rust/src/librustc_typeck/check/upvar.rs

559 lines
21 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! ### Inferring borrow kinds for upvars
//!
//! Whenever there is a closure expression, we need to determine how each
//! upvar is used. We do this by initially assigning each upvar an
//! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
//! "escalating" the kind as needed. The borrow kind proceeds according to
//! the following lattice:
//!
//! ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
//!
//! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
//! will promote its borrow kind to mutable borrow. If we see an `&mut x`
//! we'll do the same. Naturally, this applies not just to the upvar, but
//! to everything owned by `x`, so the result is the same for something
//! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
//! struct). These adjustments are performed in
//! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
//! from there).
//!
//! The fact that we are inferring borrow kinds as we go results in a
//! semi-hacky interaction with mem-categorization. In particular,
//! mem-categorization will query the current borrow kind as it
//! categorizes, and we'll return the *current* value, but this may get
//! adjusted later. Therefore, in this module, we generally ignore the
//! borrow kind (and derived mutabilities) that are returned from
//! mem-categorization, since they may be inaccurate. (Another option
//! would be to use a unification scheme, where instead of returning a
//! concrete borrow kind like `ty::ImmBorrow`, we return a
//! `ty::InferBorrow(upvar_id)` or something like that, but this would
//! then mean that all later passes would have to check for these figments
//! and report an error, and it just seems like more mess in the end.)
use super::FnCtxt;
use middle::expr_use_visitor as euv;
use middle::mem_categorization as mc;
use middle::ty::{self};
use middle::infer::{InferCtxt, UpvarRegion};
use std::collections::HashSet;
use syntax::ast;
use syntax::ast_util;
use syntax::codemap::Span;
use syntax::visit::{self, Visitor};
use util::ppaux::Repr;
///////////////////////////////////////////////////////////////////////////
// PUBLIC ENTRY POINTS
pub fn closure_analyze_fn(fcx: &FnCtxt,
_id: ast::NodeId,
_decl: &ast::FnDecl,
body: &ast::Block)
{
let mut seed = SeedBorrowKind::new(fcx);
seed.visit_block(body);
let closures_with_inferred_kinds = seed.closures_with_inferred_kinds;
let mut adjust = AdjustBorrowKind::new(fcx, &closures_with_inferred_kinds);
adjust.visit_block(body);
// it's our job to process these.
assert!(fcx.inh.deferred_call_resolutions.borrow().is_empty());
}
///////////////////////////////////////////////////////////////////////////
// SEED BORROW KIND
struct SeedBorrowKind<'a,'tcx:'a> {
fcx: &'a FnCtxt<'a,'tcx>,
closures_with_inferred_kinds: HashSet<ast::NodeId>,
}
impl<'a, 'tcx, 'v> Visitor<'v> for SeedBorrowKind<'a, 'tcx> {
fn visit_expr(&mut self, expr: &ast::Expr) {
match expr.node {
ast::ExprClosure(cc, _, ref body) => {
self.check_closure(expr, cc, &**body);
}
_ => { }
}
visit::walk_expr(self, expr);
}
fn visit_fn(&mut self,
fn_kind: visit::FnKind<'v>,
decl: &'v ast::FnDecl,
block: &'v ast::Block,
span: Span,
_id: ast::NodeId)
{
match fn_kind {
visit::FkItemFn(..) | visit::FkMethod(..) => {
// ignore nested fn items
}
visit::FkFnBlock => {
visit::walk_fn(self, fn_kind, decl, block, span);
}
}
}
}
impl<'a,'tcx> SeedBorrowKind<'a,'tcx> {
fn new(fcx: &'a FnCtxt<'a,'tcx>) -> SeedBorrowKind<'a,'tcx> {
SeedBorrowKind { fcx: fcx, closures_with_inferred_kinds: HashSet::new() }
}
fn tcx(&self) -> &'a ty::ctxt<'tcx> {
self.fcx.tcx()
}
fn infcx(&self) -> &'a InferCtxt<'a,'tcx> {
self.fcx.infcx()
}
fn check_closure(&mut self,
expr: &ast::Expr,
capture_clause: ast::CaptureClause,
_body: &ast::Block)
{
let closure_def_id = ast_util::local_def(expr.id);
if !self.fcx.inh.closure_kinds.borrow().contains_key(&closure_def_id) {
self.closures_with_inferred_kinds.insert(expr.id);
self.fcx.inh.closure_kinds.borrow_mut().insert(closure_def_id, ty::FnClosureKind);
debug!("check_closure: adding closure_id={} to closures_with_inferred_kinds",
closure_def_id.repr(self.tcx()));
}
ty::with_freevars(self.tcx(), expr.id, |freevars| {
for freevar in freevars {
let var_node_id = freevar.def.local_node_id();
let upvar_id = ty::UpvarId { var_id: var_node_id,
closure_expr_id: expr.id };
debug!("seed upvar_id {:?}", upvar_id);
let capture_kind = match capture_clause {
ast::CaptureByValue => {
ty::UpvarCapture::ByValue
}
ast::CaptureByRef => {
let origin = UpvarRegion(upvar_id, expr.span);
let freevar_region = self.infcx().next_region_var(origin);
let upvar_borrow = ty::UpvarBorrow { kind: ty::ImmBorrow,
region: freevar_region };
ty::UpvarCapture::ByRef(upvar_borrow)
}
};
self.fcx.inh.upvar_capture_map.borrow_mut().insert(upvar_id, capture_kind);
}
});
}
}
///////////////////////////////////////////////////////////////////////////
// ADJUST BORROW KIND
struct AdjustBorrowKind<'a,'tcx:'a> {
fcx: &'a FnCtxt<'a,'tcx>,
closures_with_inferred_kinds: &'a HashSet<ast::NodeId>,
}
impl<'a,'tcx> AdjustBorrowKind<'a,'tcx> {
fn new(fcx: &'a FnCtxt<'a,'tcx>,
closures_with_inferred_kinds: &'a HashSet<ast::NodeId>)
-> AdjustBorrowKind<'a,'tcx> {
AdjustBorrowKind { fcx: fcx, closures_with_inferred_kinds: closures_with_inferred_kinds }
}
fn tcx(&self) -> &'a ty::ctxt<'tcx> {
self.fcx.tcx()
}
fn analyze_closure(&mut self, id: ast::NodeId, decl: &ast::FnDecl, body: &ast::Block) {
/*!
* Analysis starting point.
*/
self.visit_block(body);
debug!("analyzing closure `{}` with fn body id `{}`", id, body.id);
let mut euv = euv::ExprUseVisitor::new(self, self.fcx);
euv.walk_fn(decl, body);
// If we had not yet settled on a closure kind for this closure,
// then we should have by now. Process and remove any deferred resolutions.
//
// Interesting fact: all calls to this closure must come
// *after* its definition. Initially, I thought that some
// kind of fixed-point iteration would be required, due to the
// possibility of twisted examples like this one:
//
// ```rust
// let mut closure0 = None;
// let vec = vec!(1, 2, 3);
//
// loop {
// {
// let closure1 = || {
// match closure0.take() {
// Some(c) => {
// return c(); // (*) call to `closure0` before it is defined
// }
// None => { }
// }
// };
// closure1();
// }
//
// closure0 = || vec;
// }
// ```
//
// However, this turns out to be wrong. Examples like this
// fail to compile because the type of the variable `c` above
// is an inference variable. And in fact since closure types
// cannot be written, there is no way to make this example
// work without a boxed closure. This implies that we can't
// have two closures that recursively call one another without
// some form of boxing (and hence explicit writing of a
// closure kind) involved. Huzzah. -nmatsakis
let closure_def_id = ast_util::local_def(id);
if self.closures_with_inferred_kinds.contains(&id) {
let mut deferred_call_resolutions =
self.fcx.remove_deferred_call_resolutions(closure_def_id);
for deferred_call_resolution in deferred_call_resolutions.iter_mut() {
deferred_call_resolution.resolve(self.fcx);
}
}
}
fn adjust_upvar_borrow_kind_for_consume(&self,
cmt: mc::cmt<'tcx>,
mode: euv::ConsumeMode)
{
debug!("adjust_upvar_borrow_kind_for_consume(cmt={}, mode={:?})",
cmt.repr(self.tcx()), mode);
// we only care about moves
match mode {
euv::Copy => { return; }
euv::Move(_) => { }
}
// watch out for a move of the deref of a borrowed pointer;
// for that to be legal, the upvar would have to be borrowed
// by value instead
let guarantor = cmt.guarantor();
debug!("adjust_upvar_borrow_kind_for_consume: guarantor={}",
guarantor.repr(self.tcx()));
match guarantor.cat {
mc::cat_deref(_, _, mc::BorrowedPtr(..)) |
mc::cat_deref(_, _, mc::Implicit(..)) => {
match cmt.note {
mc::NoteUpvarRef(upvar_id) => {
debug!("adjust_upvar_borrow_kind_for_consume: \
setting upvar_id={:?} to by value",
upvar_id);
// to move out of an upvar, this must be a FnOnce closure
self.adjust_closure_kind(upvar_id.closure_expr_id, ty::FnOnceClosureKind);
let mut upvar_capture_map = self.fcx.inh.upvar_capture_map.borrow_mut();
upvar_capture_map.insert(upvar_id, ty::UpvarCapture::ByValue);
}
mc::NoteClosureEnv(upvar_id) => {
// we get just a closureenv ref if this is a
// `move` closure, or if the upvar has already
// been inferred to by-value. In any case, we
// must still adjust the kind of the closure
// to be a FnOnce closure to permit moves out
// of the environment.
self.adjust_closure_kind(upvar_id.closure_expr_id, ty::FnOnceClosureKind);
}
mc::NoteNone => {
}
}
}
_ => { }
}
}
/// Indicates that `cmt` is being directly mutated (e.g., assigned
/// to). If cmt contains any by-ref upvars, this implies that
/// those upvars must be borrowed using an `&mut` borow.
fn adjust_upvar_borrow_kind_for_mut(&mut self, cmt: mc::cmt<'tcx>) {
debug!("adjust_upvar_borrow_kind_for_mut(cmt={})",
cmt.repr(self.tcx()));
match cmt.cat.clone() {
mc::cat_deref(base, _, mc::Unique) |
mc::cat_interior(base, _) |
mc::cat_downcast(base, _) => {
// Interior or owned data is mutable if base is
// mutable, so iterate to the base.
self.adjust_upvar_borrow_kind_for_mut(base);
}
mc::cat_deref(base, _, mc::BorrowedPtr(..)) |
mc::cat_deref(base, _, mc::Implicit(..)) => {
if !self.try_adjust_upvar_deref(&cmt.note, ty::MutBorrow) {
// assignment to deref of an `&mut`
// borrowed pointer implies that the
// pointer itself must be unique, but not
// necessarily *mutable*
self.adjust_upvar_borrow_kind_for_unique(base);
}
}
mc::cat_deref(_, _, mc::UnsafePtr(..)) |
mc::cat_static_item |
mc::cat_rvalue(_) |
mc::cat_local(_) |
mc::cat_upvar(..) => {
return;
}
}
}
fn adjust_upvar_borrow_kind_for_unique(&self, cmt: mc::cmt<'tcx>) {
debug!("adjust_upvar_borrow_kind_for_unique(cmt={})",
cmt.repr(self.tcx()));
match cmt.cat.clone() {
mc::cat_deref(base, _, mc::Unique) |
mc::cat_interior(base, _) |
mc::cat_downcast(base, _) => {
// Interior or owned data is unique if base is
// unique.
self.adjust_upvar_borrow_kind_for_unique(base);
}
mc::cat_deref(base, _, mc::BorrowedPtr(..)) |
mc::cat_deref(base, _, mc::Implicit(..)) => {
if !self.try_adjust_upvar_deref(&cmt.note, ty::UniqueImmBorrow) {
// for a borrowed pointer to be unique, its
// base must be unique
self.adjust_upvar_borrow_kind_for_unique(base);
}
}
mc::cat_deref(_, _, mc::UnsafePtr(..)) |
mc::cat_static_item |
mc::cat_rvalue(_) |
mc::cat_local(_) |
mc::cat_upvar(..) => {
}
}
}
fn try_adjust_upvar_deref(&self,
note: &mc::Note,
borrow_kind: ty::BorrowKind)
-> bool
{
assert!(match borrow_kind {
ty::MutBorrow => true,
ty::UniqueImmBorrow => true,
// imm borrows never require adjusting any kinds, so we don't wind up here
ty::ImmBorrow => false,
});
match *note {
mc::NoteUpvarRef(upvar_id) => {
// if this is an implicit deref of an
// upvar, then we need to modify the
// borrow_kind of the upvar to make sure it
// is inferred to mutable if necessary
let mut upvar_capture_map = self.fcx.inh.upvar_capture_map.borrow_mut();
let ub = &mut upvar_capture_map[upvar_id];
self.adjust_upvar_borrow_kind(upvar_id, ub, borrow_kind);
// also need to be in an FnMut closure since this is not an ImmBorrow
self.adjust_closure_kind(upvar_id.closure_expr_id, ty::FnMutClosureKind);
true
}
mc::NoteClosureEnv(upvar_id) => {
// this kind of deref occurs in a `move` closure, or
// for a by-value upvar; in either case, to mutate an
// upvar, we need to be an FnMut closure
self.adjust_closure_kind(upvar_id.closure_expr_id, ty::FnMutClosureKind);
true
}
mc::NoteNone => {
false
}
}
}
/// We infer the borrow_kind with which to borrow upvars in a stack closure. The borrow_kind
/// basically follows a lattice of `imm < unique-imm < mut`, moving from left to right as needed
/// (but never right to left). Here the argument `mutbl` is the borrow_kind that is required by
/// some particular use.
fn adjust_upvar_borrow_kind(&self,
upvar_id: ty::UpvarId,
upvar_capture: &mut ty::UpvarCapture,
kind: ty::BorrowKind) {
debug!("adjust_upvar_borrow_kind(upvar_id={:?}, upvar_capture={:?}, kind={:?})",
upvar_id, upvar_capture, kind);
match *upvar_capture {
ty::UpvarCapture::ByValue => {
// Upvar is already by-value, the strongest criteria.
}
ty::UpvarCapture::ByRef(ref mut upvar_borrow) => {
match (upvar_borrow.kind, kind) {
// Take RHS:
(ty::ImmBorrow, ty::UniqueImmBorrow) |
(ty::ImmBorrow, ty::MutBorrow) |
(ty::UniqueImmBorrow, ty::MutBorrow) => {
upvar_borrow.kind = kind;
}
// Take LHS:
(ty::ImmBorrow, ty::ImmBorrow) |
(ty::UniqueImmBorrow, ty::ImmBorrow) |
(ty::UniqueImmBorrow, ty::UniqueImmBorrow) |
(ty::MutBorrow, _) => {
}
}
}
}
}
fn adjust_closure_kind(&self,
closure_id: ast::NodeId,
new_kind: ty::ClosureKind) {
debug!("adjust_closure_kind(closure_id={}, new_kind={:?})",
closure_id, new_kind);
if !self.closures_with_inferred_kinds.contains(&closure_id) {
return;
}
let closure_def_id = ast_util::local_def(closure_id);
let mut closure_kinds = self.fcx.inh.closure_kinds.borrow_mut();
let existing_kind = closure_kinds[closure_def_id];
debug!("adjust_closure_kind: closure_id={}, existing_kind={:?}, new_kind={:?}",
closure_id, existing_kind, new_kind);
match (existing_kind, new_kind) {
(ty::FnClosureKind, ty::FnClosureKind) |
(ty::FnMutClosureKind, ty::FnClosureKind) |
(ty::FnMutClosureKind, ty::FnMutClosureKind) |
(ty::FnOnceClosureKind, _) => {
// no change needed
}
(ty::FnClosureKind, ty::FnMutClosureKind) |
(ty::FnClosureKind, ty::FnOnceClosureKind) |
(ty::FnMutClosureKind, ty::FnOnceClosureKind) => {
// new kind is stronger than the old kind
closure_kinds.insert(closure_def_id, new_kind);
}
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for AdjustBorrowKind<'a, 'tcx> {
fn visit_fn(&mut self,
fn_kind: visit::FnKind<'v>,
decl: &'v ast::FnDecl,
body: &'v ast::Block,
span: Span,
id: ast::NodeId)
{
match fn_kind {
visit::FkItemFn(..) | visit::FkMethod(..) => {
// ignore nested fn items
}
visit::FkFnBlock => {
self.analyze_closure(id, decl, body);
visit::walk_fn(self, fn_kind, decl, body, span);
}
}
}
}
impl<'a,'tcx> euv::Delegate<'tcx> for AdjustBorrowKind<'a,'tcx> {
fn consume(&mut self,
_consume_id: ast::NodeId,
_consume_span: Span,
cmt: mc::cmt<'tcx>,
mode: euv::ConsumeMode)
{
debug!("consume(cmt={},mode={:?})", cmt.repr(self.tcx()), mode);
self.adjust_upvar_borrow_kind_for_consume(cmt, mode);
}
fn matched_pat(&mut self,
_matched_pat: &ast::Pat,
_cmt: mc::cmt<'tcx>,
_mode: euv::MatchMode)
{}
fn consume_pat(&mut self,
_consume_pat: &ast::Pat,
cmt: mc::cmt<'tcx>,
mode: euv::ConsumeMode)
{
debug!("consume_pat(cmt={},mode={:?})", cmt.repr(self.tcx()), mode);
self.adjust_upvar_borrow_kind_for_consume(cmt, mode);
}
fn borrow(&mut self,
borrow_id: ast::NodeId,
_borrow_span: Span,
cmt: mc::cmt<'tcx>,
_loan_region: ty::Region,
bk: ty::BorrowKind,
_loan_cause: euv::LoanCause)
{
debug!("borrow(borrow_id={}, cmt={}, bk={:?})",
borrow_id, cmt.repr(self.tcx()), bk);
match bk {
ty::ImmBorrow => { }
ty::UniqueImmBorrow => {
self.adjust_upvar_borrow_kind_for_unique(cmt);
}
ty::MutBorrow => {
self.adjust_upvar_borrow_kind_for_mut(cmt);
}
}
}
fn decl_without_init(&mut self,
_id: ast::NodeId,
_span: Span)
{}
fn mutate(&mut self,
_assignment_id: ast::NodeId,
_assignment_span: Span,
assignee_cmt: mc::cmt<'tcx>,
_mode: euv::MutateMode)
{
debug!("mutate(assignee_cmt={})",
assignee_cmt.repr(self.tcx()));
self.adjust_upvar_borrow_kind_for_mut(assignee_cmt);
}
}