rust/src/libsyntax/ext/tt/macro_parser.rs

913 lines
38 KiB
Rust

// Copyright 2012-2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This is an NFA-based parser, which calls out to the main rust parser for named nonterminals
//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
//! fit for Macro-by-Example-style rules.
//!
//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
//! items, but it would also save overhead)
//!
//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate.
//! The macro parser restricts itself to the features of finite state automata. Earley parsers
//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
//!
//! Quick intro to how the parser works:
//!
//! A 'position' is a dot in the middle of a matcher, usually represented as a
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of threads consistent with the current position in the input string: `cur_items`.
//!
//! As it processes them, it fills up `eof_items` with threads that would be valid if
//! the macro invocation is now over, `bb_items` with threads that are waiting on
//! a Rust nonterminal like `$e:expr`, and `next_items` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_items` threads remain.
//!
//! Example:
//!
//! ```text, ignore
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a a b
//! cur: [a · $( a )* a b]
//! Descend/Skip (first item).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
//! Remaining input: ''
//! eof: [a $( a )* a b ·]
//! ```
pub use self::NamedMatch::*;
pub use self::ParseResult::*;
use self::TokenTreeOrTokenTreeSlice::*;
use ast::Ident;
use syntax_pos::{self, BytePos, Span};
use errors::FatalError;
use ext::tt::quoted::{self, TokenTree};
use parse::{Directory, ParseSess};
use parse::parser::{Parser, PathStyle};
use parse::token::{self, DocComment, Nonterminal, Token};
use print::pprust;
use OneVector;
use symbol::keywords;
use tokenstream::TokenStream;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::rc::Rc;
use std::collections::HashMap;
use std::collections::hash_map::Entry::{Occupied, Vacant};
// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
/// Either a sequence of token trees or a single one. This is used as the representation of the
/// sequence of tokens that make up a matcher.
#[derive(Clone)]
enum TokenTreeOrTokenTreeSlice<'a> {
Tt(TokenTree),
TtSeq(&'a [TokenTree]),
}
impl<'a> TokenTreeOrTokenTreeSlice<'a> {
/// Returns the number of constituent top-level token trees of `self` (top-level in that it
/// will not recursively descend into subtrees).
fn len(&self) -> usize {
match *self {
TtSeq(ref v) => v.len(),
Tt(ref tt) => tt.len(),
}
}
/// The the `index`-th token tree of `self`.
fn get_tt(&self, index: usize) -> TokenTree {
match *self {
TtSeq(ref v) => v[index].clone(),
Tt(ref tt) => tt.get_tt(index),
}
}
}
/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
///
/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have
/// descended into.
#[derive(Clone)]
struct MatcherTtFrame<'a> {
/// The "parent" matcher that we are descending into.
elts: TokenTreeOrTokenTreeSlice<'a>,
/// The position of the "dot" in `elts` at the time we descended.
idx: usize,
}
/// Represents a single "position" (aka "matcher position", aka "item"), as described in the module
/// documentation.
#[derive(Clone)]
struct MatcherPos<'a> {
/// The token or sequence of tokens that make up the matcher
top_elts: TokenTreeOrTokenTreeSlice<'a>,
/// The position of the "dot" in this matcher
idx: usize,
/// The beginning position in the source that the beginning of this matcher corresponds to. In
/// other words, the token in the source at `sp_lo` is matched against the first token of the
/// matcher.
sp_lo: BytePos,
/// For each named metavar in the matcher, we keep track of token trees matched against the
/// metavar by the black box parser. In particular, there may be more than one match per
/// metavar if we are in a repetition (each repetition matches each of the variables).
/// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the
/// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of
/// the current position of the `self` matcher position in the shared `matches` list.
///
/// Also, note that while we are descending into a sequence, matchers are given their own
/// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add
/// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep`
/// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one
/// wants the shared `matches`, one should use `up.matches`.
matches: Vec<Rc<Vec<NamedMatch>>>,
/// The position in `matches` corresponding to the first metavar in this matcher's sequence of
/// token trees. In other words, the first metavar in the first token of `top_elts` corresponds
/// to `matches[match_lo]`.
match_lo: usize,
/// The position in `matches` corresponding to the metavar we are currently trying to match
/// against the source token stream. `match_lo <= match_cur <= match_hi`.
match_cur: usize,
/// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar
/// in this matcher.
match_hi: usize,
// Specifically used if we are matching a repetition. If we aren't both should be `None`.
/// The KleeneOp of this sequence if we are in a repetition.
seq_op: Option<quoted::KleeneOp>,
/// The separator if we are in a repetition
sep: Option<Token>,
/// The "parent" matcher position if we are in a repetition. That is, the matcher position just
/// before we enter the sequence.
up: Option<MatcherPosHandle<'a>>,
// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
// a delimited token tree (e.g. something wrapped in `(` `)`) or to get the contents of a doc
// comment...
/// When matching against matchers with nested delimited submatchers (e.g. `pat ( pat ( .. )
/// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
/// that where the bottom of the stack is the outermost matcher.
// Also, throughout the comments, this "descent" is often referred to as "unzipping"...
stack: Vec<MatcherTtFrame<'a>>,
}
impl<'a> MatcherPos<'a> {
/// Add `m` as a named match for the `idx`-th metavar.
fn push_match(&mut self, idx: usize, m: NamedMatch) {
let matches = Rc::make_mut(&mut self.matches[idx]);
matches.push(m);
}
}
// Lots of MatcherPos instances are created at runtime. Allocating them on the
// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all
// on the stack is also slow, because MatcherPos is quite a large type and
// instances get moved around a lot between vectors, which requires lots of
// slow memcpy calls.
//
// Therefore, the initial MatcherPos is always allocated on the stack,
// subsequent ones (of which there aren't that many) are allocated on the heap,
// and this type is used to encapsulate both cases.
enum MatcherPosHandle<'a> {
Ref(&'a mut MatcherPos<'a>),
Box(Box<MatcherPos<'a>>),
}
impl<'a> Clone for MatcherPosHandle<'a> {
// This always produces a new Box.
fn clone(&self) -> Self {
MatcherPosHandle::Box(match *self {
MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()),
MatcherPosHandle::Box(ref b) => b.clone(),
})
}
}
impl<'a> Deref for MatcherPosHandle<'a> {
type Target = MatcherPos<'a>;
fn deref(&self) -> &Self::Target {
match *self {
MatcherPosHandle::Ref(ref r) => r,
MatcherPosHandle::Box(ref b) => b,
}
}
}
impl<'a> DerefMut for MatcherPosHandle<'a> {
fn deref_mut(&mut self) -> &mut MatcherPos<'a> {
match *self {
MatcherPosHandle::Ref(ref mut r) => r,
MatcherPosHandle::Box(ref mut b) => b,
}
}
}
/// Represents the possible results of an attempted parse.
pub enum ParseResult<T> {
/// Parsed successfully.
Success(T),
/// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
Failure(syntax_pos::Span, Token),
/// Fatal error (malformed macro?). Abort compilation.
Error(syntax_pos::Span, String),
}
/// A `ParseResult` where the `Success` variant contains a mapping of `Ident`s to `NamedMatch`es.
/// This represents the mapping of metavars to the token trees they bind to.
pub type NamedParseResult = ParseResult<HashMap<Ident, Rc<NamedMatch>>>;
/// Count how many metavars are named in the given matcher `ms`.
pub fn count_names(ms: &[TokenTree]) -> usize {
ms.iter().fold(0, |count, elt| {
count + match *elt {
TokenTree::Sequence(_, ref seq) => seq.num_captures,
TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
TokenTree::MetaVar(..) => 0,
TokenTree::MetaVarDecl(..) => 1,
TokenTree::Token(..) => 0,
}
})
}
/// Initialize `len` empty shared `Vec`s to be used to store matches of metavars.
fn create_matches(len: usize) -> Vec<Rc<Vec<NamedMatch>>> {
(0..len).into_iter().map(|_| Rc::new(Vec::new())).collect()
}
/// Generate the top-level matcher position in which the "dot" is before the first token of the
/// matcher `ms` and we are going to start matching at position `lo` in the source.
fn initial_matcher_pos(ms: &[TokenTree], lo: BytePos) -> MatcherPos {
let match_idx_hi = count_names(ms);
let matches = create_matches(match_idx_hi);
MatcherPos {
// Start with the top level matcher given to us
top_elts: TtSeq(ms), // "elts" is an abbr. for "elements"
// The "dot" is before the first token of the matcher
idx: 0,
// We start matching with byte `lo` in the source code
sp_lo: lo,
// Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`.
// `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since
// we haven't actually matched anything yet.
matches,
match_lo: 0,
match_cur: 0,
match_hi: match_idx_hi,
// Haven't descended into any delimiters, so empty stack
stack: vec![],
// Haven't descended into any sequences, so both of these are `None`.
seq_op: None,
sep: None,
up: None,
}
}
/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`:
/// so it is associated with a single ident in a parse, and all
/// `MatchedNonterminal`s in the `NamedMatch` have the same nonterminal type
/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a
/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it.
///
/// The in-memory structure of a particular `NamedMatch` represents the match
/// that occurred when a particular subset of a matcher was applied to a
/// particular token tree.
///
/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
/// the `MatchedNonterminal`s, will depend on the token tree it was applied
/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating
/// token tree. The depth of the `NamedMatch` structure will therefore depend
/// only on the nesting depth of `ast::TTSeq`s in the originating
/// token tree it was derived from.
#[derive(Debug, Clone)]
pub enum NamedMatch {
MatchedSeq(Rc<Vec<NamedMatch>>, syntax_pos::Span),
MatchedNonterminal(Rc<Nonterminal>),
}
/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input
/// and an iterator of items that matched input and produces a `NamedParseResult`.
fn nameize<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
ms: &[TokenTree],
mut res: I,
) -> NamedParseResult {
// Recursively descend into each type of matcher (e.g. sequences, delimited, metavars) and make
// sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
// binding, then there is an error. If it does, then we insert the binding into the
// `NamedParseResult`.
fn n_rec<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
m: &TokenTree,
res: &mut I,
ret_val: &mut HashMap<Ident, Rc<NamedMatch>>,
) -> Result<(), (syntax_pos::Span, String)> {
match *m {
TokenTree::Sequence(_, ref seq) => for next_m in &seq.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?
},
TokenTree::Delimited(_, ref delim) => for next_m in &delim.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
},
TokenTree::MetaVarDecl(span, _, id) if id.name == keywords::Invalid.name() => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
return Err((span, "missing fragment specifier".to_string()));
}
}
TokenTree::MetaVarDecl(sp, bind_name, _) => {
match ret_val.entry(bind_name) {
Vacant(spot) => {
// FIXME(simulacrum): Don't construct Rc here
spot.insert(Rc::new(res.next().unwrap()));
}
Occupied(..) => {
return Err((sp, format!("duplicated bind name: {}", bind_name)))
}
}
}
TokenTree::MetaVar(..) | TokenTree::Token(..) => (),
}
Ok(())
}
let mut ret_val = HashMap::new();
for m in ms {
match n_rec(sess, m, res.by_ref(), &mut ret_val) {
Ok(_) => {}
Err((sp, msg)) => return Error(sp, msg),
}
}
Success(ret_val)
}
/// Generate an appropriate parsing failure message. For EOF, this is "unexpected end...". For
/// other tokens, this is "unexpected token...".
pub fn parse_failure_msg(tok: Token) -> String {
match tok {
token::Eof => "unexpected end of macro invocation".to_string(),
_ => format!(
"no rules expected the token `{}`",
pprust::token_to_string(&tok)
),
}
}
/// Perform a token equality check, ignoring syntax context (that is, an unhygienic comparison)
fn token_name_eq(t1: &Token, t2: &Token) -> bool {
if let (Some((id1, is_raw1)), Some((id2, is_raw2))) = (t1.ident(), t2.ident()) {
id1.name == id2.name && is_raw1 == is_raw2
} else if let (Some(id1), Some(id2)) = (t1.lifetime(), t2.lifetime()) {
id1.name == id2.name
} else {
*t1 == *t2
}
}
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
/// produce more items in `next_items`, `eof_items`, and `bb_items`.
///
/// For more info about the how this happens, see the module-level doc comments and the inline
/// comments of this function.
///
/// # Parameters
///
/// - `sess`: the parsing session into which errors are emitted.
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
/// successful execution of this function.
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
/// the function `parse`.
/// - `eof_items`: the set of items that would be valid if this was the EOF.
/// - `bb_items`: the set of items that are waiting for the black-box parser.
/// - `token`: the current token of the parser.
/// - `span`: the `Span` in the source code corresponding to the token trees we are trying to match
/// against the matcher positions in `cur_items`.
///
/// # Returns
///
/// A `ParseResult`. Note that matches are kept track of through the items generated.
fn inner_parse_loop<'a>(
sess: &ParseSess,
cur_items: &mut OneVector<MatcherPosHandle<'a>>,
next_items: &mut Vec<MatcherPosHandle<'a>>,
eof_items: &mut OneVector<MatcherPosHandle<'a>>,
bb_items: &mut OneVector<MatcherPosHandle<'a>>,
token: &Token,
span: syntax_pos::Span,
) -> ParseResult<()> {
// Pop items from `cur_items` until it is empty.
while let Some(mut item) = cur_items.pop() {
// When unzipped trees end, remove them. This corresponds to backtracking out of a
// delimited submatcher into which we already descended. In backtracking out again, we need
// to advance the "dot" past the delimiters in the outer matcher.
while item.idx >= item.top_elts.len() {
match item.stack.pop() {
Some(MatcherTtFrame { elts, idx }) => {
item.top_elts = elts;
item.idx = idx + 1;
}
None => break,
}
}
// Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
// the matcher (`len`).
let idx = item.idx;
let len = item.top_elts.len();
// If `idx >= len`, then we are at or past the end of the matcher of `item`.
if idx >= len {
// We are repeating iff there is a parent. If the matcher is inside of a repetition,
// then we could be at the end of a sequence or at the beginning of the next
// repetition.
if item.up.is_some() {
// At this point, regardless of whether there is a separator, we should add all
// matches from the complete repetition of the sequence to the shared, top-level
// `matches` list (actually, `up.matches`, which could itself not be the top-level,
// but anyway...). Moreover, we add another item to `cur_items` in which the "dot"
// is at the end of the `up` matcher. This ensures that the "dot" in the `up`
// matcher is also advanced sufficiently.
//
// NOTE: removing the condition `idx == len` allows trailing separators.
if idx == len {
// Get the `up` matcher
let mut new_pos = item.up.clone().unwrap();
// Add matches from this repetition to the `matches` of `up`
for idx in item.match_lo..item.match_hi {
let sub = item.matches[idx].clone();
let span = span.with_lo(item.sp_lo);
new_pos.push_match(idx, MatchedSeq(sub, span));
}
// Move the "dot" past the repetition in `up`
new_pos.match_cur = item.match_hi;
new_pos.idx += 1;
cur_items.push(new_pos);
}
// Check if we need a separator.
if idx == len && item.sep.is_some() {
// We have a separator, and it is the current token. We can advance past the
// separator token.
if item.sep
.as_ref()
.map(|sep| token_name_eq(token, sep))
.unwrap_or(false)
{
item.idx += 1;
next_items.push(item);
}
}
// We don't need a separator. Move the "dot" back to the beginning of the matcher
// and try to match again UNLESS we are only allowed to have _one_ repetition.
else if item.seq_op != Some(quoted::KleeneOp::ZeroOrOne) {
item.match_cur = item.match_lo;
item.idx = 0;
cur_items.push(item);
}
}
// If we are not in a repetition, then being at the end of a matcher means that we have
// reached the potential end of the input.
else {
eof_items.push(item);
}
}
// We are in the middle of a matcher.
else {
// Look at what token in the matcher we are trying to match the current token (`token`)
// against. Depending on that, we may generate new items.
match item.top_elts.get_tt(idx) {
// Need to descend into a sequence
TokenTree::Sequence(sp, seq) => {
// Examine the case where there are 0 matches of this sequence
if seq.op == quoted::KleeneOp::ZeroOrMore
|| seq.op == quoted::KleeneOp::ZeroOrOne
{
let mut new_item = item.clone();
new_item.match_cur += seq.num_captures;
new_item.idx += 1;
for idx in item.match_cur..item.match_cur + seq.num_captures {
new_item.push_match(idx, MatchedSeq(Rc::new(vec![]), sp));
}
cur_items.push(new_item);
}
let matches = create_matches(item.matches.len());
cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos {
stack: vec![],
sep: seq.separator.clone(),
seq_op: Some(seq.op),
idx: 0,
matches,
match_lo: item.match_cur,
match_cur: item.match_cur,
match_hi: item.match_cur + seq.num_captures,
up: Some(item),
sp_lo: sp.lo(),
top_elts: Tt(TokenTree::Sequence(sp, seq)),
})));
}
// We need to match a metavar (but the identifier is invalid)... this is an error
TokenTree::MetaVarDecl(span, _, id) if id.name == keywords::Invalid.name() => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
return Error(span, "missing fragment specifier".to_string());
}
}
// We need to match a metavar with a valid ident... call out to the black-box
// parser by adding an item to `bb_items`.
TokenTree::MetaVarDecl(_, _, id) => {
// Built-in nonterminals never start with these tokens,
// so we can eliminate them from consideration.
if may_begin_with(&*id.as_str(), token) {
bb_items.push(item);
}
}
// We need to descend into a delimited submatcher or a doc comment. To do this, we
// push the current matcher onto a stack and push a new item containing the
// submatcher onto `cur_items`.
//
// At the beginning of the loop, if we reach the end of the delimited submatcher,
// we pop the stack to backtrack out of the descent.
seq @ TokenTree::Delimited(..) | seq @ TokenTree::Token(_, DocComment(..)) => {
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
let idx = item.idx;
item.stack.push(MatcherTtFrame {
elts: lower_elts,
idx,
});
item.idx = 0;
cur_items.push(item);
}
// We just matched a normal token. We can just advance the parser.
TokenTree::Token(_, ref t) if token_name_eq(t, token) => {
item.idx += 1;
next_items.push(item);
}
// There was another token that was not `token`... This means we can't add any
// rules. NOTE that this is not necessarily an error unless _all_ items in
// `cur_items` end up doing this. There may still be some other matchers that do
// end up working out.
TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
}
}
}
// Yay a successful parse (so far)!
Success(())
}
/// Use the given sequence of token trees (`ms`) as a matcher. Match the given token stream `tts`
/// against it and return the match.
///
/// # Parameters
///
/// - `sess`: The session into which errors are emitted
/// - `tts`: The tokenstream we are matching against the pattern `ms`
/// - `ms`: A sequence of token trees representing a pattern against which we are matching
/// - `directory`: Information about the file locations (needed for the black-box parser)
/// - `recurse_into_modules`: Whether or not to recurse into modules (needed for the black-box
/// parser)
pub fn parse(
sess: &ParseSess,
tts: TokenStream,
ms: &[TokenTree],
directory: Option<Directory>,
recurse_into_modules: bool,
) -> NamedParseResult {
// Create a parser that can be used for the "black box" parts.
let mut parser = Parser::new(sess, tts, directory, recurse_into_modules, true);
// A queue of possible matcher positions. We initialize it with the matcher position in which
// the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then
// processes all of these possible matcher positions and produces posible next positions into
// `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
// and we start over again.
//
// This MatcherPos instance is allocated on the stack. All others -- and
// there are frequently *no* others! -- are allocated on the heap.
let mut initial = initial_matcher_pos(ms, parser.span.lo());
let mut cur_items = OneVector::one(MatcherPosHandle::Ref(&mut initial));
let mut next_items = Vec::new();
loop {
// Matcher positions black-box parsed by parser.rs (`parser`)
let mut bb_items = OneVector::new();
// Matcher positions that would be valid if the macro invocation was over now
let mut eof_items = OneVector::new();
assert!(next_items.is_empty());
// Process `cur_items` until either we have finished the input or we need to get some
// parsing from the black-box parser done. The result is that `next_items` will contain a
// bunch of possible next matcher positions in `next_items`.
match inner_parse_loop(
sess,
&mut cur_items,
&mut next_items,
&mut eof_items,
&mut bb_items,
&parser.token,
parser.span,
) {
Success(_) => {}
Failure(sp, tok) => return Failure(sp, tok),
Error(sp, msg) => return Error(sp, msg),
}
// inner parse loop handled all cur_items, so it's empty
assert!(cur_items.is_empty());
// We need to do some post processing after the `inner_parser_loop`.
//
// Error messages here could be improved with links to original rules.
// If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
// either the parse is ambiguous (which should never happen) or their is a syntax error.
if token_name_eq(&parser.token, &token::Eof) {
if eof_items.len() == 1 {
let matches = eof_items[0]
.matches
.iter_mut()
.map(|dv| Rc::make_mut(dv).pop().unwrap());
return nameize(sess, ms, matches);
} else if eof_items.len() > 1 {
return Error(
parser.span,
"ambiguity: multiple successful parses".to_string(),
);
} else {
return Failure(parser.span, token::Eof);
}
}
// Performance hack: eof_items may share matchers via Rc with other things that we want
// to modify. Dropping eof_items now may drop these refcounts to 1, preventing an
// unnecessary implicit clone later in Rc::make_mut.
drop(eof_items);
// Another possibility is that we need to call out to parse some rust nonterminal
// (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
let nts = bb_items
.iter()
.map(|item| match item.top_elts.get_tt(item.idx) {
TokenTree::MetaVarDecl(_, bind, name) => format!("{} ('{}')", name, bind),
_ => panic!(),
})
.collect::<Vec<String>>()
.join(" or ");
return Error(
parser.span,
format!(
"local ambiguity: multiple parsing options: {}",
match next_items.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
),
);
}
// If there are no posible next positions AND we aren't waiting for the black-box parser,
// then their is a syntax error.
else if bb_items.is_empty() && next_items.is_empty() {
return Failure(parser.span, parser.token);
}
// Dump all possible `next_items` into `cur_items` for the next iteration.
else if !next_items.is_empty() {
// Now process the next token
cur_items.extend(next_items.drain(..));
parser.bump();
}
// Finally, we have the case where we need to call the black-box parser to get some
// nonterminal.
else {
assert_eq!(bb_items.len(), 1);
let mut item = bb_items.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, ident) = item.top_elts.get_tt(item.idx) {
let match_cur = item.match_cur;
item.push_match(
match_cur,
MatchedNonterminal(Rc::new(parse_nt(&mut parser, span, &ident.as_str()))),
);
item.idx += 1;
item.match_cur += 1;
} else {
unreachable!()
}
cur_items.push(item);
}
assert!(!cur_items.is_empty());
}
}
/// The token is an identifier, but not `_`.
/// We prohibit passing `_` to macros expecting `ident` for now.
fn get_macro_ident(token: &Token) -> Option<(Ident, bool)> {
match *token {
token::Ident(ident, is_raw) if ident.name != keywords::Underscore.name() =>
Some((ident, is_raw)),
_ => None,
}
}
/// Checks whether a non-terminal may begin with a particular token.
///
/// Returning `false` is a *stability guarantee* that such a matcher will *never* begin with that
/// token. Be conservative (return true) if not sure.
fn may_begin_with(name: &str, token: &Token) -> bool {
/// Checks whether the non-terminal may contain a single (non-keyword) identifier.
fn may_be_ident(nt: &token::Nonterminal) -> bool {
match *nt {
token::NtItem(_) | token::NtBlock(_) | token::NtVis(_) => false,
_ => true,
}
}
match name {
"expr" => token.can_begin_expr(),
"ty" => token.can_begin_type(),
"ident" => get_macro_ident(token).is_some(),
"literal" => token.can_begin_literal_or_bool(),
"vis" => match *token {
// The follow-set of :vis + "priv" keyword + interpolated
Token::Comma | Token::Ident(..) | Token::Interpolated(_) => true,
_ => token.can_begin_type(),
},
"block" => match *token {
Token::OpenDelim(token::Brace) => true,
Token::Interpolated(ref nt) => match nt.0 {
token::NtItem(_)
| token::NtPat(_)
| token::NtTy(_)
| token::NtIdent(..)
| token::NtMeta(_)
| token::NtPath(_)
| token::NtVis(_) => false, // none of these may start with '{'.
_ => true,
},
_ => false,
},
"path" | "meta" => match *token {
Token::ModSep | Token::Ident(..) => true,
Token::Interpolated(ref nt) => match nt.0 {
token::NtPath(_) | token::NtMeta(_) => true,
_ => may_be_ident(&nt.0),
},
_ => false,
},
"pat" => match *token {
Token::Ident(..) | // box, ref, mut, and other identifiers (can stricten)
Token::OpenDelim(token::Paren) | // tuple pattern
Token::OpenDelim(token::Bracket) | // slice pattern
Token::BinOp(token::And) | // reference
Token::BinOp(token::Minus) | // negative literal
Token::AndAnd | // double reference
Token::Literal(..) | // literal
Token::DotDot | // range pattern (future compat)
Token::DotDotDot | // range pattern (future compat)
Token::ModSep | // path
Token::Lt | // path (UFCS constant)
Token::BinOp(token::Shl) => true, // path (double UFCS)
Token::Interpolated(ref nt) => may_be_ident(&nt.0),
_ => false,
},
"lifetime" => match *token {
Token::Lifetime(_) => true,
Token::Interpolated(ref nt) => match nt.0 {
token::NtLifetime(_) | token::NtTT(_) => true,
_ => false,
},
_ => false,
},
_ => match *token {
token::CloseDelim(_) => false,
_ => true,
},
}
}
/// A call to the "black-box" parser to parse some rust nonterminal.
///
/// # Parameters
///
/// - `p`: the "black-box" parser to use
/// - `sp`: the `Span` we want to parse
/// - `name`: the name of the metavar _matcher_ we want to match (e.g. `tt`, `ident`, `block`,
/// etc...)
///
/// # Returns
///
/// The parsed nonterminal.
fn parse_nt<'a>(p: &mut Parser<'a>, sp: Span, name: &str) -> Nonterminal {
if name == "tt" {
return token::NtTT(p.parse_token_tree());
}
// check at the beginning and the parser checks after each bump
p.process_potential_macro_variable();
match name {
"item" => match panictry!(p.parse_item()) {
Some(i) => token::NtItem(i),
None => {
p.fatal("expected an item keyword").emit();
FatalError.raise();
}
},
"block" => token::NtBlock(panictry!(p.parse_block())),
"stmt" => match panictry!(p.parse_stmt()) {
Some(s) => token::NtStmt(s),
None => {
p.fatal("expected a statement").emit();
FatalError.raise();
}
},
"pat" => token::NtPat(panictry!(p.parse_pat())),
"expr" => token::NtExpr(panictry!(p.parse_expr())),
"literal" => token::NtLiteral(panictry!(p.parse_literal_maybe_minus())),
"ty" => token::NtTy(panictry!(p.parse_ty())),
// this could be handled like a token, since it is one
"ident" => if let Some((ident, is_raw)) = get_macro_ident(&p.token) {
let span = p.span;
p.bump();
token::NtIdent(Ident::new(ident.name, span), is_raw)
} else {
let token_str = pprust::token_to_string(&p.token);
p.fatal(&format!("expected ident, found {}", &token_str)).emit();
FatalError.raise()
}
"path" => token::NtPath(panictry!(p.parse_path_common(PathStyle::Type, false))),
"meta" => token::NtMeta(panictry!(p.parse_meta_item())),
"vis" => token::NtVis(panictry!(p.parse_visibility(true))),
"lifetime" => if p.check_lifetime() {
token::NtLifetime(p.expect_lifetime().ident)
} else {
let token_str = pprust::token_to_string(&p.token);
p.fatal(&format!("expected a lifetime, found `{}`", &token_str)).emit();
FatalError.raise();
}
// this is not supposed to happen, since it has been checked
// when compiling the macro.
_ => p.span_bug(sp, "invalid fragment specifier"),
}
}