Go to file
bors ed084b0b83 Auto merge of #69659 - CAD97:step-rework-take-3, r=Amanieu
Rework the std::iter::Step trait

Previous attempts: #43127 #62886 #68807
Tracking issue: #42168

This PR reworks the `Step` trait to be phrased in terms of the *successor* and *predecessor* operations. With this, `Step` hopefully has a consistent identity that can have a path towards stabilization. The proposed trait:

```rust
/// Objects that have a notion of *successor* and *predecessor* operations.
///
/// The *successor* operation moves towards values that compare greater.
/// The *predecessor* operation moves towards values that compare lesser.
///
/// # Safety
///
/// This trait is `unsafe` because its implementation must be correct for
/// the safety of `unsafe trait TrustedLen` implementations, and the results
/// of using this trait can otherwise be trusted by `unsafe` code to be correct
/// and fulful the listed obligations.
pub unsafe trait Step: Clone + PartialOrd + Sized {
    /// Returns the number of *successor* steps required to get from `start` to `end`.
    ///
    /// Returns `None` if the number of steps would overflow `usize`
    /// (or is infinite, or if `end` would never be reached).
    ///
    /// # Invariants
    ///
    /// For any `a`, `b`, and `n`:
    ///
    /// * `steps_between(&a, &b) == Some(n)` if and only if `Step::forward(&a, n) == Some(b)`
    /// * `steps_between(&a, &b) == Some(n)` if and only if `Step::backward(&a, n) == Some(a)`
    /// * `steps_between(&a, &b) == Some(n)` only if `a <= b`
    ///   * Corollary: `steps_between(&a, &b) == Some(0)` if and only if `a == b`
    ///   * Note that `a <= b` does _not_ imply `steps_between(&a, &b) != None`;
    ///     this is the case wheen it would require more than `usize::MAX` steps to get to `b`
    /// * `steps_between(&a, &b) == None` if `a > b`
    fn steps_between(start: &Self, end: &Self) -> Option<usize>;

    /// Returns the value that would be obtained by taking the *successor*
    /// of `self` `count` times.
    ///
    /// If this would overflow the range of values supported by `Self`, returns `None`.
    ///
    /// # Invariants
    ///
    /// For any `a`, `n`, and `m`:
    ///
    /// * `Step::forward_checked(a, n).and_then(|x| Step::forward_checked(x, m)) == Step::forward_checked(a, m).and_then(|x| Step::forward_checked(x, n))`
    ///
    /// For any `a`, `n`, and `m` where `n + m` does not overflow:
    ///
    /// * `Step::forward_checked(a, n).and_then(|x| Step::forward_checked(x, m)) == Step::forward_checked(a, n + m)`
    ///
    /// For any `a` and `n`:
    ///
    /// * `Step::forward_checked(a, n) == (0..n).try_fold(a, |x, _| Step::forward_checked(&x, 1))`
    ///   * Corollary: `Step::forward_checked(&a, 0) == Some(a)`
    fn forward_checked(start: Self, count: usize) -> Option<Self>;

    /// Returns the value that would be obtained by taking the *successor*
    /// of `self` `count` times.
    ///
    /// If this would overflow the range of values supported by `Self`,
    /// this function is allowed to panic, wrap, or saturate.
    /// The suggested behavior is to panic when debug assertions are enabled,
    /// and to wrap or saturate otherwise.
    ///
    /// Unsafe code should not rely on the correctness of behavior after overflow.
    ///
    /// # Invariants
    ///
    /// For any `a`, `n`, and `m`, where no overflow occurs:
    ///
    /// * `Step::forward(Step::forward(a, n), m) == Step::forward(a, n + m)`
    ///
    /// For any `a` and `n`, where no overflow occurs:
    ///
    /// * `Step::forward_checked(a, n) == Some(Step::forward(a, n))`
    /// * `Step::forward(a, n) == (0..n).fold(a, |x, _| Step::forward(x, 1))`
    ///   * Corollary: `Step::forward(a, 0) == a`
    /// * `Step::forward(a, n) >= a`
    /// * `Step::backward(Step::forward(a, n), n) == a`
    fn forward(start: Self, count: usize) -> Self {
        Step::forward_checked(start, count).expect("overflow in `Step::forward`")
    }

    /// Returns the value that would be obtained by taking the *successor*
    /// of `self` `count` times.
    ///
    /// # Safety
    ///
    /// It is undefined behavior for this operation to overflow the
    /// range of values supported by `Self`. If you cannot guarantee that this
    /// will not overflow, use `forward` or `forward_checked` instead.
    ///
    /// # Invariants
    ///
    /// For any `a`:
    ///
    /// * if there exists `b` such that `b > a`, it is safe to call `Step::forward_unchecked(a, 1)`
    /// * if there exists `b`, `n` such that `steps_between(&a, &b) == Some(n)`,
    ///   it is safe to call `Step::forward_unchecked(a, m)` for any `m <= n`.
    ///
    /// For any `a` and `n`, where no overflow occurs:
    ///
    /// * `Step::forward_unchecked(a, n)` is equivalent to `Step::forward(a, n)`
    #[unstable(feature = "unchecked_math", reason = "niche optimization path", issue = "none")]
    unsafe fn forward_unchecked(start: Self, count: usize) -> Self {
        Step::forward(start, count)
    }

    /// Returns the value that would be obtained by taking the *successor*
    /// of `self` `count` times.
    ///
    /// If this would overflow the range of values supported by `Self`, returns `None`.
    ///
    /// # Invariants
    ///
    /// For any `a`, `n`, and `m`:
    ///
    /// * `Step::backward_checked(a, n).and_then(|x| Step::backward_checked(x, m)) == n.checked_add(m).and_then(|x| Step::backward_checked(a, x))`
    /// * `Step::backward_checked(a, n).and_then(|x| Step::backward_checked(x, m)) == try { Step::backward_checked(a, n.checked_add(m)?) }`
    ///
    /// For any `a` and `n`:
    ///
    /// * `Step::backward_checked(a, n) == (0..n).try_fold(a, |x, _| Step::backward_checked(&x, 1))`
    ///   * Corollary: `Step::backward_checked(&a, 0) == Some(a)`
    fn backward_checked(start: Self, count: usize) -> Option<Self>;

    /// Returns the value that would be obtained by taking the *predecessor*
    /// of `self` `count` times.
    ///
    /// If this would overflow the range of values supported by `Self`,
    /// this function is allowed to panic, wrap, or saturate.
    /// The suggested behavior is to panic when debug assertions are enabled,
    /// and to wrap or saturate otherwise.
    ///
    /// Unsafe code should not rely on the correctness of behavior after overflow.
    ///
    /// # Invariants
    ///
    /// For any `a`, `n`, and `m`, where no overflow occurs:
    ///
    /// * `Step::backward(Step::backward(a, n), m) == Step::backward(a, n + m)`
    ///
    /// For any `a` and `n`, where no overflow occurs:
    ///
    /// * `Step::backward_checked(a, n) == Some(Step::backward(a, n))`
    /// * `Step::backward(a, n) == (0..n).fold(a, |x, _| Step::backward(x, 1))`
    ///   * Corollary: `Step::backward(a, 0) == a`
    /// * `Step::backward(a, n) <= a`
    /// * `Step::forward(Step::backward(a, n), n) == a`
    fn backward(start: Self, count: usize) -> Self {
        Step::backward_checked(start, count).expect("overflow in `Step::backward`")
    }

    /// Returns the value that would be obtained by taking the *predecessor*
    /// of `self` `count` times.
    ///
    /// # Safety
    ///
    /// It is undefined behavior for this operation to overflow the
    /// range of values supported by `Self`. If you cannot guarantee that this
    /// will not overflow, use `backward` or `backward_checked` instead.
    ///
    /// # Invariants
    ///
    /// For any `a`:
    ///
    /// * if there exists `b` such that `b < a`, it is safe to call `Step::backward_unchecked(a, 1)`
    /// * if there exists `b`, `n` such that `steps_between(&b, &a) == Some(n)`,
    ///   it is safe to call `Step::backward_unchecked(a, m)` for any `m <= n`.
    ///
    /// For any `a` and `n`, where no overflow occurs:
    ///
    /// * `Step::backward_unchecked(a, n)` is equivalent to `Step::backward(a, n)`
    #[unstable(feature = "unchecked_math", reason = "niche optimization path", issue = "none")]
    unsafe fn backward_unchecked(start: Self, count: usize) -> Self {
        Step::backward(start, count)
    }
}
```

Note that all of these are associated functions and not callable via method syntax; the calling syntax is always `Step::forward(start, n)`. This version of the trait additionally changes the stepping functions to talk their arguments by value.

As opposed to previous attempts which provided a "step by one" method directly, this version of the trait only exposes "step by n". There are a few reasons for this:

- `Range*`, the primary consumer of `Step`, assumes that the "step by n" operation is cheap. If a single step function is provided, it will be a lot more enticing to implement "step by n" as n repeated calls to "step by one". While this is not strictly incorrect, this behavior would be surprising for anyone used to using `Range<{primitive integer}>`.
- With a trivial default impl, this can be easily added backwards-compatibly later.
- The debug-wrapping "step by n" needs to exist for `RangeFrom` to be consistent between "step by n" and "step by one" operation. (Note: the behavior is not changed by this PR, but making the behavior consistent is made tenable by this PR.)

Three "kinds" of step are provided: `_checked`, which returns an `Option` indicating attempted overflow; (unsuffixed), which provides "safe overflow" behavior (is allowed to panic, wrap, or saturate, depending on what is most convenient for a given type); and `_unchecked`, which is a version which assumes overflow does not happen.

Review is appreciated to check that:

- The invariants as described on the `Step` functions are enough to specify the "common sense" consistency for successor/predecessor.
- Implementation of `Step` functions is correct in the face of overflow and the edges of representable integers.
- Added tests of `Step` functions are asserting the correct behavior (and not just the implemented behavior).
2020-05-15 11:24:50 +00:00
.github Configure cache domain for GHA 2020-05-11 10:50:53 -04:00
src Auto merge of #69659 - CAD97:step-rework-take-3, r=Amanieu 2020-05-15 11:24:50 +00:00
.gitattributes
.gitignore
.gitmodules Delete the clippy submodule 2020-05-02 09:48:46 +02:00
.mailmap Add myself to mailmap. 2020-05-08 08:26:29 +08:00
Cargo.lock Update Cargo.lock 2020-05-11 21:18:42 +02:00
Cargo.toml deps: remove unused regex dependency from root crate 2020-05-09 01:27:30 +02:00
CODE_OF_CONDUCT.md
config.toml.example Rollup merge of #72146 - Mark-Simulacrum:separate-std-asserts, r=alexcrichton 2020-05-15 01:57:17 +02:00
configure Enforce Python 3 as much as possible 2020-04-10 09:09:58 -04:00
CONTRIBUTING.md Rollup merge of #71864 - mibac138:patch-1, r=jonas-schievink 2020-05-04 03:15:03 +02:00
COPYRIGHT
LICENSE-APACHE
LICENSE-MIT
README.md Enforce Python 3 as much as possible 2020-04-10 09:09:58 -04:00
RELEASES.md backport 1.43.1 release notes 2020-05-05 11:55:07 +02:00
rustfmt.toml
triagebot.toml Add prioritize_on attribute to triagebot 2020-05-14 18:32:11 -03:00
x.py

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installation" from The Book.

Installing from Source

Note: If you wish to contribute to the compiler, you should read this chapter of the rustc-dev-guide instead of this section.

The Rust build system has a Python script called x.py to bootstrap building the compiler. More information about it may be found by running ./x.py --help or reading the rustc dev guide.

Building on *nix

  1. Make sure you have installed the dependencies:

    • g++ 5.1 or later or clang++ 3.5 or later
    • python 3 or 2.7
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
    • ssl which comes in libssl-dev or openssl-devel
    • pkg-config if you are compiling on Linux and targeting Linux
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Configure the build settings:

    The Rust build system uses a file named config.toml in the root of the source tree to determine various configuration settings for the build. Copy the default config.toml.example to config.toml to get started.

    $ cp config.toml.example config.toml
    

    It is recommended that if you plan to use the Rust build system to create an installation (using ./x.py install) that you set the prefix value in the [install] section to a directory that you have write permissions.

    Create install directory if you are not installing in default directory

  2. Build and install:

    $ ./x.py build && ./x.py install
    

    When complete, ./x.py install will place several programs into $PREFIX/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager. To build and install Cargo, you may run ./x.py install cargo or set the build.extended key in config.toml to true to build and install all tools.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2017 (or later) so rustc can use its linker. The simplest way is to get the Visual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.

(If you're installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn't get included under “Individual components”.)

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

> CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
> python x.py build

Building rustc with older host toolchains

It is still possible to build Rust with the older toolchain versions listed below, but only if the LLVM_TEMPORARILY_ALLOW_OLD_TOOLCHAIN option is set to true in the config.toml file.

  • Clang 3.1
  • Apple Clang 3.1
  • GCC 4.8
  • Visual Studio 2015 (Update 3)

Toolchain versions older than what is listed above cannot be used to build rustc.

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking x.py commands, or by copying the config.toml file (as described in Installing From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, 10, ...)
Linux (2.6.18 or later)
macOS (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Most real-time collaboration happens in a variety of channels on the Rust Discord server, with channels dedicated for getting help, community, documentation, and all major contribution areas in the Rust ecosystem. A good place to ask for help would be the #help channel.

The rustc dev guide might be a good place to start if you want to find out how various parts of the compiler work.

Also, you may find the rustdocs for the compiler itself useful.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Trademark

The Rust programming language is an open source, community project governed by a core team. It is also sponsored by the Mozilla Foundation (“Mozilla”), which owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).

If you want to use these names or brands, please read the media guide.

Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.