backtrace
crate from crates.io
This commit removes all in-tree support for generating backtraces in favor of depending on the `backtrace` crate on crates.io. This resolves a very longstanding piece of duplication where the standard library has long contained the ability to generate a backtrace on panics, but the code was later extracted and duplicated on crates.io with the `backtrace` crate. Since that fork each implementation has seen various improvements one way or another, but typically `backtrace`-the-crate has lagged behind libstd in one way or another. The goal here is to remove this duplication of a fairly critical piece of code and ensure that there's only one source of truth for generating backtraces between the standard library and the crate on crates.io. Recently I've been working to bring the `backtrace` crate on crates.io up to speed with the support in the standard library which includes: * Support for `StackWalkEx` on MSVC to recover inline frames with debuginfo. * Using `libbacktrace` by default on MinGW targets. * Supporting `libbacktrace` on OSX as an option. * Ensuring all the requisite support in `backtrace`-the-crate compiles with `#![no_std]`. * Updating the `libbacktrace` implementation in `backtrace`-the-crate to initialize the global state with the correct filename where necessary. After reviewing the code in libstd the `backtrace` crate should be at exact feature parity with libstd today. The backtraces generated should have the same symbols and same number of frames in general, and there's not known divergence from libstd currently. Note that one major difference between libstd's backtrace support and the `backtrace` crate is that on OSX the crates.io crate enables the `coresymbolication` feature by default. This feature, however, uses private internal APIs that aren't published for OSX. While they provide more accurate backtraces this isn't appropriate for libstd distributed as a binary, so libstd's dependency on the `backtrace` crate explicitly disables this feature and forces OSX to use `libbacktrace` as a symbolication strategy. The long-term goal of this refactoring is to eventually move us towards a world where we can drop `libbacktrace` entirely and simply use Gimli and the surrounding crates for backtrace support. That's still aways off but hopefully will much more easily enabled by having the source of truth for backtraces live in crates.io! Procedurally if we go forward with this I'd like to transfer the `backtrace-rs` crate to the rust-lang GitHub organization as well, but I figured I'd hold off on that until we get closer to merging.
The Rust Programming Language
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Quick Start
Read "Installation" from The Book.
Installing from Source
Note: If you wish to contribute to the compiler, you should read this chapter of the rustc-guide instead.
Building on *nix
-
Make sure you have installed the dependencies:
g++
4.7 or later orclang++
3.x or laterpython
2.7 (but not 3.x)- GNU
make
3.81 or later cmake
3.4.3 or latercurl
git
-
Clone the source with
git
:$ git clone https://github.com/rust-lang/rust.git $ cd rust
-
Build and install:
$ ./x.py build && sudo ./x.py install
If after running
sudo ./x.py install
you see an error message likeerror: failed to load source for a dependency on 'cc'
then run these two commands and then try
sudo ./x.py install
again:$ cargo install cargo-vendor
$ cargo vendor
Note: Install locations can be adjusted by copying the config file from
./config.toml.example
to./config.toml
, and adjusting theprefix
option under[install]
. Various other options, such as enabling debug information, are also supported, and are documented in the config file.When complete,
sudo ./x.py install
will place several programs into/usr/local/bin
:rustc
, the Rust compiler, andrustdoc
, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.
Building on Windows
There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.
MinGW
MSYS2 can be used to easily build Rust on Windows:
-
Grab the latest MSYS2 installer and go through the installer.
-
Run
mingw32_shell.bat
ormingw64_shell.bat
from wherever you installed MSYS2 (i.e.C:\msys64
), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to runmsys2_shell.cmd -mingw32
ormsys2_shell.cmd -mingw64
from the command line instead) -
From this terminal, install the required tools:
# Update package mirrors (may be needed if you have a fresh install of MSYS2) $ pacman -Sy pacman-mirrors # Install build tools needed for Rust. If you're building a 32-bit compiler, # then replace "x86_64" below with "i686". If you've already got git, python, # or CMake installed and in PATH you can remove them from this list. Note # that it is important that you do **not** use the 'python2' and 'cmake' # packages from the 'msys2' subsystem. The build has historically been known # to fail with these packages. $ pacman -S git \ make \ diffutils \ tar \ mingw-w64-x86_64-python2 \ mingw-w64-x86_64-cmake \ mingw-w64-x86_64-gcc
-
Navigate to Rust's source code (or clone it), then build it:
$ ./x.py build && ./x.py install
MSVC
MSVC builds of Rust additionally require an installation of Visual Studio 2017
(or later) so rustc
can use its linker. The simplest way is to get the
Visual Studio Build Tools and check the “C++ build tools” workload.
(If you're installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn't get included under “Individual components”.)
With these dependencies installed, you can build the compiler in a cmd.exe
shell with:
> python x.py build
Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.
> CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Auxiliary\Build\vcvars64.bat"
> python x.py build
Specifying an ABI
Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:
- GNU ABI (using GCC)
i686-pc-windows-gnu
x86_64-pc-windows-gnu
- The MSVC ABI
i686-pc-windows-msvc
x86_64-pc-windows-msvc
The build triple can be specified by either specifying --build=<triple>
when
invoking x.py
commands, or by copying the config.toml
file (as described
in Building From Source), and modifying the build
option under the [build]
section.
Configure and Make
While it's not the recommended build system, this project also provides a
configure script and makefile (the latter of which just invokes x.py
).
$ ./configure
$ make && sudo make install
When using the configure script, the generated config.mk
file may override the
config.toml
file. To go back to the config.toml
file, delete the generated
config.mk
file.
Building Documentation
If you’d like to build the documentation, it’s almost the same:
$ ./x.py doc
The generated documentation will appear under doc
in the build
directory for
the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc
, the directory will be
build\x86_64-pc-windows-msvc\doc
.
Notes
Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
Platform / Architecture | x86 | x86_64 |
---|---|---|
Windows (7, 8, 10, ...) | ✓ | ✓ |
Linux (2.6.18 or later) | ✓ | ✓ |
OSX (10.7 Lion or later) | ✓ | ✓ |
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
There is more advice about hacking on Rust in CONTRIBUTING.md.
Getting Help
The Rust community congregates in a few places:
- Stack Overflow - Direct questions about using the language.
- users.rust-lang.org - General discussion and broader questions.
- /r/rust - News and general discussion.
Contributing
To contribute to Rust, please see CONTRIBUTING.
Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.
The rustc guide might be a good place to start if you want to find out how various parts of the compiler work.
Also, you may find the rustdocs for the compiler itself useful.
License
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
Trademark
The Rust programming language is an open source, community project governed by a core team. It is also sponsored by the Mozilla Foundation (“Mozilla”), which owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.