rust/src/librustc/middle/traits/util.rs

571 lines
19 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::subst::{Substs, VecPerParamSpace};
use middle::infer::InferCtxt;
use middle::ty::{self, Ty, AsPredicate, ToPolyTraitRef};
use std::fmt;
use std::rc::Rc;
use syntax::ast;
use syntax::codemap::Span;
use util::common::ErrorReported;
use util::nodemap::FnvHashSet;
use util::ppaux::Repr;
use super::{Obligation, ObligationCause, PredicateObligation,
VtableImpl, VtableParam, VtableImplData, VtableDefaultImplData};
struct PredicateSet<'a,'tcx:'a> {
tcx: &'a ty::ctxt<'tcx>,
set: FnvHashSet<ty::Predicate<'tcx>>,
}
impl<'a,'tcx> PredicateSet<'a,'tcx> {
fn new(tcx: &'a ty::ctxt<'tcx>) -> PredicateSet<'a,'tcx> {
PredicateSet { tcx: tcx, set: FnvHashSet() }
}
fn insert(&mut self, pred: &ty::Predicate<'tcx>) -> bool {
// We have to be careful here because we want
//
// for<'a> Foo<&'a int>
//
// and
//
// for<'b> Foo<&'b int>
//
// to be considered equivalent. So normalize all late-bound
// regions before we throw things into the underlying set.
let normalized_pred = match *pred {
ty::Predicate::Trait(ref data) =>
ty::Predicate::Trait(ty::anonymize_late_bound_regions(self.tcx, data)),
ty::Predicate::Equate(ref data) =>
ty::Predicate::Equate(ty::anonymize_late_bound_regions(self.tcx, data)),
ty::Predicate::RegionOutlives(ref data) =>
ty::Predicate::RegionOutlives(ty::anonymize_late_bound_regions(self.tcx, data)),
ty::Predicate::TypeOutlives(ref data) =>
ty::Predicate::TypeOutlives(ty::anonymize_late_bound_regions(self.tcx, data)),
ty::Predicate::Projection(ref data) =>
ty::Predicate::Projection(ty::anonymize_late_bound_regions(self.tcx, data)),
};
self.set.insert(normalized_pred)
}
}
///////////////////////////////////////////////////////////////////////////
// `Elaboration` iterator
///////////////////////////////////////////////////////////////////////////
/// "Elaboration" is the process of identifying all the predicates that
/// are implied by a source predicate. Currently this basically means
/// walking the "supertraits" and other similar assumptions. For
/// example, if we know that `T : Ord`, the elaborator would deduce
/// that `T : PartialOrd` holds as well. Similarly, if we have `trait
/// Foo : 'static`, and we know that `T : Foo`, then we know that `T :
/// 'static`.
pub struct Elaborator<'cx, 'tcx:'cx> {
tcx: &'cx ty::ctxt<'tcx>,
stack: Vec<ty::Predicate<'tcx>>,
visited: PredicateSet<'cx,'tcx>,
}
pub fn elaborate_trait_ref<'cx, 'tcx>(
tcx: &'cx ty::ctxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Elaborator<'cx, 'tcx>
{
elaborate_predicates(tcx, vec![trait_ref.as_predicate()])
}
pub fn elaborate_trait_refs<'cx, 'tcx>(
tcx: &'cx ty::ctxt<'tcx>,
trait_refs: &[ty::PolyTraitRef<'tcx>])
-> Elaborator<'cx, 'tcx>
{
let predicates = trait_refs.iter()
.map(|trait_ref| trait_ref.as_predicate())
.collect();
elaborate_predicates(tcx, predicates)
}
pub fn elaborate_predicates<'cx, 'tcx>(
tcx: &'cx ty::ctxt<'tcx>,
mut predicates: Vec<ty::Predicate<'tcx>>)
-> Elaborator<'cx, 'tcx>
{
let mut visited = PredicateSet::new(tcx);
predicates.retain(|pred| visited.insert(pred));
Elaborator { tcx: tcx, stack: predicates, visited: visited }
}
impl<'cx, 'tcx> Elaborator<'cx, 'tcx> {
pub fn filter_to_traits(self) -> FilterToTraits<Elaborator<'cx, 'tcx>> {
FilterToTraits::new(self)
}
fn push(&mut self, predicate: &ty::Predicate<'tcx>) {
match *predicate {
ty::Predicate::Trait(ref data) => {
// Predicates declared on the trait.
let predicates = ty::lookup_super_predicates(self.tcx, data.def_id());
let mut predicates: Vec<_> =
predicates.predicates
.iter()
.map(|p| p.subst_supertrait(self.tcx, &data.to_poly_trait_ref()))
.collect();
debug!("super_predicates: data={} predicates={}",
data.repr(self.tcx), predicates.repr(self.tcx));
// Only keep those bounds that we haven't already
// seen. This is necessary to prevent infinite
// recursion in some cases. One common case is when
// people define `trait Sized: Sized { }` rather than `trait
// Sized { }`.
predicates.retain(|r| self.visited.insert(r));
self.stack.extend(predicates.into_iter());
}
ty::Predicate::Equate(..) => {
// Currently, we do not "elaborate" predicates like
// `X == Y`, though conceivably we might. For example,
// `&X == &Y` implies that `X == Y`.
}
ty::Predicate::Projection(..) => {
// Nothing to elaborate in a projection predicate.
}
ty::Predicate::RegionOutlives(..) |
ty::Predicate::TypeOutlives(..) => {
// Currently, we do not "elaborate" predicates like
// `'a : 'b` or `T : 'a`. We could conceivably do
// more here. For example,
//
// &'a int : 'b
//
// implies that
//
// 'a : 'b
//
// and we could get even more if we took WF
// constraints into account. For example,
//
// &'a &'b int : 'c
//
// implies that
//
// 'b : 'a
// 'a : 'c
}
}
}
}
impl<'cx, 'tcx> Iterator for Elaborator<'cx, 'tcx> {
type Item = ty::Predicate<'tcx>;
fn next(&mut self) -> Option<ty::Predicate<'tcx>> {
// Extract next item from top-most stack frame, if any.
let next_predicate = match self.stack.pop() {
Some(predicate) => predicate,
None => {
// No more stack frames. Done.
return None;
}
};
self.push(&next_predicate);
return Some(next_predicate);
}
}
///////////////////////////////////////////////////////////////////////////
// Supertrait iterator
///////////////////////////////////////////////////////////////////////////
pub type Supertraits<'cx, 'tcx> = FilterToTraits<Elaborator<'cx, 'tcx>>;
pub fn supertraits<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Supertraits<'cx, 'tcx>
{
elaborate_trait_ref(tcx, trait_ref).filter_to_traits()
}
pub fn transitive_bounds<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>,
bounds: &[ty::PolyTraitRef<'tcx>])
-> Supertraits<'cx, 'tcx>
{
elaborate_trait_refs(tcx, bounds).filter_to_traits()
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// A filter around an iterator of predicates that makes it yield up
/// just trait references.
pub struct FilterToTraits<I> {
base_iterator: I
}
impl<I> FilterToTraits<I> {
fn new(base: I) -> FilterToTraits<I> {
FilterToTraits { base_iterator: base }
}
}
impl<'tcx,I:Iterator<Item=ty::Predicate<'tcx>>> Iterator for FilterToTraits<I> {
type Item = ty::PolyTraitRef<'tcx>;
fn next(&mut self) -> Option<ty::PolyTraitRef<'tcx>> {
loop {
match self.base_iterator.next() {
None => {
return None;
}
Some(ty::Predicate::Trait(data)) => {
return Some(data.to_poly_trait_ref());
}
Some(_) => {
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
// determine the `self` type, using fresh variables for all variables
// declared on the impl declaration e.g., `impl<A,B> for Box<[(A,B)]>`
// would return ($0, $1) where $0 and $1 are freshly instantiated type
// variables.
pub fn fresh_substs_for_impl<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
span: Span,
impl_def_id: ast::DefId)
-> Substs<'tcx>
{
let tcx = infcx.tcx;
let impl_generics = ty::lookup_item_type(tcx, impl_def_id).generics;
infcx.fresh_substs_for_generics(span, &impl_generics)
}
impl<'tcx, N> fmt::Debug for VtableImplData<'tcx, N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableImpl({:?})", self.impl_def_id)
}
}
impl<'tcx> fmt::Debug for super::VtableObjectData<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableObject(...)")
}
}
/// See `super::obligations_for_generics`
pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>,
cause: ObligationCause<'tcx>,
recursion_depth: uint,
generic_bounds: &ty::InstantiatedPredicates<'tcx>)
-> VecPerParamSpace<PredicateObligation<'tcx>>
{
debug!("predicates_for_generics(generic_bounds={})",
generic_bounds.repr(tcx));
generic_bounds.predicates.map(|predicate| {
Obligation { cause: cause.clone(),
recursion_depth: recursion_depth,
predicate: predicate.clone() }
})
}
pub fn trait_ref_for_builtin_bound<'tcx>(
tcx: &ty::ctxt<'tcx>,
builtin_bound: ty::BuiltinBound,
param_ty: Ty<'tcx>)
-> Result<Rc<ty::TraitRef<'tcx>>, ErrorReported>
{
match tcx.lang_items.from_builtin_kind(builtin_bound) {
Ok(def_id) => {
Ok(Rc::new(ty::TraitRef {
def_id: def_id,
substs: tcx.mk_substs(Substs::empty().with_self_ty(param_ty))
}))
}
Err(e) => {
tcx.sess.err(&e);
Err(ErrorReported)
}
}
}
pub fn predicate_for_trait_ref<'tcx>(
cause: ObligationCause<'tcx>,
trait_ref: Rc<ty::TraitRef<'tcx>>,
recursion_depth: uint)
-> Result<PredicateObligation<'tcx>, ErrorReported>
{
Ok(Obligation {
cause: cause,
recursion_depth: recursion_depth,
predicate: trait_ref.as_predicate(),
})
}
pub fn predicate_for_trait_def<'tcx>(
tcx: &ty::ctxt<'tcx>,
cause: ObligationCause<'tcx>,
trait_def_id: ast::DefId,
recursion_depth: uint,
param_ty: Ty<'tcx>)
-> Result<PredicateObligation<'tcx>, ErrorReported>
{
let trait_ref = Rc::new(ty::TraitRef {
def_id: trait_def_id,
substs: tcx.mk_substs(Substs::empty().with_self_ty(param_ty))
});
predicate_for_trait_ref(cause, trait_ref, recursion_depth)
}
pub fn predicate_for_builtin_bound<'tcx>(
tcx: &ty::ctxt<'tcx>,
cause: ObligationCause<'tcx>,
builtin_bound: ty::BuiltinBound,
recursion_depth: uint,
param_ty: Ty<'tcx>)
-> Result<PredicateObligation<'tcx>, ErrorReported>
{
let trait_ref = try!(trait_ref_for_builtin_bound(tcx, builtin_bound, param_ty));
predicate_for_trait_ref(cause, trait_ref, recursion_depth)
}
/// Cast a trait reference into a reference to one of its super
/// traits; returns `None` if `target_trait_def_id` is not a
/// supertrait.
pub fn upcast<'tcx>(tcx: &ty::ctxt<'tcx>,
source_trait_ref: ty::PolyTraitRef<'tcx>,
target_trait_def_id: ast::DefId)
-> Vec<ty::PolyTraitRef<'tcx>>
{
if source_trait_ref.def_id() == target_trait_def_id {
return vec![source_trait_ref]; // shorcut the most common case
}
supertraits(tcx, source_trait_ref)
.filter(|r| r.def_id() == target_trait_def_id)
.collect()
}
/// Given an object of type `object_trait_ref`, returns the index of
/// the method `n_method` found in the trait `trait_def_id` (which
/// should be a supertrait of `object_trait_ref`) within the vtable
/// for `object_trait_ref`.
pub fn get_vtable_index_of_object_method<'tcx>(tcx: &ty::ctxt<'tcx>,
object_trait_ref: ty::PolyTraitRef<'tcx>,
trait_def_id: ast::DefId,
method_offset_in_trait: uint) -> uint {
// We need to figure the "real index" of the method in a
// listing of all the methods of an object. We do this by
// iterating down the supertraits of the object's trait until
// we find the trait the method came from, counting up the
// methods from them.
let mut method_count = 0;
for bound_ref in transitive_bounds(tcx, &[object_trait_ref]) {
if bound_ref.def_id() == trait_def_id {
break;
}
let trait_items = ty::trait_items(tcx, bound_ref.def_id());
for trait_item in &**trait_items {
match *trait_item {
ty::MethodTraitItem(_) => method_count += 1,
ty::TypeTraitItem(_) => {}
}
}
}
// count number of methods preceding the one we are selecting and
// add them to the total offset; skip over associated types.
let trait_items = ty::trait_items(tcx, trait_def_id);
for trait_item in trait_items.iter().take(method_offset_in_trait) {
match *trait_item {
ty::MethodTraitItem(_) => method_count += 1,
ty::TypeTraitItem(_) => {}
}
}
// the item at the offset we were given really ought to be a method
assert!(match trait_items[method_offset_in_trait] {
ty::MethodTraitItem(_) => true,
ty::TypeTraitItem(_) => false
});
method_count
}
pub enum TupleArgumentsFlag { Yes, No }
pub fn closure_trait_ref_and_return_type<'tcx>(
tcx: &ty::ctxt<'tcx>,
fn_trait_def_id: ast::DefId,
self_ty: Ty<'tcx>,
sig: &ty::PolyFnSig<'tcx>,
tuple_arguments: TupleArgumentsFlag)
-> ty::Binder<(Rc<ty::TraitRef<'tcx>>, Ty<'tcx>)>
{
let arguments_tuple = match tuple_arguments {
TupleArgumentsFlag::No => sig.0.inputs[0],
TupleArgumentsFlag::Yes => ty::mk_tup(tcx, sig.0.inputs.to_vec()),
};
let trait_substs = Substs::new_trait(vec![arguments_tuple], vec![], self_ty);
let trait_ref = Rc::new(ty::TraitRef {
def_id: fn_trait_def_id,
substs: tcx.mk_substs(trait_substs),
});
ty::Binder((trait_ref, sig.0.output.unwrap()))
}
impl<'tcx,O:Repr<'tcx>> Repr<'tcx> for super::Obligation<'tcx, O> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("Obligation(predicate={},depth={})",
self.predicate.repr(tcx),
self.recursion_depth)
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::Vtable<'tcx, N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
super::VtableImpl(ref v) =>
v.repr(tcx),
super::VtableDefaultImpl(ref t) =>
t.repr(tcx),
super::VtableClosure(ref d, ref s) =>
format!("VtableClosure({},{})",
d.repr(tcx),
s.repr(tcx)),
super::VtableFnPointer(ref d) =>
format!("VtableFnPointer({})",
d.repr(tcx)),
super::VtableObject(ref d) =>
format!("VtableObject({})",
d.repr(tcx)),
super::VtableParam(ref n) =>
format!("VtableParam({})",
n.repr(tcx)),
super::VtableBuiltin(ref d) =>
d.repr(tcx)
}
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableImplData<'tcx, N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableImpl(impl_def_id={}, substs={}, nested={})",
self.impl_def_id.repr(tcx),
self.substs.repr(tcx),
self.nested.repr(tcx))
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableBuiltinData<N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableBuiltin(nested={})",
self.nested.repr(tcx))
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableDefaultImplData<N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableDefaultImplData(trait_def_id={}, nested={})",
self.trait_def_id.repr(tcx),
self.nested.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for super::VtableObjectData<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableObject(object_ty={})",
self.object_ty.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for super::SelectionError<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
super::Overflow =>
format!("Overflow"),
super::Unimplemented =>
format!("Unimplemented"),
super::OutputTypeParameterMismatch(ref a, ref b, ref c) =>
format!("OutputTypeParameterMismatch({},{},{})",
a.repr(tcx),
b.repr(tcx),
c.repr(tcx)),
}
}
}
impl<'tcx> Repr<'tcx> for super::FulfillmentError<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("FulfillmentError({},{})",
self.obligation.repr(tcx),
self.code.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for super::FulfillmentErrorCode<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
super::CodeSelectionError(ref o) => o.repr(tcx),
super::CodeProjectionError(ref o) => o.repr(tcx),
super::CodeAmbiguity => format!("Ambiguity")
}
}
}
impl<'tcx> fmt::Debug for super::FulfillmentErrorCode<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
super::CodeSelectionError(ref e) => write!(f, "{:?}", e),
super::CodeProjectionError(ref e) => write!(f, "{:?}", e),
super::CodeAmbiguity => write!(f, "Ambiguity")
}
}
}
impl<'tcx> Repr<'tcx> for super::MismatchedProjectionTypes<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
self.err.repr(tcx)
}
}
impl<'tcx> fmt::Debug for super::MismatchedProjectionTypes<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "MismatchedProjectionTypes(..)")
}
}