rust/clippy_lints/src/consts.rs
2016-05-31 23:30:49 +02:00

380 lines
14 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![allow(cast_possible_truncation)]
use rustc::lint::LateContext;
use rustc::hir::def::{Def, PathResolution};
use rustc_const_eval::lookup_const_by_id;
use rustc_const_math::{ConstInt, ConstUsize, ConstIsize};
use rustc::hir::*;
use std::cmp::Ordering::{self, Equal};
use std::cmp::PartialOrd;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::rc::Rc;
use syntax::ast::{FloatTy, LitIntType, LitKind, StrStyle, UintTy, IntTy};
use syntax::ptr::P;
#[derive(Debug, Copy, Clone)]
pub enum FloatWidth {
F32,
F64,
Any,
}
impl From<FloatTy> for FloatWidth {
fn from(ty: FloatTy) -> FloatWidth {
match ty {
FloatTy::F32 => FloatWidth::F32,
FloatTy::F64 => FloatWidth::F64,
}
}
}
/// A `LitKind`-like enum to fold constant `Expr`s into.
#[derive(Debug, Clone)]
pub enum Constant {
/// a String "abc"
Str(String, StrStyle),
/// a Binary String b"abc"
Binary(Rc<Vec<u8>>),
/// a single char 'a'
Char(char),
/// an integer, third argument is whether the value is negated
Int(ConstInt),
/// a float with given type
Float(String, FloatWidth),
/// true or false
Bool(bool),
/// an array of constants
Vec(Vec<Constant>),
/// also an array, but with only one constant, repeated N times
Repeat(Box<Constant>, usize),
/// a tuple of constants
Tuple(Vec<Constant>),
}
impl Constant {
/// convert to u64 if possible
///
/// # panics
///
/// if the constant could not be converted to u64 losslessly
fn as_u64(&self) -> u64 {
if let Constant::Int(val) = *self {
val.to_u64().expect("negative constant can't be casted to u64")
} else {
panic!("Could not convert a {:?} to u64", self);
}
}
/// convert this constant to a f64, if possible
#[allow(cast_precision_loss, cast_possible_wrap)]
pub fn as_float(&self) -> Option<f64> {
match *self {
Constant::Float(ref s, _) => s.parse().ok(),
Constant::Int(i) if i.is_negative() => Some(i.to_u64_unchecked() as i64 as f64),
Constant::Int(i) => Some(i.to_u64_unchecked() as f64),
_ => None,
}
}
}
impl PartialEq for Constant {
fn eq(&self, other: &Constant) -> bool {
match (self, other) {
(&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => ls == rs && l_sty == r_sty,
(&Constant::Binary(ref l), &Constant::Binary(ref r)) => l == r,
(&Constant::Char(l), &Constant::Char(r)) => l == r,
(&Constant::Int(l), &Constant::Int(r)) => {
l.is_negative() == r.is_negative() && l.to_u64_unchecked() == r.to_u64_unchecked()
}
(&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => {
// we want `Fw32 == FwAny` and `FwAny == Fw64`, by transitivity we must have
// `Fw32 == Fw64` so dont compare them
match (ls.parse::<f64>(), rs.parse::<f64>()) {
(Ok(l), Ok(r)) => l.eq(&r),
_ => false,
}
}
(&Constant::Bool(l), &Constant::Bool(r)) => l == r,
(&Constant::Vec(ref l), &Constant::Vec(ref r)) => l == r,
(&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => ls == rs && lv == rv,
(&Constant::Tuple(ref l), &Constant::Tuple(ref r)) => l == r,
_ => false, //TODO: Are there inter-type equalities?
}
}
}
impl Hash for Constant {
fn hash<H>(&self, state: &mut H)
where H: Hasher
{
match *self {
Constant::Str(ref s, ref k) => {
s.hash(state);
k.hash(state);
}
Constant::Binary(ref b) => {
b.hash(state);
}
Constant::Char(c) => {
c.hash(state);
}
Constant::Int(i) => {
i.to_u64_unchecked().hash(state);
i.is_negative().hash(state);
}
Constant::Float(ref f, _) => {
// dont use the width here because of PartialEq implementation
if let Ok(f) = f.parse::<f64>() {
unsafe { mem::transmute::<f64, u64>(f) }.hash(state);
}
}
Constant::Bool(b) => {
b.hash(state);
}
Constant::Vec(ref v) |
Constant::Tuple(ref v) => {
v.hash(state);
}
Constant::Repeat(ref c, l) => {
c.hash(state);
l.hash(state);
}
}
}
}
impl PartialOrd for Constant {
fn partial_cmp(&self, other: &Constant) -> Option<Ordering> {
match (self, other) {
(&Constant::Str(ref ls, ref l_sty), &Constant::Str(ref rs, ref r_sty)) => {
if l_sty == r_sty {
Some(ls.cmp(rs))
} else {
None
}
}
(&Constant::Char(ref l), &Constant::Char(ref r)) => Some(l.cmp(r)),
(&Constant::Int(l), &Constant::Int(r)) => Some(l.cmp(&r)),
(&Constant::Float(ref ls, _), &Constant::Float(ref rs, _)) => {
match (ls.parse::<f64>(), rs.parse::<f64>()) {
(Ok(ref l), Ok(ref r)) => l.partial_cmp(r),
_ => None,
}
}
(&Constant::Bool(ref l), &Constant::Bool(ref r)) => Some(l.cmp(r)),
(&Constant::Tuple(ref l), &Constant::Tuple(ref r)) |
(&Constant::Vec(ref l), &Constant::Vec(ref r)) => l.partial_cmp(r),
(&Constant::Repeat(ref lv, ref ls), &Constant::Repeat(ref rv, ref rs)) => {
match lv.partial_cmp(rv) {
Some(Equal) => Some(ls.cmp(rs)),
x => x,
}
}
_ => None, //TODO: Are there any useful inter-type orderings?
}
}
}
/// parse a `LitKind` to a `Constant`
#[allow(cast_possible_wrap)]
pub fn lit_to_constant(lit: &LitKind) -> Constant {
match *lit {
LitKind::Str(ref is, style) => Constant::Str(is.to_string(), style),
LitKind::Byte(b) => Constant::Int(ConstInt::U8(b)),
LitKind::ByteStr(ref s) => Constant::Binary(s.clone()),
LitKind::Char(c) => Constant::Char(c),
LitKind::Int(value, LitIntType::Unsuffixed) => Constant::Int(ConstInt::Infer(value)),
LitKind::Int(value, LitIntType::Unsigned(UintTy::U8)) => Constant::Int(ConstInt::U8(value as u8)),
LitKind::Int(value, LitIntType::Unsigned(UintTy::U16)) => Constant::Int(ConstInt::U16(value as u16)),
LitKind::Int(value, LitIntType::Unsigned(UintTy::U32)) => Constant::Int(ConstInt::U32(value as u32)),
LitKind::Int(value, LitIntType::Unsigned(UintTy::U64)) => Constant::Int(ConstInt::U64(value as u64)),
LitKind::Int(value, LitIntType::Unsigned(UintTy::Us)) => {
Constant::Int(ConstInt::Usize(ConstUsize::Us32(value as u32)))
}
LitKind::Int(value, LitIntType::Signed(IntTy::I8)) => Constant::Int(ConstInt::I8(value as i8)),
LitKind::Int(value, LitIntType::Signed(IntTy::I16)) => Constant::Int(ConstInt::I16(value as i16)),
LitKind::Int(value, LitIntType::Signed(IntTy::I32)) => Constant::Int(ConstInt::I32(value as i32)),
LitKind::Int(value, LitIntType::Signed(IntTy::I64)) => Constant::Int(ConstInt::I64(value as i64)),
LitKind::Int(value, LitIntType::Signed(IntTy::Is)) => {
Constant::Int(ConstInt::Isize(ConstIsize::Is32(value as i32)))
}
LitKind::Float(ref is, ty) => Constant::Float(is.to_string(), ty.into()),
LitKind::FloatUnsuffixed(ref is) => Constant::Float(is.to_string(), FloatWidth::Any),
LitKind::Bool(b) => Constant::Bool(b),
}
}
fn constant_not(o: Constant) -> Option<Constant> {
use self::Constant::*;
match o {
Bool(b) => Some(Bool(!b)),
Int(value) => (!value).ok().map(Int),
_ => None,
}
}
fn constant_negate(o: Constant) -> Option<Constant> {
use self::Constant::*;
match o {
Int(value) => (-value).ok().map(Int),
Float(is, ty) => Some(Float(neg_float_str(is), ty)),
_ => None,
}
}
fn neg_float_str(s: String) -> String {
if s.starts_with('-') {
s[1..].to_owned()
} else {
format!("-{}", s)
}
}
pub fn constant(lcx: &LateContext, e: &Expr) -> Option<(Constant, bool)> {
let mut cx = ConstEvalLateContext {
lcx: Some(lcx),
needed_resolution: false,
};
cx.expr(e).map(|cst| (cst, cx.needed_resolution))
}
pub fn constant_simple(e: &Expr) -> Option<Constant> {
let mut cx = ConstEvalLateContext {
lcx: None,
needed_resolution: false,
};
cx.expr(e)
}
struct ConstEvalLateContext<'c, 'cc: 'c> {
lcx: Option<&'c LateContext<'c, 'cc>>,
needed_resolution: bool,
}
impl<'c, 'cc> ConstEvalLateContext<'c, 'cc> {
/// simple constant folding: Insert an expression, get a constant or none.
fn expr(&mut self, e: &Expr) -> Option<Constant> {
match e.node {
ExprPath(_, _) => self.fetch_path(e),
ExprBlock(ref block) => self.block(block),
ExprIf(ref cond, ref then, ref otherwise) => self.ifthenelse(cond, then, otherwise),
ExprLit(ref lit) => Some(lit_to_constant(&lit.node)),
ExprVec(ref vec) => self.multi(vec).map(Constant::Vec),
ExprTup(ref tup) => self.multi(tup).map(Constant::Tuple),
ExprRepeat(ref value, ref number) => {
self.binop_apply(value, number, |v, n| Some(Constant::Repeat(Box::new(v), n.as_u64() as usize)))
}
ExprUnary(op, ref operand) => {
self.expr(operand).and_then(|o| {
match op {
UnNot => constant_not(o),
UnNeg => constant_negate(o),
UnDeref => Some(o),
}
})
}
ExprBinary(op, ref left, ref right) => self.binop(op, left, right),
// TODO: add other expressions
_ => None,
}
}
/// create `Some(Vec![..])` of all constants, unless there is any
/// non-constant part
fn multi<E: Deref<Target = Expr> + Sized>(&mut self, vec: &[E]) -> Option<Vec<Constant>> {
vec.iter()
.map(|elem| self.expr(elem))
.collect::<Option<_>>()
}
/// lookup a possibly constant expression from a ExprPath
fn fetch_path(&mut self, e: &Expr) -> Option<Constant> {
if let Some(lcx) = self.lcx {
let mut maybe_id = None;
if let Some(&PathResolution { base_def: Def::Const(id), .. }) = lcx.tcx.def_map.borrow().get(&e.id) {
maybe_id = Some(id);
}
// separate if lets to avoid double borrowing the def_map
if let Some(id) = maybe_id {
if let Some((const_expr, _ty)) = lookup_const_by_id(lcx.tcx, id, None) {
let ret = self.expr(const_expr);
if ret.is_some() {
self.needed_resolution = true;
}
return ret;
}
}
}
None
}
/// A block can only yield a constant if it only has one constant expression
fn block(&mut self, block: &Block) -> Option<Constant> {
if block.stmts.is_empty() {
block.expr.as_ref().and_then(|ref b| self.expr(b))
} else {
None
}
}
fn ifthenelse(&mut self, cond: &Expr, then: &Block, otherwise: &Option<P<Expr>>) -> Option<Constant> {
if let Some(Constant::Bool(b)) = self.expr(cond) {
if b {
self.block(then)
} else {
otherwise.as_ref().and_then(|expr| self.expr(expr))
}
} else {
None
}
}
fn binop(&mut self, op: BinOp, left: &Expr, right: &Expr) -> Option<Constant> {
let l = if let Some(l) = self.expr(left) {
l
} else {
return None;
};
let r = self.expr(right);
match (op.node, l, r) {
(BiAdd, Constant::Int(l), Some(Constant::Int(r))) => (l + r).ok().map(Constant::Int),
(BiSub, Constant::Int(l), Some(Constant::Int(r))) => (l - r).ok().map(Constant::Int),
(BiMul, Constant::Int(l), Some(Constant::Int(r))) => (l * r).ok().map(Constant::Int),
(BiDiv, Constant::Int(l), Some(Constant::Int(r))) => (l / r).ok().map(Constant::Int),
(BiRem, Constant::Int(l), Some(Constant::Int(r))) => (l % r).ok().map(Constant::Int),
(BiAnd, Constant::Bool(false), _) => Some(Constant::Bool(false)),
(BiOr, Constant::Bool(true), _) => Some(Constant::Bool(true)),
(BiAnd, Constant::Bool(true), Some(r)) |
(BiOr, Constant::Bool(false), Some(r)) => Some(r),
(BiBitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)),
(BiBitXor, Constant::Int(l), Some(Constant::Int(r))) => (l ^ r).ok().map(Constant::Int),
(BiBitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)),
(BiBitAnd, Constant::Int(l), Some(Constant::Int(r))) => (l & r).ok().map(Constant::Int),
(BiBitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)),
(BiBitOr, Constant::Int(l), Some(Constant::Int(r))) => (l | r).ok().map(Constant::Int),
(BiShl, Constant::Int(l), Some(Constant::Int(r))) => (l << r).ok().map(Constant::Int),
(BiShr, Constant::Int(l), Some(Constant::Int(r))) => (l >> r).ok().map(Constant::Int),
(BiEq, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l == r)),
(BiNe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l != r)),
(BiLt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l < r)),
(BiLe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l <= r)),
(BiGe, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l >= r)),
(BiGt, Constant::Int(l), Some(Constant::Int(r))) => Some(Constant::Bool(l > r)),
_ => None,
}
}
fn binop_apply<F>(&mut self, left: &Expr, right: &Expr, op: F) -> Option<Constant>
where F: Fn(Constant, Constant) -> Option<Constant>
{
if let (Some(lc), Some(rc)) = (self.expr(left), self.expr(right)) {
op(lc, rc)
} else {
None
}
}
}