rust/src/librustc_trans/base.rs

1475 lines
56 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Translate the completed AST to the LLVM IR.
//!
//! Some functions here, such as trans_block and trans_expr, return a value --
//! the result of the translation to LLVM -- while others, such as trans_fn
//! and trans_item, are called only for the side effect of adding a
//! particular definition to the LLVM IR output we're producing.
//!
//! Hopefully useful general knowledge about trans:
//!
//! * There's no way to find out the Ty type of a ValueRef. Doing so
//! would be "trying to get the eggs out of an omelette" (credit:
//! pcwalton). You can, instead, find out its TypeRef by calling val_ty,
//! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
//! int) and rec(x=int, y=int, z=int) will have the same TypeRef.
use super::CrateTranslation;
use super::ModuleLlvm;
use super::ModuleSource;
use super::ModuleTranslation;
use assert_module_sources;
use back::link;
use back::linker::LinkerInfo;
use back::symbol_export::{self, ExportedSymbols};
use llvm::{ContextRef, Linkage, ModuleRef, ValueRef, Vector, get_param};
use llvm;
use metadata;
use rustc::hir::def_id::LOCAL_CRATE;
use rustc::middle::lang_items::StartFnLangItem;
use rustc::middle::cstore::EncodedMetadata;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::dep_graph::AssertDepGraphSafe;
use rustc::middle::cstore::LinkMeta;
use rustc::hir::map as hir_map;
use rustc::util::common::time;
use rustc::session::config::{self, NoDebugInfo, OutputFilenames};
use rustc::session::Session;
use rustc_incremental::IncrementalHashesMap;
use abi;
use mir::lvalue::LvalueRef;
use attributes;
use builder::Builder;
use callee;
use common::{C_bool, C_bytes_in_context, C_i32, C_uint};
use collector::{self, TransItemCollectionMode};
use common::{C_struct_in_context, C_u64, C_undef, C_array};
use common::CrateContext;
use common::{type_is_zero_size, val_ty};
use common;
use consts;
use context::{self, LocalCrateContext, SharedCrateContext, Stats};
use debuginfo;
use declare;
use machine;
use meth;
use mir;
use monomorphize::{self, Instance};
use partitioning::{self, PartitioningStrategy, CodegenUnit};
use symbol_names_test;
use trans_item::{TransItem, DefPathBasedNames};
use type_::Type;
use type_of;
use value::Value;
use rustc::util::nodemap::{NodeSet, FxHashMap, FxHashSet};
use libc::c_uint;
use std::ffi::{CStr, CString};
use std::str;
use std::i32;
use syntax_pos::Span;
use syntax::attr;
use rustc::hir;
use syntax::ast;
use mir::lvalue::Alignment;
pub struct StatRecorder<'a, 'tcx: 'a> {
ccx: &'a CrateContext<'a, 'tcx>,
name: Option<String>,
istart: usize,
}
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
let istart = ccx.stats().n_llvm_insns.get();
StatRecorder {
ccx: ccx,
name: Some(name),
istart: istart,
}
}
}
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
fn drop(&mut self) {
if self.ccx.sess().trans_stats() {
let iend = self.ccx.stats().n_llvm_insns.get();
self.ccx.stats().fn_stats.borrow_mut()
.push((self.name.take().unwrap(), iend - self.istart));
self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
// Reset LLVM insn count to avoid compound costs.
self.ccx.stats().n_llvm_insns.set(self.istart);
}
}
}
pub fn get_meta(bcx: &Builder, fat_ptr: ValueRef) -> ValueRef {
bcx.struct_gep(fat_ptr, abi::FAT_PTR_EXTRA)
}
pub fn get_dataptr(bcx: &Builder, fat_ptr: ValueRef) -> ValueRef {
bcx.struct_gep(fat_ptr, abi::FAT_PTR_ADDR)
}
pub fn bin_op_to_icmp_predicate(op: hir::BinOp_,
signed: bool)
-> llvm::IntPredicate {
match op {
hir::BiEq => llvm::IntEQ,
hir::BiNe => llvm::IntNE,
hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
op => {
bug!("comparison_op_to_icmp_predicate: expected comparison operator, \
found {:?}",
op)
}
}
}
pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
match op {
hir::BiEq => llvm::RealOEQ,
hir::BiNe => llvm::RealUNE,
hir::BiLt => llvm::RealOLT,
hir::BiLe => llvm::RealOLE,
hir::BiGt => llvm::RealOGT,
hir::BiGe => llvm::RealOGE,
op => {
bug!("comparison_op_to_fcmp_predicate: expected comparison operator, \
found {:?}",
op);
}
}
}
pub fn compare_simd_types<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
t: Ty<'tcx>,
ret_ty: Type,
op: hir::BinOp_
) -> ValueRef {
let signed = match t.sty {
ty::TyFloat(_) => {
let cmp = bin_op_to_fcmp_predicate(op);
return bcx.sext(bcx.fcmp(cmp, lhs, rhs), ret_ty);
},
ty::TyUint(_) => false,
ty::TyInt(_) => true,
_ => bug!("compare_simd_types: invalid SIMD type"),
};
let cmp = bin_op_to_icmp_predicate(op, signed);
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
// to get the correctly sized type. This will compile to a single instruction
// once the IR is converted to assembly if the SIMD instruction is supported
// by the target architecture.
bcx.sext(bcx.icmp(cmp, lhs, rhs), ret_ty)
}
/// Retrieve the information we are losing (making dynamic) in an unsizing
/// adjustment.
///
/// The `old_info` argument is a bit funny. It is intended for use
/// in an upcast, where the new vtable for an object will be drived
/// from the old one.
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
source: Ty<'tcx>,
target: Ty<'tcx>,
old_info: Option<ValueRef>)
-> ValueRef {
let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
match (&source.sty, &target.sty) {
(&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len),
(&ty::TyDynamic(..), &ty::TyDynamic(..)) => {
// For now, upcasts are limited to changes in marker
// traits, and hence never actually require an actual
// change to the vtable.
old_info.expect("unsized_info: missing old info for trait upcast")
}
(_, &ty::TyDynamic(ref data, ..)) => {
consts::ptrcast(meth::get_vtable(ccx, source, data.principal()),
Type::vtable_ptr(ccx))
}
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
source,
target),
}
}
/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
pub fn unsize_thin_ptr<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
src: ValueRef,
src_ty: Ty<'tcx>,
dst_ty: Ty<'tcx>
) -> (ValueRef, ValueRef) {
debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
match (&src_ty.sty, &dst_ty.sty) {
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
assert!(bcx.ccx.shared().type_is_sized(a));
let ptr_ty = type_of::in_memory_type_of(bcx.ccx, b).ptr_to();
(bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
}
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
let (a, b) = (src_ty.boxed_ty(), dst_ty.boxed_ty());
assert!(bcx.ccx.shared().type_is_sized(a));
let ptr_ty = type_of::in_memory_type_of(bcx.ccx, b).ptr_to();
(bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
}
_ => bug!("unsize_thin_ptr: called on bad types"),
}
}
/// Coerce `src`, which is a reference to a value of type `src_ty`,
/// to a value of type `dst_ty` and store the result in `dst`
pub fn coerce_unsized_into<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
src: &LvalueRef<'tcx>,
dst: &LvalueRef<'tcx>) {
let src_ty = src.ty.to_ty(bcx.tcx());
let dst_ty = dst.ty.to_ty(bcx.tcx());
let coerce_ptr = || {
let (base, info) = if common::type_is_fat_ptr(bcx.ccx, src_ty) {
// fat-ptr to fat-ptr unsize preserves the vtable
// i.e. &'a fmt::Debug+Send => &'a fmt::Debug
// So we need to pointercast the base to ensure
// the types match up.
let (base, info) = load_fat_ptr(bcx, src.llval, src.alignment, src_ty);
let llcast_ty = type_of::fat_ptr_base_ty(bcx.ccx, dst_ty);
let base = bcx.pointercast(base, llcast_ty);
(base, info)
} else {
let base = load_ty(bcx, src.llval, src.alignment, src_ty);
unsize_thin_ptr(bcx, base, src_ty, dst_ty)
};
store_fat_ptr(bcx, base, info, dst.llval, dst.alignment, dst_ty);
};
match (&src_ty.sty, &dst_ty.sty) {
(&ty::TyRef(..), &ty::TyRef(..)) |
(&ty::TyRef(..), &ty::TyRawPtr(..)) |
(&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
coerce_ptr()
}
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
coerce_ptr()
}
(&ty::TyAdt(def_a, substs_a), &ty::TyAdt(def_b, substs_b)) => {
assert_eq!(def_a, def_b);
let src_fields = def_a.variants[0].fields.iter().map(|f| {
monomorphize::field_ty(bcx.tcx(), substs_a, f)
});
let dst_fields = def_b.variants[0].fields.iter().map(|f| {
monomorphize::field_ty(bcx.tcx(), substs_b, f)
});
let iter = src_fields.zip(dst_fields).enumerate();
for (i, (src_fty, dst_fty)) in iter {
if type_is_zero_size(bcx.ccx, dst_fty) {
continue;
}
let (src_f, src_f_align) = src.trans_field_ptr(bcx, i);
let (dst_f, dst_f_align) = dst.trans_field_ptr(bcx, i);
if src_fty == dst_fty {
memcpy_ty(bcx, dst_f, src_f, src_fty, None);
} else {
coerce_unsized_into(
bcx,
&LvalueRef::new_sized_ty(src_f, src_fty, src_f_align),
&LvalueRef::new_sized_ty(dst_f, dst_fty, dst_f_align)
);
}
}
}
_ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
src_ty,
dst_ty),
}
}
pub fn cast_shift_expr_rhs(
cx: &Builder, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef
) -> ValueRef {
cast_shift_rhs(op, lhs, rhs, |a, b| cx.trunc(a, b), |a, b| cx.zext(a, b))
}
pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
cast_shift_rhs(op,
lhs,
rhs,
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
}
fn cast_shift_rhs<F, G>(op: hir::BinOp_,
lhs: ValueRef,
rhs: ValueRef,
trunc: F,
zext: G)
-> ValueRef
where F: FnOnce(ValueRef, Type) -> ValueRef,
G: FnOnce(ValueRef, Type) -> ValueRef
{
// Shifts may have any size int on the rhs
if op.is_shift() {
let mut rhs_llty = val_ty(rhs);
let mut lhs_llty = val_ty(lhs);
if rhs_llty.kind() == Vector {
rhs_llty = rhs_llty.element_type()
}
if lhs_llty.kind() == Vector {
lhs_llty = lhs_llty.element_type()
}
let rhs_sz = rhs_llty.int_width();
let lhs_sz = lhs_llty.int_width();
if lhs_sz < rhs_sz {
trunc(rhs, lhs_llty)
} else if lhs_sz > rhs_sz {
// FIXME (#1877: If shifting by negative
// values becomes not undefined then this is wrong.
zext(rhs, lhs_llty)
} else {
rhs
}
} else {
rhs
}
}
/// Returns whether this session's target will use SEH-based unwinding.
///
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
/// 64-bit MinGW) instead of "full SEH".
pub fn wants_msvc_seh(sess: &Session) -> bool {
sess.target.target.options.is_like_msvc
}
pub fn call_assume<'a, 'tcx>(b: &Builder<'a, 'tcx>, val: ValueRef) {
let assume_intrinsic = b.ccx.get_intrinsic("llvm.assume");
b.call(assume_intrinsic, &[val], None);
}
/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values. Also handles various special cases where the type
/// gives us better information about what we are loading.
pub fn load_ty<'a, 'tcx>(b: &Builder<'a, 'tcx>, ptr: ValueRef,
alignment: Alignment, t: Ty<'tcx>) -> ValueRef {
let ccx = b.ccx;
if type_is_zero_size(ccx, t) {
return C_undef(type_of::type_of(ccx, t));
}
unsafe {
let global = llvm::LLVMIsAGlobalVariable(ptr);
if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
let val = llvm::LLVMGetInitializer(global);
if !val.is_null() {
if t.is_bool() {
return llvm::LLVMConstTrunc(val, Type::i1(ccx).to_ref());
}
return val;
}
}
}
if t.is_bool() {
b.trunc(b.load_range_assert(ptr, 0, 2, llvm::False, alignment.to_align()),
Type::i1(ccx))
} else if t.is_char() {
// a char is a Unicode codepoint, and so takes values from 0
// to 0x10FFFF inclusive only.
b.load_range_assert(ptr, 0, 0x10FFFF + 1, llvm::False, alignment.to_align())
} else if (t.is_region_ptr() || t.is_box() || t.is_fn())
&& !common::type_is_fat_ptr(ccx, t)
{
b.load_nonnull(ptr, alignment.to_align())
} else {
b.load(ptr, alignment.to_align())
}
}
/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values.
pub fn store_ty<'a, 'tcx>(cx: &Builder<'a, 'tcx>, v: ValueRef, dst: ValueRef,
dst_align: Alignment, t: Ty<'tcx>) {
debug!("store_ty: {:?} : {:?} <- {:?}", Value(dst), t, Value(v));
if common::type_is_fat_ptr(cx.ccx, t) {
let lladdr = cx.extract_value(v, abi::FAT_PTR_ADDR);
let llextra = cx.extract_value(v, abi::FAT_PTR_EXTRA);
store_fat_ptr(cx, lladdr, llextra, dst, dst_align, t);
} else {
cx.store(from_immediate(cx, v), dst, dst_align.to_align());
}
}
pub fn store_fat_ptr<'a, 'tcx>(cx: &Builder<'a, 'tcx>,
data: ValueRef,
extra: ValueRef,
dst: ValueRef,
dst_align: Alignment,
_ty: Ty<'tcx>) {
// FIXME: emit metadata
cx.store(data, get_dataptr(cx, dst), dst_align.to_align());
cx.store(extra, get_meta(cx, dst), dst_align.to_align());
}
pub fn load_fat_ptr<'a, 'tcx>(
b: &Builder<'a, 'tcx>, src: ValueRef, alignment: Alignment, t: Ty<'tcx>
) -> (ValueRef, ValueRef) {
let ptr = get_dataptr(b, src);
let ptr = if t.is_region_ptr() || t.is_box() {
b.load_nonnull(ptr, alignment.to_align())
} else {
b.load(ptr, alignment.to_align())
};
let meta = get_meta(b, src);
let meta_ty = val_ty(meta);
// If the 'meta' field is a pointer, it's a vtable, so use load_nonnull
// instead
let meta = if meta_ty.element_type().kind() == llvm::TypeKind::Pointer {
b.load_nonnull(meta, None)
} else {
b.load(meta, None)
};
(ptr, meta)
}
pub fn from_immediate(bcx: &Builder, val: ValueRef) -> ValueRef {
if val_ty(val) == Type::i1(bcx.ccx) {
bcx.zext(val, Type::i8(bcx.ccx))
} else {
val
}
}
pub fn to_immediate(bcx: &Builder, val: ValueRef, ty: Ty) -> ValueRef {
if ty.is_bool() {
bcx.trunc(val, Type::i1(bcx.ccx))
} else {
val
}
}
pub enum Lifetime { Start, End }
impl Lifetime {
// If LLVM lifetime intrinsic support is enabled (i.e. optimizations
// on), and `ptr` is nonzero-sized, then extracts the size of `ptr`
// and the intrinsic for `lt` and passes them to `emit`, which is in
// charge of generating code to call the passed intrinsic on whatever
// block of generated code is targetted for the intrinsic.
//
// If LLVM lifetime intrinsic support is disabled (i.e. optimizations
// off) or `ptr` is zero-sized, then no-op (does not call `emit`).
pub fn call(self, b: &Builder, ptr: ValueRef) {
if b.ccx.sess().opts.optimize == config::OptLevel::No {
return;
}
let size = machine::llsize_of_alloc(b.ccx, val_ty(ptr).element_type());
if size == 0 {
return;
}
let lifetime_intrinsic = b.ccx.get_intrinsic(match self {
Lifetime::Start => "llvm.lifetime.start",
Lifetime::End => "llvm.lifetime.end"
});
let ptr = b.pointercast(ptr, Type::i8p(b.ccx));
b.call(lifetime_intrinsic, &[C_u64(b.ccx, size), ptr], None);
}
}
pub fn call_memcpy<'a, 'tcx>(b: &Builder<'a, 'tcx>,
dst: ValueRef,
src: ValueRef,
n_bytes: ValueRef,
align: u32) {
let ccx = b.ccx;
let ptr_width = &ccx.sess().target.target.target_pointer_width;
let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
let memcpy = ccx.get_intrinsic(&key);
let src_ptr = b.pointercast(src, Type::i8p(ccx));
let dst_ptr = b.pointercast(dst, Type::i8p(ccx));
let size = b.intcast(n_bytes, ccx.int_type(), false);
let align = C_i32(ccx, align as i32);
let volatile = C_bool(ccx, false);
b.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
}
pub fn memcpy_ty<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
dst: ValueRef,
src: ValueRef,
t: Ty<'tcx>,
align: Option<u32>,
) {
let ccx = bcx.ccx;
let size = ccx.size_of(t);
if size == 0 {
return;
}
let align = align.unwrap_or_else(|| ccx.align_of(t));
call_memcpy(bcx, dst, src, C_uint(ccx, size), align);
}
pub fn call_memset<'a, 'tcx>(b: &Builder<'a, 'tcx>,
ptr: ValueRef,
fill_byte: ValueRef,
size: ValueRef,
align: ValueRef,
volatile: bool) -> ValueRef {
let ptr_width = &b.ccx.sess().target.target.target_pointer_width;
let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
let llintrinsicfn = b.ccx.get_intrinsic(&intrinsic_key);
let volatile = C_bool(b.ccx, volatile);
b.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None)
}
pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance<'tcx>) {
let _s = if ccx.sess().trans_stats() {
let mut instance_name = String::new();
DefPathBasedNames::new(ccx.tcx(), true, true)
.push_def_path(instance.def_id(), &mut instance_name);
Some(StatRecorder::new(ccx, instance_name))
} else {
None
};
// this is an info! to allow collecting monomorphization statistics
// and to allow finding the last function before LLVM aborts from
// release builds.
info!("trans_instance({})", instance);
let fn_ty = common::instance_ty(ccx.shared(), &instance);
let sig = common::ty_fn_sig(ccx, fn_ty);
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);
let lldecl = match ccx.instances().borrow().get(&instance) {
Some(&val) => val,
None => bug!("Instance `{:?}` not already declared", instance)
};
ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);
// The `uwtable` attribute according to LLVM is:
//
// This attribute indicates that the ABI being targeted requires that an
// unwind table entry be produced for this function even if we can show
// that no exceptions passes by it. This is normally the case for the
// ELF x86-64 abi, but it can be disabled for some compilation units.
//
// Typically when we're compiling with `-C panic=abort` (which implies this
// `no_landing_pads` check) we don't need `uwtable` because we can't
// generate any exceptions! On Windows, however, exceptions include other
// events such as illegal instructions, segfaults, etc. This means that on
// Windows we end up still needing the `uwtable` attribute even if the `-C
// panic=abort` flag is passed.
//
// You can also find more info on why Windows is whitelisted here in:
// https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
if !ccx.sess().no_landing_pads() ||
ccx.sess().target.target.options.is_like_windows {
attributes::emit_uwtable(lldecl, true);
}
let mir = ccx.tcx().instance_mir(instance.def);
mir::trans_mir(ccx, lldecl, &mir, instance, sig);
}
pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
// applicable to variable declarations and may not really make sense for
// Rust code in the first place but whitelist them anyway and trust that
// the user knows what s/he's doing. Who knows, unanticipated use cases
// may pop up in the future.
//
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
// and don't have to be, LLVM treats them as no-ops.
match name {
"appending" => Some(llvm::Linkage::AppendingLinkage),
"available_externally" => Some(llvm::Linkage::AvailableExternallyLinkage),
"common" => Some(llvm::Linkage::CommonLinkage),
"extern_weak" => Some(llvm::Linkage::ExternalWeakLinkage),
"external" => Some(llvm::Linkage::ExternalLinkage),
"internal" => Some(llvm::Linkage::InternalLinkage),
"linkonce" => Some(llvm::Linkage::LinkOnceAnyLinkage),
"linkonce_odr" => Some(llvm::Linkage::LinkOnceODRLinkage),
"private" => Some(llvm::Linkage::PrivateLinkage),
"weak" => Some(llvm::Linkage::WeakAnyLinkage),
"weak_odr" => Some(llvm::Linkage::WeakODRLinkage),
_ => None,
}
}
pub fn set_link_section(ccx: &CrateContext,
llval: ValueRef,
attrs: &[ast::Attribute]) {
if let Some(sect) = attr::first_attr_value_str_by_name(attrs, "link_section") {
if contains_null(&sect.as_str()) {
ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", &sect));
}
unsafe {
let buf = CString::new(sect.as_str().as_bytes()).unwrap();
llvm::LLVMSetSection(llval, buf.as_ptr());
}
}
}
/// Create the `main` function which will initialise the rust runtime and call
/// users main function.
pub fn maybe_create_entry_wrapper(ccx: &CrateContext) {
let (main_def_id, span) = match *ccx.sess().entry_fn.borrow() {
Some((id, span)) => {
(ccx.tcx().hir.local_def_id(id), span)
}
None => return,
};
// check for the #[rustc_error] annotation, which forces an
// error in trans. This is used to write compile-fail tests
// that actually test that compilation succeeds without
// reporting an error.
if ccx.tcx().has_attr(main_def_id, "rustc_error") {
ccx.tcx().sess.span_fatal(span, "compilation successful");
}
let instance = Instance::mono(ccx.tcx(), main_def_id);
if !ccx.codegen_unit().contains_item(&TransItem::Fn(instance)) {
// We want to create the wrapper in the same codegen unit as Rust's main
// function.
return;
}
let main_llfn = callee::get_fn(ccx, instance);
let et = ccx.sess().entry_type.get().unwrap();
match et {
config::EntryMain => create_entry_fn(ccx, span, main_llfn, true),
config::EntryStart => create_entry_fn(ccx, span, main_llfn, false),
config::EntryNone => {} // Do nothing.
}
fn create_entry_fn(ccx: &CrateContext,
sp: Span,
rust_main: ValueRef,
use_start_lang_item: bool) {
let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()], &ccx.int_type());
if declare::get_defined_value(ccx, "main").is_some() {
// FIXME: We should be smart and show a better diagnostic here.
ccx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
.help("did you use #[no_mangle] on `fn main`? Use #[start] instead")
.emit();
ccx.sess().abort_if_errors();
bug!();
}
let llfn = declare::declare_cfn(ccx, "main", llfty);
// `main` should respect same config for frame pointer elimination as rest of code
attributes::set_frame_pointer_elimination(ccx, llfn);
let bld = Builder::new_block(ccx, llfn, "top");
debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx, &bld);
let (start_fn, args) = if use_start_lang_item {
let start_def_id = ccx.tcx().require_lang_item(StartFnLangItem);
let start_instance = Instance::mono(ccx.tcx(), start_def_id);
let start_fn = callee::get_fn(ccx, start_instance);
(start_fn, vec![bld.pointercast(rust_main, Type::i8p(ccx).ptr_to()), get_param(llfn, 0),
get_param(llfn, 1)])
} else {
debug!("using user-defined start fn");
(rust_main, vec![get_param(llfn, 0 as c_uint), get_param(llfn, 1 as c_uint)])
};
let result = bld.call(start_fn, &args, None);
bld.ret(result);
}
}
fn contains_null(s: &str) -> bool {
s.bytes().any(|b| b == 0)
}
fn write_metadata<'a, 'gcx>(tcx: TyCtxt<'a, 'gcx, 'gcx>,
link_meta: &LinkMeta,
exported_symbols: &NodeSet)
-> (ContextRef, ModuleRef, EncodedMetadata) {
use flate;
let (metadata_llcx, metadata_llmod) = unsafe {
context::create_context_and_module(tcx.sess, "metadata")
};
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum MetadataKind {
None,
Uncompressed,
Compressed
}
let kind = tcx.sess.crate_types.borrow().iter().map(|ty| {
match *ty {
config::CrateTypeExecutable |
config::CrateTypeStaticlib |
config::CrateTypeCdylib => MetadataKind::None,
config::CrateTypeRlib => MetadataKind::Uncompressed,
config::CrateTypeDylib |
config::CrateTypeProcMacro => MetadataKind::Compressed,
}
}).max().unwrap();
if kind == MetadataKind::None {
return (metadata_llcx, metadata_llmod, EncodedMetadata::new());
}
let cstore = &tcx.sess.cstore;
let metadata = cstore.encode_metadata(tcx,
&link_meta,
exported_symbols);
if kind == MetadataKind::Uncompressed {
return (metadata_llcx, metadata_llmod, metadata);
}
assert!(kind == MetadataKind::Compressed);
let mut compressed = cstore.metadata_encoding_version().to_vec();
compressed.extend_from_slice(&flate::deflate_bytes(&metadata.raw_data));
let llmeta = C_bytes_in_context(metadata_llcx, &compressed);
let llconst = C_struct_in_context(metadata_llcx, &[llmeta], false);
let name = symbol_export::metadata_symbol_name(tcx);
let buf = CString::new(name).unwrap();
let llglobal = unsafe {
llvm::LLVMAddGlobal(metadata_llmod, val_ty(llconst).to_ref(), buf.as_ptr())
};
unsafe {
llvm::LLVMSetInitializer(llglobal, llconst);
let section_name = metadata::metadata_section_name(&tcx.sess.target.target);
let name = CString::new(section_name).unwrap();
llvm::LLVMSetSection(llglobal, name.as_ptr());
// Also generate a .section directive to force no
// flags, at least for ELF outputs, so that the
// metadata doesn't get loaded into memory.
let directive = format!(".section {}", section_name);
let directive = CString::new(directive).unwrap();
llvm::LLVMSetModuleInlineAsm(metadata_llmod, directive.as_ptr())
}
return (metadata_llcx, metadata_llmod, metadata);
}
/// Find any symbols that are defined in one compilation unit, but not declared
/// in any other compilation unit. Give these symbols internal linkage.
fn internalize_symbols<'a, 'tcx>(sess: &Session,
scx: &SharedCrateContext<'a, 'tcx>,
translation_items: &FxHashSet<TransItem<'tcx>>,
llvm_modules: &[ModuleLlvm],
exported_symbols: &ExportedSymbols) {
let export_threshold =
symbol_export::crates_export_threshold(&sess.crate_types.borrow());
let exported_symbols = exported_symbols
.exported_symbols(LOCAL_CRATE)
.iter()
.filter(|&&(_, export_level)| {
symbol_export::is_below_threshold(export_level, export_threshold)
})
.map(|&(ref name, _)| &name[..])
.collect::<FxHashSet<&str>>();
let tcx = scx.tcx();
let incr_comp = sess.opts.debugging_opts.incremental.is_some();
// 'unsafe' because we are holding on to CStr's from the LLVM module within
// this block.
unsafe {
let mut referenced_somewhere = FxHashSet();
// Collect all symbols that need to stay externally visible because they
// are referenced via a declaration in some other codegen unit. In
// incremental compilation, we don't need to collect. See below for more
// information.
if !incr_comp {
for ll in llvm_modules {
for val in iter_globals(ll.llmod).chain(iter_functions(ll.llmod)) {
let linkage = llvm::LLVMRustGetLinkage(val);
// We only care about external declarations (not definitions)
// and available_externally definitions.
let is_available_externally =
linkage == llvm::Linkage::AvailableExternallyLinkage;
let is_decl = llvm::LLVMIsDeclaration(val) == llvm::True;
if is_decl || is_available_externally {
let symbol_name = CStr::from_ptr(llvm::LLVMGetValueName(val));
referenced_somewhere.insert(symbol_name);
}
}
}
}
// Also collect all symbols for which we cannot adjust linkage, because
// it is fixed by some directive in the source code.
let (locally_defined_symbols, linkage_fixed_explicitly) = {
let mut locally_defined_symbols = FxHashSet();
let mut linkage_fixed_explicitly = FxHashSet();
for trans_item in translation_items {
let symbol_name = str::to_owned(&trans_item.symbol_name(tcx));
if trans_item.explicit_linkage(tcx).is_some() {
linkage_fixed_explicitly.insert(symbol_name.clone());
}
locally_defined_symbols.insert(symbol_name);
}
(locally_defined_symbols, linkage_fixed_explicitly)
};
// Examine each external definition. If the definition is not used in
// any other compilation unit, and is not reachable from other crates,
// then give it internal linkage.
for ll in llvm_modules {
for val in iter_globals(ll.llmod).chain(iter_functions(ll.llmod)) {
let linkage = llvm::LLVMRustGetLinkage(val);
let is_externally_visible = (linkage == llvm::Linkage::ExternalLinkage) ||
(linkage == llvm::Linkage::LinkOnceODRLinkage) ||
(linkage == llvm::Linkage::WeakODRLinkage);
if !is_externally_visible {
// This symbol is not visible outside of its codegen unit,
// so there is nothing to do for it.
continue;
}
let name_cstr = CStr::from_ptr(llvm::LLVMGetValueName(val));
let name_str = name_cstr.to_str().unwrap();
if exported_symbols.contains(&name_str) {
// This symbol is explicitly exported, so we can't
// mark it as internal or hidden.
continue;
}
let is_declaration = llvm::LLVMIsDeclaration(val) == llvm::True;
if is_declaration {
if locally_defined_symbols.contains(name_str) {
// Only mark declarations from the current crate as hidden.
// Otherwise we would mark things as hidden that are
// imported from other crates or native libraries.
llvm::LLVMRustSetVisibility(val, llvm::Visibility::Hidden);
}
} else {
let has_fixed_linkage = linkage_fixed_explicitly.contains(name_str);
if !has_fixed_linkage {
// In incremental compilation mode, we can't be sure that
// we saw all references because we don't know what's in
// cached compilation units, so we always assume that the
// given item has been referenced.
if incr_comp || referenced_somewhere.contains(&name_cstr) {
llvm::LLVMRustSetVisibility(val, llvm::Visibility::Hidden);
} else {
llvm::LLVMRustSetLinkage(val, llvm::Linkage::InternalLinkage);
}
llvm::LLVMSetDLLStorageClass(val, llvm::DLLStorageClass::Default);
llvm::UnsetComdat(val);
}
}
}
}
}
}
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
// This is required to satisfy `dllimport` references to static data in .rlibs
// when using MSVC linker. We do this only for data, as linker can fix up
// code references on its own.
// See #26591, #27438
fn create_imps(sess: &Session,
llvm_modules: &[ModuleLlvm]) {
// The x86 ABI seems to require that leading underscores are added to symbol
// names, so we need an extra underscore on 32-bit. There's also a leading
// '\x01' here which disables LLVM's symbol mangling (e.g. no extra
// underscores added in front).
let prefix = if sess.target.target.target_pointer_width == "32" {
"\x01__imp__"
} else {
"\x01__imp_"
};
unsafe {
for ll in llvm_modules {
let exported: Vec<_> = iter_globals(ll.llmod)
.filter(|&val| {
llvm::LLVMRustGetLinkage(val) ==
llvm::Linkage::ExternalLinkage &&
llvm::LLVMIsDeclaration(val) == 0
})
.collect();
let i8p_ty = Type::i8p_llcx(ll.llcx);
for val in exported {
let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
let mut imp_name = prefix.as_bytes().to_vec();
imp_name.extend(name.to_bytes());
let imp_name = CString::new(imp_name).unwrap();
let imp = llvm::LLVMAddGlobal(ll.llmod,
i8p_ty.to_ref(),
imp_name.as_ptr() as *const _);
let init = llvm::LLVMConstBitCast(val, i8p_ty.to_ref());
llvm::LLVMSetInitializer(imp, init);
llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
}
}
}
}
struct ValueIter {
cur: ValueRef,
step: unsafe extern "C" fn(ValueRef) -> ValueRef,
}
impl Iterator for ValueIter {
type Item = ValueRef;
fn next(&mut self) -> Option<ValueRef> {
let old = self.cur;
if !old.is_null() {
self.cur = unsafe { (self.step)(old) };
Some(old)
} else {
None
}
}
}
fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter {
unsafe {
ValueIter {
cur: llvm::LLVMGetFirstGlobal(llmod),
step: llvm::LLVMGetNextGlobal,
}
}
}
fn iter_functions(llmod: llvm::ModuleRef) -> ValueIter {
unsafe {
ValueIter {
cur: llvm::LLVMGetFirstFunction(llmod),
step: llvm::LLVMGetNextFunction,
}
}
}
/// The context provided lists a set of reachable ids as calculated by
/// middle::reachable, but this contains far more ids and symbols than we're
/// actually exposing from the object file. This function will filter the set in
/// the context to the set of ids which correspond to symbols that are exposed
/// from the object file being generated.
///
/// This list is later used by linkers to determine the set of symbols needed to
/// be exposed from a dynamic library and it's also encoded into the metadata.
pub fn find_exported_symbols(tcx: TyCtxt, reachable: &NodeSet) -> NodeSet {
reachable.iter().cloned().filter(|&id| {
// Next, we want to ignore some FFI functions that are not exposed from
// this crate. Reachable FFI functions can be lumped into two
// categories:
//
// 1. Those that are included statically via a static library
// 2. Those included otherwise (e.g. dynamically or via a framework)
//
// Although our LLVM module is not literally emitting code for the
// statically included symbols, it's an export of our library which
// needs to be passed on to the linker and encoded in the metadata.
//
// As a result, if this id is an FFI item (foreign item) then we only
// let it through if it's included statically.
match tcx.hir.get(id) {
hir_map::NodeForeignItem(..) => {
let def_id = tcx.hir.local_def_id(id);
tcx.sess.cstore.is_statically_included_foreign_item(def_id)
}
// Only consider nodes that actually have exported symbols.
hir_map::NodeItem(&hir::Item {
node: hir::ItemStatic(..), .. }) |
hir_map::NodeItem(&hir::Item {
node: hir::ItemFn(..), .. }) |
hir_map::NodeImplItem(&hir::ImplItem {
node: hir::ImplItemKind::Method(..), .. }) => {
let def_id = tcx.hir.local_def_id(id);
let generics = tcx.generics_of(def_id);
let attributes = tcx.get_attrs(def_id);
(generics.parent_types == 0 && generics.types.is_empty()) &&
// Functions marked with #[inline] are only ever translated
// with "internal" linkage and are never exported.
!attr::requests_inline(&attributes)
}
_ => false
}
}).collect()
}
pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
analysis: ty::CrateAnalysis,
incremental_hashes_map: &IncrementalHashesMap,
output_filenames: &OutputFilenames)
-> CrateTranslation {
// Be careful with this krate: obviously it gives access to the
// entire contents of the krate. So if you push any subtasks of
// `TransCrate`, you need to be careful to register "reads" of the
// particular items that will be processed.
let krate = tcx.hir.krate();
let ty::CrateAnalysis { reachable, .. } = analysis;
let exported_symbols = find_exported_symbols(tcx, &reachable);
let check_overflow = tcx.sess.overflow_checks();
let link_meta = link::build_link_meta(incremental_hashes_map);
let shared_ccx = SharedCrateContext::new(tcx,
exported_symbols,
check_overflow,
output_filenames);
// Translate the metadata.
let (metadata_llcx, metadata_llmod, metadata) =
time(tcx.sess.time_passes(), "write metadata", || {
write_metadata(tcx, &link_meta, shared_ccx.exported_symbols())
});
let metadata_module = ModuleTranslation {
name: link::METADATA_MODULE_NAME.to_string(),
symbol_name_hash: 0, // we always rebuild metadata, at least for now
source: ModuleSource::Translated(ModuleLlvm {
llcx: metadata_llcx,
llmod: metadata_llmod,
}),
};
let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");
// Skip crate items and just output metadata in -Z no-trans mode.
if tcx.sess.opts.debugging_opts.no_trans ||
!tcx.sess.opts.output_types.should_trans() {
let empty_exported_symbols = ExportedSymbols::empty();
let linker_info = LinkerInfo::new(&shared_ccx, &empty_exported_symbols);
return CrateTranslation {
crate_name: tcx.crate_name(LOCAL_CRATE),
modules: vec![],
metadata_module: metadata_module,
link: link_meta,
metadata: metadata,
exported_symbols: empty_exported_symbols,
no_builtins: no_builtins,
linker_info: linker_info,
windows_subsystem: None,
};
}
// Run the translation item collector and partition the collected items into
// codegen units.
let (translation_items, codegen_units) =
collect_and_partition_translation_items(&shared_ccx);
let mut all_stats = Stats::default();
let modules: Vec<ModuleTranslation> = codegen_units
.into_iter()
.map(|cgu| {
let dep_node = cgu.work_product_dep_node();
let (stats, module) =
tcx.dep_graph.with_task(dep_node,
AssertDepGraphSafe(&shared_ccx),
AssertDepGraphSafe(cgu),
module_translation);
all_stats.extend(stats);
module
})
.collect();
fn module_translation<'a, 'tcx>(
scx: AssertDepGraphSafe<&SharedCrateContext<'a, 'tcx>>,
args: AssertDepGraphSafe<CodegenUnit<'tcx>>)
-> (Stats, ModuleTranslation)
{
// FIXME(#40304): We ought to be using the id as a key and some queries, I think.
let AssertDepGraphSafe(scx) = scx;
let AssertDepGraphSafe(cgu) = args;
let cgu_name = String::from(cgu.name());
let cgu_id = cgu.work_product_id();
let symbol_name_hash = cgu.compute_symbol_name_hash(scx);
// Check whether there is a previous work-product we can
// re-use. Not only must the file exist, and the inputs not
// be dirty, but the hash of the symbols we will generate must
// be the same.
let previous_work_product =
scx.dep_graph().previous_work_product(&cgu_id).and_then(|work_product| {
if work_product.input_hash == symbol_name_hash {
debug!("trans_reuse_previous_work_products: reusing {:?}", work_product);
Some(work_product)
} else {
if scx.sess().opts.debugging_opts.incremental_info {
println!("incremental: CGU `{}` invalidated because of \
changed partitioning hash.",
cgu.name());
}
debug!("trans_reuse_previous_work_products: \
not reusing {:?} because hash changed to {:?}",
work_product, symbol_name_hash);
None
}
});
if let Some(buf) = previous_work_product {
// Don't need to translate this module.
let module = ModuleTranslation {
name: cgu_name,
symbol_name_hash,
source: ModuleSource::Preexisting(buf.clone())
};
return (Stats::default(), module);
}
// Instantiate translation items without filling out definitions yet...
let lcx = LocalCrateContext::new(scx, cgu);
let module = {
let ccx = CrateContext::new(scx, &lcx);
let trans_items = ccx.codegen_unit()
.items_in_deterministic_order(ccx.tcx());
for &(trans_item, linkage) in &trans_items {
trans_item.predefine(&ccx, linkage);
}
// ... and now that we have everything pre-defined, fill out those definitions.
for &(trans_item, _) in &trans_items {
trans_item.define(&ccx);
}
// If this codegen unit contains the main function, also create the
// wrapper here
maybe_create_entry_wrapper(&ccx);
// Run replace-all-uses-with for statics that need it
for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() {
unsafe {
let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
llvm::LLVMDeleteGlobal(old_g);
}
}
// Create the llvm.used variable
// This variable has type [N x i8*] and is stored in the llvm.metadata section
if !ccx.used_statics().borrow().is_empty() {
let name = CString::new("llvm.used").unwrap();
let section = CString::new("llvm.metadata").unwrap();
let array = C_array(Type::i8(&ccx).ptr_to(), &*ccx.used_statics().borrow());
unsafe {
let g = llvm::LLVMAddGlobal(ccx.llmod(),
val_ty(array).to_ref(),
name.as_ptr());
llvm::LLVMSetInitializer(g, array);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::AppendingLinkage);
llvm::LLVMSetSection(g, section.as_ptr());
}
}
// Finalize debuginfo
if ccx.sess().opts.debuginfo != NoDebugInfo {
debuginfo::finalize(&ccx);
}
ModuleTranslation {
name: cgu_name,
symbol_name_hash,
source: ModuleSource::Translated(ModuleLlvm {
llcx: ccx.llcx(),
llmod: ccx.llmod(),
})
}
};
(lcx.into_stats(), module)
}
assert_module_sources::assert_module_sources(tcx, &modules);
symbol_names_test::report_symbol_names(tcx);
if shared_ccx.sess().trans_stats() {
println!("--- trans stats ---");
println!("n_glues_created: {}", all_stats.n_glues_created.get());
println!("n_null_glues: {}", all_stats.n_null_glues.get());
println!("n_real_glues: {}", all_stats.n_real_glues.get());
println!("n_fns: {}", all_stats.n_fns.get());
println!("n_inlines: {}", all_stats.n_inlines.get());
println!("n_closures: {}", all_stats.n_closures.get());
println!("fn stats:");
all_stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
insns_b.cmp(&insns_a)
});
for tuple in all_stats.fn_stats.borrow().iter() {
match *tuple {
(ref name, insns) => {
println!("{} insns, {}", insns, *name);
}
}
}
}
if shared_ccx.sess().count_llvm_insns() {
for (k, v) in all_stats.llvm_insns.borrow().iter() {
println!("{:7} {}", *v, *k);
}
}
let sess = shared_ccx.sess();
let exported_symbols = ExportedSymbols::compute(&shared_ccx);
// Get the list of llvm modules we created. We'll do a few wacky
// transforms on them now.
let llvm_modules: Vec<_> =
modules.iter()
.filter_map(|module| match module.source {
ModuleSource::Translated(llvm) => Some(llvm),
_ => None,
})
.collect();
// Now that we have all symbols that are exported from the CGUs of this
// crate, we can run the `internalize_symbols` pass.
time(shared_ccx.sess().time_passes(), "internalize symbols", || {
internalize_symbols(sess,
&shared_ccx,
&translation_items,
&llvm_modules,
&exported_symbols);
});
if sess.target.target.options.is_like_msvc &&
sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib) {
create_imps(sess, &llvm_modules);
}
let linker_info = LinkerInfo::new(&shared_ccx, &exported_symbols);
let subsystem = attr::first_attr_value_str_by_name(&krate.attrs,
"windows_subsystem");
let windows_subsystem = subsystem.map(|subsystem| {
if subsystem != "windows" && subsystem != "console" {
tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
`windows` and `console` are allowed",
subsystem));
}
subsystem.to_string()
});
CrateTranslation {
crate_name: tcx.crate_name(LOCAL_CRATE),
modules: modules,
metadata_module: metadata_module,
link: link_meta,
metadata: metadata,
exported_symbols: exported_symbols,
no_builtins: no_builtins,
linker_info: linker_info,
windows_subsystem: windows_subsystem,
}
}
#[inline(never)] // give this a place in the profiler
fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trans_items: I)
where I: Iterator<Item=&'a TransItem<'tcx>>
{
let mut symbols: Vec<_> = trans_items.map(|trans_item| {
(trans_item, trans_item.symbol_name(tcx))
}).collect();
(&mut symbols[..]).sort_by(|&(_, ref sym1), &(_, ref sym2)|{
sym1.cmp(sym2)
});
for pair in (&symbols[..]).windows(2) {
let sym1 = &pair[0].1;
let sym2 = &pair[1].1;
if *sym1 == *sym2 {
let trans_item1 = pair[0].0;
let trans_item2 = pair[1].0;
let span1 = trans_item1.local_span(tcx);
let span2 = trans_item2.local_span(tcx);
// Deterministically select one of the spans for error reporting
let span = match (span1, span2) {
(Some(span1), Some(span2)) => {
Some(if span1.lo.0 > span2.lo.0 {
span1
} else {
span2
})
}
(Some(span), None) |
(None, Some(span)) => Some(span),
_ => None
};
let error_message = format!("symbol `{}` is already defined", sym1);
if let Some(span) = span {
tcx.sess.span_fatal(span, &error_message)
} else {
tcx.sess.fatal(&error_message)
}
}
}
}
fn collect_and_partition_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>)
-> (FxHashSet<TransItem<'tcx>>,
Vec<CodegenUnit<'tcx>>) {
let time_passes = scx.sess().time_passes();
let collection_mode = match scx.sess().opts.debugging_opts.print_trans_items {
Some(ref s) => {
let mode_string = s.to_lowercase();
let mode_string = mode_string.trim();
if mode_string == "eager" {
TransItemCollectionMode::Eager
} else {
if mode_string != "lazy" {
let message = format!("Unknown codegen-item collection mode '{}'. \
Falling back to 'lazy' mode.",
mode_string);
scx.sess().warn(&message);
}
TransItemCollectionMode::Lazy
}
}
None => TransItemCollectionMode::Lazy
};
let (items, inlining_map) =
time(time_passes, "translation item collection", || {
collector::collect_crate_translation_items(&scx, collection_mode)
});
assert_symbols_are_distinct(scx.tcx(), items.iter());
let strategy = if scx.sess().opts.debugging_opts.incremental.is_some() {
PartitioningStrategy::PerModule
} else {
PartitioningStrategy::FixedUnitCount(scx.sess().opts.cg.codegen_units)
};
let codegen_units = time(time_passes, "codegen unit partitioning", || {
partitioning::partition(scx,
items.iter().cloned(),
strategy,
&inlining_map)
});
assert!(scx.tcx().sess.opts.cg.codegen_units == codegen_units.len() ||
scx.tcx().sess.opts.debugging_opts.incremental.is_some());
let translation_items: FxHashSet<TransItem<'tcx>> = items.iter().cloned().collect();
if scx.sess().opts.debugging_opts.print_trans_items.is_some() {
let mut item_to_cgus = FxHashMap();
for cgu in &codegen_units {
for (&trans_item, &linkage) in cgu.items() {
item_to_cgus.entry(trans_item)
.or_insert(Vec::new())
.push((cgu.name().clone(), linkage));
}
}
let mut item_keys: Vec<_> = items
.iter()
.map(|i| {
let mut output = i.to_string(scx.tcx());
output.push_str(" @@");
let mut empty = Vec::new();
let mut cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
cgus.as_mut_slice().sort_by_key(|&(ref name, _)| name.clone());
cgus.dedup();
for &(ref cgu_name, linkage) in cgus.iter() {
output.push_str(" ");
output.push_str(&cgu_name);
let linkage_abbrev = match linkage {
llvm::Linkage::ExternalLinkage => "External",
llvm::Linkage::AvailableExternallyLinkage => "Available",
llvm::Linkage::LinkOnceAnyLinkage => "OnceAny",
llvm::Linkage::LinkOnceODRLinkage => "OnceODR",
llvm::Linkage::WeakAnyLinkage => "WeakAny",
llvm::Linkage::WeakODRLinkage => "WeakODR",
llvm::Linkage::AppendingLinkage => "Appending",
llvm::Linkage::InternalLinkage => "Internal",
llvm::Linkage::PrivateLinkage => "Private",
llvm::Linkage::ExternalWeakLinkage => "ExternalWeak",
llvm::Linkage::CommonLinkage => "Common",
};
output.push_str("[");
output.push_str(linkage_abbrev);
output.push_str("]");
}
output
})
.collect();
item_keys.sort();
for item in item_keys {
println!("TRANS_ITEM {}", item);
}
}
(translation_items, codegen_units)
}