rust/src/librustc_driver/driver.rs

1375 lines
54 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::hir::{self, map as hir_map};
use rustc::hir::lowering::lower_crate;
use rustc::ich::Fingerprint;
use rustc_data_structures::stable_hasher::StableHasher;
use rustc_mir as mir;
use rustc::session::{Session, CompileResult, compile_result_from_err_count};
use rustc::session::config::{self, Input, OutputFilenames, OutputType,
OutputTypes};
use rustc::session::search_paths::PathKind;
use rustc::lint;
use rustc::middle::{self, dependency_format, stability, reachable};
use rustc::middle::privacy::AccessLevels;
use rustc::mir::transform::{MIR_CONST, MIR_VALIDATED, MIR_OPTIMIZED, Passes};
use rustc::ty::{self, TyCtxt, Resolutions, GlobalArenas};
use rustc::traits;
use rustc::util::common::time;
use rustc::util::nodemap::NodeSet;
use rustc::util::fs::rename_or_copy_remove;
use rustc_borrowck as borrowck;
use rustc_incremental::{self, IncrementalHashesMap};
use rustc_resolve::{MakeGlobMap, Resolver};
use rustc_metadata::creader::CrateLoader;
use rustc_metadata::cstore::{self, CStore};
use rustc_trans::back::{link, write};
use rustc_trans as trans;
use rustc_typeck as typeck;
use rustc_privacy;
use rustc_plugin::registry::Registry;
use rustc_plugin as plugin;
use rustc_passes::{ast_validation, no_asm, loops, consts, static_recursion, hir_stats};
use rustc_const_eval::{self, check_match};
use super::Compilation;
use serialize::json;
use std::env;
use std::ffi::{OsString, OsStr};
use std::fs;
use std::io::{self, Write};
use std::iter;
use std::path::{Path, PathBuf};
use std::rc::Rc;
use syntax::{ast, diagnostics, visit};
use syntax::attr;
use syntax::ext::base::ExtCtxt;
use syntax::parse::{self, PResult};
use syntax::symbol::Symbol;
use syntax::util::node_count::NodeCounter;
use syntax;
use syntax_ext;
use arena::DroplessArena;
use derive_registrar;
pub fn compile_input(sess: &Session,
cstore: &CStore,
input: &Input,
outdir: &Option<PathBuf>,
output: &Option<PathBuf>,
addl_plugins: Option<Vec<String>>,
control: &CompileController) -> CompileResult {
macro_rules! controller_entry_point {
($point: ident, $tsess: expr, $make_state: expr, $phase_result: expr) => {{
let state = &mut $make_state;
let phase_result: &CompileResult = &$phase_result;
if phase_result.is_ok() || control.$point.run_callback_on_error {
(control.$point.callback)(state);
}
if control.$point.stop == Compilation::Stop {
return compile_result_from_err_count($tsess.err_count());
}
}}
}
// We need nested scopes here, because the intermediate results can keep
// large chunks of memory alive and we want to free them as soon as
// possible to keep the peak memory usage low
let (outputs, trans) = {
let krate = match phase_1_parse_input(sess, input) {
Ok(krate) => krate,
Err(mut parse_error) => {
parse_error.emit();
return Err(1);
}
};
let (krate, registry) = {
let mut compile_state = CompileState::state_after_parse(input,
sess,
outdir,
output,
krate,
&cstore);
controller_entry_point!(after_parse,
sess,
compile_state,
Ok(()));
(compile_state.krate.unwrap(), compile_state.registry)
};
let outputs = build_output_filenames(input, outdir, output, &krate.attrs, sess);
let crate_name = link::find_crate_name(Some(sess), &krate.attrs, input);
let ExpansionResult { expanded_crate, defs, analysis, resolutions, mut hir_forest } = {
phase_2_configure_and_expand(
sess, &cstore, krate, registry, &crate_name, addl_plugins, control.make_glob_map,
|expanded_crate| {
let mut state = CompileState::state_after_expand(
input, sess, outdir, output, &cstore, expanded_crate, &crate_name,
);
controller_entry_point!(after_expand, sess, state, Ok(()));
Ok(())
}
)?
};
write_out_deps(sess, &outputs, &crate_name);
if sess.opts.output_types.contains_key(&OutputType::DepInfo) &&
sess.opts.output_types.keys().count() == 1 {
return Ok(())
}
let arena = DroplessArena::new();
let arenas = GlobalArenas::new();
// Construct the HIR map
let hir_map = time(sess.time_passes(),
"indexing hir",
|| hir_map::map_crate(&mut hir_forest, defs));
{
let _ignore = hir_map.dep_graph.in_ignore();
controller_entry_point!(after_hir_lowering,
sess,
CompileState::state_after_hir_lowering(input,
sess,
outdir,
output,
&arena,
&arenas,
&cstore,
&hir_map,
&analysis,
&resolutions,
&expanded_crate,
&hir_map.krate(),
&crate_name),
Ok(()));
}
time(sess.time_passes(), "attribute checking", || {
hir::check_attr::check_crate(sess, &expanded_crate);
});
let opt_crate = if keep_ast(sess) {
Some(&expanded_crate)
} else {
drop(expanded_crate);
None
};
phase_3_run_analysis_passes(sess,
hir_map,
analysis,
resolutions,
&arena,
&arenas,
&crate_name,
|tcx, analysis, incremental_hashes_map, result| {
{
// Eventually, we will want to track plugins.
let _ignore = tcx.dep_graph.in_ignore();
let mut state = CompileState::state_after_analysis(input,
sess,
outdir,
output,
opt_crate,
tcx.hir.krate(),
&analysis,
tcx,
&crate_name);
(control.after_analysis.callback)(&mut state);
if control.after_analysis.stop == Compilation::Stop {
return result.and_then(|_| Err(0usize));
}
}
result?;
if log_enabled!(::log::LogLevel::Info) {
println!("Pre-trans");
tcx.print_debug_stats();
}
let trans = phase_4_translate_to_llvm(tcx, analysis, &incremental_hashes_map,
&outputs);
if log_enabled!(::log::LogLevel::Info) {
println!("Post-trans");
tcx.print_debug_stats();
}
if tcx.sess.opts.output_types.contains_key(&OutputType::Mir) {
if let Err(e) = mir::transform::dump_mir::emit_mir(tcx, &outputs) {
sess.err(&format!("could not emit MIR: {}", e));
sess.abort_if_errors();
}
}
Ok((outputs, trans))
})??
};
if sess.opts.debugging_opts.print_type_sizes {
sess.code_stats.borrow().print_type_sizes();
}
let phase5_result = phase_5_run_llvm_passes(sess, &trans, &outputs);
controller_entry_point!(after_llvm,
sess,
CompileState::state_after_llvm(input, sess, outdir, output, &trans),
phase5_result);
phase5_result?;
write::cleanup_llvm(&trans);
phase_6_link_output(sess, &trans, &outputs);
// Now that we won't touch anything in the incremental compilation directory
// any more, we can finalize it (which involves renaming it)
rustc_incremental::finalize_session_directory(sess, trans.link.crate_hash);
if sess.opts.debugging_opts.perf_stats {
sess.print_perf_stats();
}
controller_entry_point!(compilation_done,
sess,
CompileState::state_when_compilation_done(input, sess, outdir, output),
Ok(()));
Ok(())
}
fn keep_hygiene_data(sess: &Session) -> bool {
sess.opts.debugging_opts.keep_hygiene_data
}
fn keep_ast(sess: &Session) -> bool {
sess.opts.debugging_opts.keep_ast || ::save_analysis(sess)
}
/// The name used for source code that doesn't originate in a file
/// (e.g. source from stdin or a string)
pub fn anon_src() -> String {
"<anon>".to_string()
}
pub fn source_name(input: &Input) -> String {
match *input {
// FIXME (#9639): This needs to handle non-utf8 paths
Input::File(ref ifile) => ifile.to_str().unwrap().to_string(),
Input::Str { ref name, .. } => name.clone(),
}
}
/// CompileController is used to customise compilation, it allows compilation to
/// be stopped and/or to call arbitrary code at various points in compilation.
/// It also allows for various flags to be set to influence what information gets
/// collected during compilation.
///
/// This is a somewhat higher level controller than a Session - the Session
/// controls what happens in each phase, whereas the CompileController controls
/// whether a phase is run at all and whether other code (from outside the
/// the compiler) is run between phases.
///
/// Note that if compilation is set to stop and a callback is provided for a
/// given entry point, the callback is called before compilation is stopped.
///
/// Expect more entry points to be added in the future.
pub struct CompileController<'a> {
pub after_parse: PhaseController<'a>,
pub after_expand: PhaseController<'a>,
pub after_hir_lowering: PhaseController<'a>,
pub after_analysis: PhaseController<'a>,
pub after_llvm: PhaseController<'a>,
pub compilation_done: PhaseController<'a>,
pub make_glob_map: MakeGlobMap,
}
impl<'a> CompileController<'a> {
pub fn basic() -> CompileController<'a> {
CompileController {
after_parse: PhaseController::basic(),
after_expand: PhaseController::basic(),
after_hir_lowering: PhaseController::basic(),
after_analysis: PhaseController::basic(),
after_llvm: PhaseController::basic(),
compilation_done: PhaseController::basic(),
make_glob_map: MakeGlobMap::No,
}
}
}
pub struct PhaseController<'a> {
pub stop: Compilation,
// If true then the compiler will try to run the callback even if the phase
// ends with an error. Note that this is not always possible.
pub run_callback_on_error: bool,
pub callback: Box<Fn(&mut CompileState) + 'a>,
}
impl<'a> PhaseController<'a> {
pub fn basic() -> PhaseController<'a> {
PhaseController {
stop: Compilation::Continue,
run_callback_on_error: false,
callback: box |_| {},
}
}
}
/// State that is passed to a callback. What state is available depends on when
/// during compilation the callback is made. See the various constructor methods
/// (`state_*`) in the impl to see which data is provided for any given entry point.
pub struct CompileState<'a, 'tcx: 'a> {
pub input: &'a Input,
pub session: &'tcx Session,
pub krate: Option<ast::Crate>,
pub registry: Option<Registry<'a>>,
pub cstore: Option<&'a CStore>,
pub crate_name: Option<&'a str>,
pub output_filenames: Option<&'a OutputFilenames>,
pub out_dir: Option<&'a Path>,
pub out_file: Option<&'a Path>,
pub arena: Option<&'tcx DroplessArena>,
pub arenas: Option<&'tcx GlobalArenas<'tcx>>,
pub expanded_crate: Option<&'a ast::Crate>,
pub hir_crate: Option<&'a hir::Crate>,
pub hir_map: Option<&'a hir_map::Map<'tcx>>,
pub resolutions: Option<&'a Resolutions>,
pub analysis: Option<&'a ty::CrateAnalysis>,
pub tcx: Option<TyCtxt<'a, 'tcx, 'tcx>>,
pub trans: Option<&'a trans::CrateTranslation>,
}
impl<'a, 'tcx> CompileState<'a, 'tcx> {
fn empty(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>)
-> Self {
CompileState {
input: input,
session: session,
out_dir: out_dir.as_ref().map(|s| &**s),
out_file: None,
arena: None,
arenas: None,
krate: None,
registry: None,
cstore: None,
crate_name: None,
output_filenames: None,
expanded_crate: None,
hir_crate: None,
hir_map: None,
resolutions: None,
analysis: None,
tcx: None,
trans: None,
}
}
fn state_after_parse(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>,
out_file: &'a Option<PathBuf>,
krate: ast::Crate,
cstore: &'a CStore)
-> Self {
CompileState {
// Initialize the registry before moving `krate`
registry: Some(Registry::new(&session, krate.span)),
krate: Some(krate),
cstore: Some(cstore),
out_file: out_file.as_ref().map(|s| &**s),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_expand(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>,
out_file: &'a Option<PathBuf>,
cstore: &'a CStore,
expanded_crate: &'a ast::Crate,
crate_name: &'a str)
-> Self {
CompileState {
crate_name: Some(crate_name),
cstore: Some(cstore),
expanded_crate: Some(expanded_crate),
out_file: out_file.as_ref().map(|s| &**s),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_hir_lowering(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>,
out_file: &'a Option<PathBuf>,
arena: &'tcx DroplessArena,
arenas: &'tcx GlobalArenas<'tcx>,
cstore: &'a CStore,
hir_map: &'a hir_map::Map<'tcx>,
analysis: &'a ty::CrateAnalysis,
resolutions: &'a Resolutions,
krate: &'a ast::Crate,
hir_crate: &'a hir::Crate,
crate_name: &'a str)
-> Self {
CompileState {
crate_name: Some(crate_name),
arena: Some(arena),
arenas: Some(arenas),
cstore: Some(cstore),
hir_map: Some(hir_map),
analysis: Some(analysis),
resolutions: Some(resolutions),
expanded_crate: Some(krate),
hir_crate: Some(hir_crate),
out_file: out_file.as_ref().map(|s| &**s),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_analysis(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>,
out_file: &'a Option<PathBuf>,
krate: Option<&'a ast::Crate>,
hir_crate: &'a hir::Crate,
analysis: &'a ty::CrateAnalysis,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
crate_name: &'a str)
-> Self {
CompileState {
analysis: Some(analysis),
tcx: Some(tcx),
expanded_crate: krate,
hir_crate: Some(hir_crate),
crate_name: Some(crate_name),
out_file: out_file.as_ref().map(|s| &**s),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_llvm(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>,
out_file: &'a Option<PathBuf>,
trans: &'a trans::CrateTranslation)
-> Self {
CompileState {
trans: Some(trans),
out_file: out_file.as_ref().map(|s| &**s),
..CompileState::empty(input, session, out_dir)
}
}
fn state_when_compilation_done(input: &'a Input,
session: &'tcx Session,
out_dir: &'a Option<PathBuf>,
out_file: &'a Option<PathBuf>)
-> Self {
CompileState {
out_file: out_file.as_ref().map(|s| &**s),
..CompileState::empty(input, session, out_dir)
}
}
}
pub fn phase_1_parse_input<'a>(sess: &'a Session, input: &Input) -> PResult<'a, ast::Crate> {
let continue_after_error = sess.opts.debugging_opts.continue_parse_after_error;
sess.diagnostic().set_continue_after_error(continue_after_error);
let krate = time(sess.time_passes(), "parsing", || {
match *input {
Input::File(ref file) => {
parse::parse_crate_from_file(file, &sess.parse_sess)
}
Input::Str { ref input, ref name } => {
parse::parse_crate_from_source_str(name.clone(), input.clone(), &sess.parse_sess)
}
}
})?;
sess.diagnostic().set_continue_after_error(true);
if sess.opts.debugging_opts.ast_json_noexpand {
println!("{}", json::as_json(&krate));
}
if sess.opts.debugging_opts.input_stats {
println!("Lines of code: {}", sess.codemap().count_lines());
println!("Pre-expansion node count: {}", count_nodes(&krate));
}
if let Some(ref s) = sess.opts.debugging_opts.show_span {
syntax::show_span::run(sess.diagnostic(), s, &krate);
}
if sess.opts.debugging_opts.hir_stats {
hir_stats::print_ast_stats(&krate, "PRE EXPANSION AST STATS");
}
Ok(krate)
}
fn count_nodes(krate: &ast::Crate) -> usize {
let mut counter = NodeCounter::new();
visit::walk_crate(&mut counter, krate);
counter.count
}
// For continuing compilation after a parsed crate has been
// modified
pub struct ExpansionResult {
pub expanded_crate: ast::Crate,
pub defs: hir_map::Definitions,
pub analysis: ty::CrateAnalysis,
pub resolutions: Resolutions,
pub hir_forest: hir_map::Forest,
}
/// Run the "early phases" of the compiler: initial `cfg` processing,
/// loading compiler plugins (including those from `addl_plugins`),
/// syntax expansion, secondary `cfg` expansion, synthesis of a test
/// harness if one is to be provided, injection of a dependency on the
/// standard library and prelude, and name resolution.
///
/// Returns `None` if we're aborting after handling -W help.
pub fn phase_2_configure_and_expand<F>(sess: &Session,
cstore: &CStore,
krate: ast::Crate,
registry: Option<Registry>,
crate_name: &str,
addl_plugins: Option<Vec<String>>,
make_glob_map: MakeGlobMap,
after_expand: F)
-> Result<ExpansionResult, usize>
where F: FnOnce(&ast::Crate) -> CompileResult,
{
let time_passes = sess.time_passes();
let (mut krate, features) = syntax::config::features(krate, &sess.parse_sess, sess.opts.test);
// these need to be set "early" so that expansion sees `quote` if enabled.
*sess.features.borrow_mut() = features;
*sess.crate_types.borrow_mut() = collect_crate_types(sess, &krate.attrs);
*sess.crate_disambiguator.borrow_mut() = Symbol::intern(&compute_crate_disambiguator(sess));
time(time_passes, "recursion limit", || {
middle::recursion_limit::update_limits(sess, &krate);
});
krate = time(time_passes, "crate injection", || {
let alt_std_name = sess.opts.alt_std_name.clone();
syntax::std_inject::maybe_inject_crates_ref(krate, alt_std_name)
});
let mut addl_plugins = Some(addl_plugins);
let registrars = time(time_passes, "plugin loading", || {
plugin::load::load_plugins(sess,
&cstore,
&krate,
crate_name,
addl_plugins.take().unwrap())
});
let mut registry = registry.unwrap_or(Registry::new(sess, krate.span));
time(time_passes, "plugin registration", || {
if sess.features.borrow().rustc_diagnostic_macros {
registry.register_macro("__diagnostic_used",
diagnostics::plugin::expand_diagnostic_used);
registry.register_macro("__register_diagnostic",
diagnostics::plugin::expand_register_diagnostic);
registry.register_macro("__build_diagnostic_array",
diagnostics::plugin::expand_build_diagnostic_array);
}
for registrar in registrars {
registry.args_hidden = Some(registrar.args);
(registrar.fun)(&mut registry);
}
});
let whitelisted_legacy_custom_derives = registry.take_whitelisted_custom_derives();
let Registry { syntax_exts, early_lint_passes, late_lint_passes, lint_groups,
llvm_passes, attributes, .. } = registry;
sess.track_errors(|| {
let mut ls = sess.lint_store.borrow_mut();
for pass in early_lint_passes {
ls.register_early_pass(Some(sess), true, pass);
}
for pass in late_lint_passes {
ls.register_late_pass(Some(sess), true, pass);
}
for (name, to) in lint_groups {
ls.register_group(Some(sess), true, name, to);
}
*sess.plugin_llvm_passes.borrow_mut() = llvm_passes;
*sess.plugin_attributes.borrow_mut() = attributes.clone();
})?;
// Lint plugins are registered; now we can process command line flags.
if sess.opts.describe_lints {
super::describe_lints(&sess.lint_store.borrow(), true);
return Err(0);
}
sess.track_errors(|| sess.lint_store.borrow_mut().process_command_line(sess))?;
// Currently, we ignore the name resolution data structures for the purposes of dependency
// tracking. Instead we will run name resolution and include its output in the hash of each
// item, much like we do for macro expansion. In other words, the hash reflects not just
// its contents but the results of name resolution on those contents. Hopefully we'll push
// this back at some point.
let _ignore = sess.dep_graph.in_ignore();
let mut crate_loader = CrateLoader::new(sess, &cstore, crate_name);
crate_loader.preprocess(&krate);
let resolver_arenas = Resolver::arenas();
let mut resolver = Resolver::new(sess,
&krate,
crate_name,
make_glob_map,
&mut crate_loader,
&resolver_arenas);
resolver.whitelisted_legacy_custom_derives = whitelisted_legacy_custom_derives;
syntax_ext::register_builtins(&mut resolver, syntax_exts, sess.features.borrow().quote);
krate = time(time_passes, "expansion", || {
// Windows dlls do not have rpaths, so they don't know how to find their
// dependencies. It's up to us to tell the system where to find all the
// dependent dlls. Note that this uses cfg!(windows) as opposed to
// targ_cfg because syntax extensions are always loaded for the host
// compiler, not for the target.
//
// This is somewhat of an inherently racy operation, however, as
// multiple threads calling this function could possibly continue
// extending PATH far beyond what it should. To solve this for now we
// just don't add any new elements to PATH which are already there
// within PATH. This is basically a targeted fix at #17360 for rustdoc
// which runs rustc in parallel but has been seen (#33844) to cause
// problems with PATH becoming too long.
let mut old_path = OsString::new();
if cfg!(windows) {
old_path = env::var_os("PATH").unwrap_or(old_path);
let mut new_path = sess.host_filesearch(PathKind::All)
.get_dylib_search_paths();
for path in env::split_paths(&old_path) {
if !new_path.contains(&path) {
new_path.push(path);
}
}
env::set_var("PATH",
&env::join_paths(new_path.iter()
.filter(|p| env::join_paths(iter::once(p)).is_ok()))
.unwrap());
}
let features = sess.features.borrow();
let cfg = syntax::ext::expand::ExpansionConfig {
features: Some(&features),
recursion_limit: sess.recursion_limit.get(),
trace_mac: sess.opts.debugging_opts.trace_macros,
should_test: sess.opts.test,
..syntax::ext::expand::ExpansionConfig::default(crate_name.to_string())
};
let mut ecx = ExtCtxt::new(&sess.parse_sess, cfg, &mut resolver);
let err_count = ecx.parse_sess.span_diagnostic.err_count();
let krate = ecx.monotonic_expander().expand_crate(krate);
ecx.check_unused_macros();
let mut missing_fragment_specifiers: Vec<_> =
ecx.parse_sess.missing_fragment_specifiers.borrow().iter().cloned().collect();
missing_fragment_specifiers.sort();
for span in missing_fragment_specifiers {
let lint = lint::builtin::MISSING_FRAGMENT_SPECIFIER;
let msg = "missing fragment specifier".to_string();
sess.add_lint(lint, ast::CRATE_NODE_ID, span, msg);
}
if ecx.parse_sess.span_diagnostic.err_count() - ecx.resolve_err_count > err_count {
ecx.parse_sess.span_diagnostic.abort_if_errors();
}
if cfg!(windows) {
env::set_var("PATH", &old_path);
}
krate
});
krate = time(time_passes, "maybe building test harness", || {
syntax::test::modify_for_testing(&sess.parse_sess,
&mut resolver,
sess.opts.test,
krate,
sess.diagnostic())
});
// If we're in rustdoc we're always compiling as an rlib, but that'll trip a
// bunch of checks in the `modify` function below. For now just skip this
// step entirely if we're rustdoc as it's not too useful anyway.
if !sess.opts.actually_rustdoc {
krate = time(time_passes, "maybe creating a macro crate", || {
let crate_types = sess.crate_types.borrow();
let num_crate_types = crate_types.len();
let is_proc_macro_crate = crate_types.contains(&config::CrateTypeProcMacro);
let is_test_crate = sess.opts.test;
syntax_ext::proc_macro_registrar::modify(&sess.parse_sess,
&mut resolver,
krate,
is_proc_macro_crate,
is_test_crate,
num_crate_types,
sess.diagnostic())
});
}
after_expand(&krate)?;
if sess.opts.debugging_opts.input_stats {
println!("Post-expansion node count: {}", count_nodes(&krate));
}
if sess.opts.debugging_opts.hir_stats {
hir_stats::print_ast_stats(&krate, "POST EXPANSION AST STATS");
}
if sess.opts.debugging_opts.ast_json {
println!("{}", json::as_json(&krate));
}
time(time_passes,
"checking for inline asm in case the target doesn't support it",
|| no_asm::check_crate(sess, &krate));
time(time_passes,
"early lint checks",
|| lint::check_ast_crate(sess, &krate));
time(time_passes,
"AST validation",
|| ast_validation::check_crate(sess, &krate));
time(time_passes, "name resolution", || -> CompileResult {
resolver.resolve_crate(&krate);
Ok(())
})?;
if resolver.found_unresolved_macro {
sess.parse_sess.span_diagnostic.abort_if_errors();
}
// Needs to go *after* expansion to be able to check the results of macro expansion.
time(time_passes, "complete gated feature checking", || {
sess.track_errors(|| {
syntax::feature_gate::check_crate(&krate,
&sess.parse_sess,
&sess.features.borrow(),
&attributes,
sess.opts.unstable_features);
})
})?;
// Lower ast -> hir.
let hir_forest = time(time_passes, "lowering ast -> hir", || {
let hir_crate = lower_crate(sess, &krate, &mut resolver);
if sess.opts.debugging_opts.hir_stats {
hir_stats::print_hir_stats(&hir_crate);
}
hir_map::Forest::new(hir_crate, &sess.dep_graph)
});
// Discard hygiene data, which isn't required after lowering to HIR.
if !keep_hygiene_data(sess) {
syntax::ext::hygiene::clear_markings();
}
Ok(ExpansionResult {
expanded_crate: krate,
defs: resolver.definitions,
analysis: ty::CrateAnalysis {
access_levels: Rc::new(AccessLevels::default()),
reachable: Rc::new(NodeSet()),
name: crate_name.to_string(),
glob_map: if resolver.make_glob_map { Some(resolver.glob_map) } else { None },
},
resolutions: Resolutions {
freevars: resolver.freevars,
export_map: resolver.export_map,
trait_map: resolver.trait_map,
maybe_unused_trait_imports: resolver.maybe_unused_trait_imports,
},
hir_forest: hir_forest,
})
}
/// Run the resolution, typechecking, region checking and other
/// miscellaneous analysis passes on the crate. Return various
/// structures carrying the results of the analysis.
pub fn phase_3_run_analysis_passes<'tcx, F, R>(sess: &'tcx Session,
hir_map: hir_map::Map<'tcx>,
mut analysis: ty::CrateAnalysis,
resolutions: Resolutions,
arena: &'tcx DroplessArena,
arenas: &'tcx GlobalArenas<'tcx>,
name: &str,
f: F)
-> Result<R, usize>
where F: for<'a> FnOnce(TyCtxt<'a, 'tcx, 'tcx>,
ty::CrateAnalysis,
IncrementalHashesMap,
CompileResult) -> R
{
macro_rules! try_with_f {
($e: expr, ($t: expr, $a: expr, $h: expr)) => {
match $e {
Ok(x) => x,
Err(x) => {
f($t, $a, $h, Err(x));
return Err(x);
}
}
}
}
let time_passes = sess.time_passes();
let lang_items = time(time_passes, "language item collection", || {
sess.track_errors(|| {
middle::lang_items::collect_language_items(&sess, &hir_map)
})
})?;
let named_region_map = time(time_passes,
"lifetime resolution",
|| middle::resolve_lifetime::krate(sess, &hir_map))?;
time(time_passes,
"looking for entry point",
|| middle::entry::find_entry_point(sess, &hir_map));
sess.plugin_registrar_fn.set(time(time_passes, "looking for plugin registrar", || {
plugin::build::find_plugin_registrar(sess.diagnostic(), &hir_map)
}));
sess.derive_registrar_fn.set(derive_registrar::find(&hir_map));
time(time_passes,
"loop checking",
|| loops::check_crate(sess, &hir_map));
time(time_passes,
"static item recursion checking",
|| static_recursion::check_crate(sess, &hir_map))?;
let index = stability::Index::new(&sess);
let mut local_providers = ty::maps::Providers::default();
borrowck::provide(&mut local_providers);
mir::provide(&mut local_providers);
reachable::provide(&mut local_providers);
rustc_privacy::provide(&mut local_providers);
trans::provide(&mut local_providers);
typeck::provide(&mut local_providers);
ty::provide(&mut local_providers);
traits::provide(&mut local_providers);
reachable::provide(&mut local_providers);
rustc_const_eval::provide(&mut local_providers);
middle::region::provide(&mut local_providers);
let mut extern_providers = ty::maps::Providers::default();
cstore::provide(&mut extern_providers);
trans::provide(&mut extern_providers);
ty::provide_extern(&mut extern_providers);
traits::provide_extern(&mut extern_providers);
// FIXME(eddyb) get rid of this once we replace const_eval with miri.
rustc_const_eval::provide(&mut extern_providers);
// Setup the MIR passes that we want to run.
let mut passes = Passes::new();
passes.push_hook(mir::transform::dump_mir::DumpMir);
// What we need to do constant evaluation.
passes.push_pass(MIR_CONST, mir::transform::simplify::SimplifyCfg::new("initial"));
passes.push_pass(MIR_CONST, mir::transform::type_check::TypeckMir);
// What we need to run borrowck etc.
passes.push_pass(MIR_VALIDATED, mir::transform::qualify_consts::QualifyAndPromoteConstants);
passes.push_pass(MIR_VALIDATED,
mir::transform::simplify_branches::SimplifyBranches::new("initial"));
passes.push_pass(MIR_VALIDATED, mir::transform::simplify::SimplifyCfg::new("qualify-consts"));
// Optimizations begin.
passes.push_pass(MIR_OPTIMIZED, mir::transform::no_landing_pads::NoLandingPads);
passes.push_pass(MIR_OPTIMIZED, mir::transform::simplify::SimplifyCfg::new("no-landing-pads"));
// From here on out, regions are gone.
passes.push_pass(MIR_OPTIMIZED, mir::transform::erase_regions::EraseRegions);
passes.push_pass(MIR_OPTIMIZED, mir::transform::add_call_guards::AddCallGuards);
passes.push_pass(MIR_OPTIMIZED, borrowck::ElaborateDrops);
passes.push_pass(MIR_OPTIMIZED, mir::transform::no_landing_pads::NoLandingPads);
passes.push_pass(MIR_OPTIMIZED, mir::transform::simplify::SimplifyCfg::new("elaborate-drops"));
// No lifetime analysis based on borrowing can be done from here on out.
passes.push_pass(MIR_OPTIMIZED, mir::transform::inline::Inline);
passes.push_pass(MIR_OPTIMIZED, mir::transform::instcombine::InstCombine);
passes.push_pass(MIR_OPTIMIZED, mir::transform::deaggregator::Deaggregator);
passes.push_pass(MIR_OPTIMIZED, mir::transform::copy_prop::CopyPropagation);
passes.push_pass(MIR_OPTIMIZED, mir::transform::simplify::SimplifyLocals);
passes.push_pass(MIR_OPTIMIZED, mir::transform::add_call_guards::AddCallGuards);
passes.push_pass(MIR_OPTIMIZED, mir::transform::dump_mir::Marker("PreTrans"));
TyCtxt::create_and_enter(sess,
local_providers,
extern_providers,
Rc::new(passes),
arenas,
arena,
resolutions,
named_region_map,
hir_map,
lang_items,
index,
name,
|tcx| {
let incremental_hashes_map =
time(time_passes,
"compute_incremental_hashes_map",
|| rustc_incremental::compute_incremental_hashes_map(tcx));
time(time_passes,
"load_dep_graph",
|| rustc_incremental::load_dep_graph(tcx, &incremental_hashes_map));
time(time_passes, "stability index", || {
tcx.stability.borrow_mut().build(tcx)
});
time(time_passes,
"stability checking",
|| stability::check_unstable_api_usage(tcx));
// passes are timed inside typeck
try_with_f!(typeck::check_crate(tcx), (tcx, analysis, incremental_hashes_map));
time(time_passes,
"const checking",
|| consts::check_crate(tcx));
analysis.access_levels =
time(time_passes, "privacy checking", || rustc_privacy::check_crate(tcx));
time(time_passes,
"intrinsic checking",
|| middle::intrinsicck::check_crate(tcx));
time(time_passes,
"effect checking",
|| middle::effect::check_crate(tcx));
time(time_passes,
"match checking",
|| check_match::check_crate(tcx));
// this must run before MIR dump, because
// "not all control paths return a value" is reported here.
//
// maybe move the check to a MIR pass?
time(time_passes,
"liveness checking",
|| middle::liveness::check_crate(tcx));
time(time_passes,
"borrow checking",
|| borrowck::check_crate(tcx));
// Avoid overwhelming user with errors if type checking failed.
// I'm not sure how helpful this is, to be honest, but it avoids
// a
// lot of annoying errors in the compile-fail tests (basically,
// lint warnings and so on -- kindck used to do this abort, but
// kindck is gone now). -nmatsakis
if sess.err_count() > 0 {
return Ok(f(tcx, analysis, incremental_hashes_map, Err(sess.err_count())));
}
analysis.reachable =
time(time_passes,
"reachability checking",
|| reachable::find_reachable(tcx));
time(time_passes, "death checking", || middle::dead::check_crate(tcx));
time(time_passes, "unused lib feature checking", || {
stability::check_unused_or_stable_features(tcx)
});
time(time_passes, "lint checking", || lint::check_crate(tcx));
// The above three passes generate errors w/o aborting
if sess.err_count() > 0 {
return Ok(f(tcx, analysis, incremental_hashes_map, Err(sess.err_count())));
}
Ok(f(tcx, analysis, incremental_hashes_map, Ok(())))
})
}
/// Run the translation phase to LLVM, after which the AST and analysis can
/// be discarded.
pub fn phase_4_translate_to_llvm<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
analysis: ty::CrateAnalysis,
incremental_hashes_map: &IncrementalHashesMap,
output_filenames: &OutputFilenames)
-> trans::CrateTranslation {
let time_passes = tcx.sess.time_passes();
time(time_passes,
"resolving dependency formats",
|| dependency_format::calculate(&tcx.sess));
let translation =
time(time_passes,
"translation",
move || trans::trans_crate(tcx, analysis, &incremental_hashes_map, output_filenames));
time(time_passes,
"assert dep graph",
|| rustc_incremental::assert_dep_graph(tcx));
time(time_passes,
"serialize dep graph",
|| rustc_incremental::save_dep_graph(tcx,
&incremental_hashes_map,
&translation.metadata.hashes,
translation.link.crate_hash));
translation
}
/// Run LLVM itself, producing a bitcode file, assembly file or object file
/// as a side effect.
pub fn phase_5_run_llvm_passes(sess: &Session,
trans: &trans::CrateTranslation,
outputs: &OutputFilenames) -> CompileResult {
if sess.opts.cg.no_integrated_as ||
(sess.target.target.options.no_integrated_as &&
(outputs.outputs.contains_key(&OutputType::Object) ||
outputs.outputs.contains_key(&OutputType::Exe)))
{
let output_types = OutputTypes::new(&[(OutputType::Assembly, None)]);
time(sess.time_passes(),
"LLVM passes",
|| write::run_passes(sess, trans, &output_types, outputs));
write::run_assembler(sess, outputs);
// HACK the linker expects the object file to be named foo.0.o but
// `run_assembler` produces an object named just foo.o. Rename it if we
// are going to build an executable
if sess.opts.output_types.contains_key(&OutputType::Exe) {
let f = outputs.path(OutputType::Object);
rename_or_copy_remove(&f,
f.with_file_name(format!("{}.0.o",
f.file_stem().unwrap().to_string_lossy()))).unwrap();
}
// Remove assembly source, unless --save-temps was specified
if !sess.opts.cg.save_temps {
fs::remove_file(&outputs.temp_path(OutputType::Assembly, None)).unwrap();
}
} else {
time(sess.time_passes(),
"LLVM passes",
|| write::run_passes(sess, trans, &sess.opts.output_types, outputs));
}
time(sess.time_passes(),
"serialize work products",
move || rustc_incremental::save_work_products(sess));
if sess.err_count() > 0 {
Err(sess.err_count())
} else {
Ok(())
}
}
/// Run the linker on any artifacts that resulted from the LLVM run.
/// This should produce either a finished executable or library.
pub fn phase_6_link_output(sess: &Session,
trans: &trans::CrateTranslation,
outputs: &OutputFilenames) {
time(sess.time_passes(),
"linking",
|| link::link_binary(sess, trans, outputs, &trans.crate_name.as_str()));
}
fn escape_dep_filename(filename: &str) -> String {
// Apparently clang and gcc *only* escape spaces:
// http://llvm.org/klaus/clang/commit/9d50634cfc268ecc9a7250226dd5ca0e945240d4
filename.replace(" ", "\\ ")
}
fn write_out_deps(sess: &Session, outputs: &OutputFilenames, crate_name: &str) {
let mut out_filenames = Vec::new();
for output_type in sess.opts.output_types.keys() {
let file = outputs.path(*output_type);
match *output_type {
OutputType::Exe => {
for output in sess.crate_types.borrow().iter() {
let p = link::filename_for_input(sess, *output, crate_name, outputs);
out_filenames.push(p);
}
}
_ => {
out_filenames.push(file);
}
}
}
// Write out dependency rules to the dep-info file if requested
if !sess.opts.output_types.contains_key(&OutputType::DepInfo) {
return;
}
let deps_filename = outputs.path(OutputType::DepInfo);
let result =
(|| -> io::Result<()> {
// Build a list of files used to compile the output and
// write Makefile-compatible dependency rules
let files: Vec<String> = sess.codemap()
.files()
.iter()
.filter(|fmap| fmap.is_real_file())
.filter(|fmap| !fmap.is_imported())
.map(|fmap| escape_dep_filename(&fmap.name))
.collect();
let mut file = fs::File::create(&deps_filename)?;
for path in &out_filenames {
write!(file, "{}: {}\n\n", path.display(), files.join(" "))?;
}
// Emit a fake target for each input file to the compilation. This
// prevents `make` from spitting out an error if a file is later
// deleted. For more info see #28735
for path in files {
writeln!(file, "{}:", path)?;
}
Ok(())
})();
match result {
Ok(()) => {}
Err(e) => {
sess.fatal(&format!("error writing dependencies to `{}`: {}",
deps_filename.display(),
e));
}
}
}
pub fn collect_crate_types(session: &Session, attrs: &[ast::Attribute]) -> Vec<config::CrateType> {
// Unconditionally collect crate types from attributes to make them used
let attr_types: Vec<config::CrateType> =
attrs.iter()
.filter_map(|a| {
if a.check_name("crate_type") {
match a.value_str() {
Some(ref n) if *n == "rlib" => {
Some(config::CrateTypeRlib)
}
Some(ref n) if *n == "dylib" => {
Some(config::CrateTypeDylib)
}
Some(ref n) if *n == "cdylib" => {
Some(config::CrateTypeCdylib)
}
Some(ref n) if *n == "lib" => {
Some(config::default_lib_output())
}
Some(ref n) if *n == "staticlib" => {
Some(config::CrateTypeStaticlib)
}
Some(ref n) if *n == "proc-macro" => {
Some(config::CrateTypeProcMacro)
}
Some(ref n) if *n == "bin" => Some(config::CrateTypeExecutable),
Some(_) => {
session.add_lint(lint::builtin::UNKNOWN_CRATE_TYPES,
ast::CRATE_NODE_ID,
a.span,
"invalid `crate_type` value".to_string());
None
}
_ => {
session.struct_span_err(a.span, "`crate_type` requires a value")
.note("for example: `#![crate_type=\"lib\"]`")
.emit();
None
}
}
} else {
None
}
})
.collect();
// If we're generating a test executable, then ignore all other output
// styles at all other locations
if session.opts.test {
return vec![config::CrateTypeExecutable];
}
// Only check command line flags if present. If no types are specified by
// command line, then reuse the empty `base` Vec to hold the types that
// will be found in crate attributes.
let mut base = session.opts.crate_types.clone();
if base.is_empty() {
base.extend(attr_types);
if base.is_empty() {
base.push(link::default_output_for_target(session));
}
base.sort();
base.dedup();
}
base.into_iter()
.filter(|crate_type| {
let res = !link::invalid_output_for_target(session, *crate_type);
if !res {
session.warn(&format!("dropping unsupported crate type `{}` for target `{}`",
*crate_type,
session.opts.target_triple));
}
res
})
.collect()
}
pub fn compute_crate_disambiguator(session: &Session) -> String {
use std::hash::Hasher;
// The crate_disambiguator is a 128 bit hash. The disambiguator is fed
// into various other hashes quite a bit (symbol hashes, incr. comp. hashes,
// debuginfo type IDs, etc), so we don't want it to be too wide. 128 bits
// should still be safe enough to avoid collisions in practice.
// FIXME(mw): It seems that the crate_disambiguator is used everywhere as
// a hex-string instead of raw bytes. We should really use the
// smaller representation.
let mut hasher = StableHasher::<Fingerprint>::new();
let mut metadata = session.opts.cg.metadata.clone();
// We don't want the crate_disambiguator to dependent on the order
// -C metadata arguments, so sort them:
metadata.sort();
// Every distinct -C metadata value is only incorporated once:
metadata.dedup();
hasher.write(b"metadata");
for s in &metadata {
// Also incorporate the length of a metadata string, so that we generate
// different values for `-Cmetadata=ab -Cmetadata=c` and
// `-Cmetadata=a -Cmetadata=bc`
hasher.write_usize(s.len());
hasher.write(s.as_bytes());
}
// If this is an executable, add a special suffix, so that we don't get
// symbol conflicts when linking against a library of the same name.
let is_exe = session.crate_types.borrow().contains(&config::CrateTypeExecutable);
format!("{}{}", hasher.finish().to_hex(), if is_exe { "-exe" } else {""})
}
pub fn build_output_filenames(input: &Input,
odir: &Option<PathBuf>,
ofile: &Option<PathBuf>,
attrs: &[ast::Attribute],
sess: &Session)
-> OutputFilenames {
match *ofile {
None => {
// "-" as input file will cause the parser to read from stdin so we
// have to make up a name
// We want to toss everything after the final '.'
let dirpath = match *odir {
Some(ref d) => d.clone(),
None => PathBuf::new(),
};
// If a crate name is present, we use it as the link name
let stem = sess.opts
.crate_name
.clone()
.or_else(|| attr::find_crate_name(attrs).map(|n| n.to_string()))
.unwrap_or(input.filestem());
OutputFilenames {
out_directory: dirpath,
out_filestem: stem,
single_output_file: None,
extra: sess.opts.cg.extra_filename.clone(),
outputs: sess.opts.output_types.clone(),
}
}
Some(ref out_file) => {
let unnamed_output_types = sess.opts
.output_types
.values()
.filter(|a| a.is_none())
.count();
let ofile = if unnamed_output_types > 1 {
sess.warn("due to multiple output types requested, the explicitly specified \
output file name will be adapted for each output type");
None
} else {
Some(out_file.clone())
};
if *odir != None {
sess.warn("ignoring --out-dir flag due to -o flag.");
}
let cur_dir = Path::new("");
OutputFilenames {
out_directory: out_file.parent().unwrap_or(cur_dir).to_path_buf(),
out_filestem: out_file.file_stem()
.unwrap_or(OsStr::new(""))
.to_str()
.unwrap()
.to_string(),
single_output_file: ofile,
extra: sess.opts.cg.extra_filename.clone(),
outputs: sess.opts.output_types.clone(),
}
}
}
}