),
Some(Symbol::intern("suffix"))));
assert_eq!(setup(&cm, &sh, "br###\"raw\"###suffix".to_string()).next_token().tok,
token::Literal(token::ByteStrRaw(Symbol::intern("raw"), 3),
Some(Symbol::intern("suffix"))));
}
#[test]
fn line_doc_comments() {
assert!(is_doc_comment("///"));
assert!(is_doc_comment("/// blah"));
assert!(!is_doc_comment("////"));
}
#[test]
fn nested_block_comments() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
let mut lexer = setup(&cm, &sh, "/* /* */ */'a'".to_string());
match lexer.next_token().tok {
token::Comment => {}
_ => panic!("expected a comment!"),
}
assert_eq!(lexer.next_token().tok,
token::Literal(token::Char(Symbol::intern("a")), None));
}
#[test]
fn crlf_comments() {
let cm = Rc::new(CodeMap::new(FilePathMapping::empty()));
let sh = mk_sess(cm.clone());
let mut lexer = setup(&cm, &sh, "// test\r\n/// test\r\n".to_string());
let comment = lexer.next_token();
assert_eq!(comment.tok, token::Comment);
assert_eq!((comment.sp.lo(), comment.sp.hi()), (BytePos(0), BytePos(7)));
assert_eq!(lexer.next_token().tok, token::Whitespace);
assert_eq!(lexer.next_token().tok,
token::DocComment(Symbol::intern("/// test")));
}
}