Paranoia2_original/utils/p2rad/qrad.cpp

2721 lines
68 KiB
C++
Raw Permalink Normal View History

/***
*
* Copyright (c) 1996-2002, Valve LLC. All rights reserved.
*
* This product contains software technology licensed from Id
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
* All Rights Reserved.
*
****/
// qrad.c
#include "qrad.h"
/*
NOTES
-----
every surface must be divided into at least two patches each axis
*/
patch_t *g_face_patches[MAX_MAP_FACES];
entity_t *g_face_entity[MAX_MAP_FACES];
vec_t *g_skynormalsizes[SKYLEVELMAX+1];
int g_numskynormals[SKYLEVELMAX+1];
vec3_t *g_skynormals[SKYLEVELMAX+1];
patch_t *g_patches;
uint g_num_patches;
static vec3_t (*emitlight)[MAXLIGHTMAPS];
static vec3_t (*addlight)[MAXLIGHTMAPS];
static byte (*newstyles)[MAXLIGHTMAPS];
#ifdef HLRAD_DELUXEMAPPING
static vec3_t (*emitlight_dir)[MAXLIGHTMAPS];
static vec3_t (*addlight_dir)[MAXLIGHTMAPS];
#endif
vec3_t g_face_offset[MAX_MAP_FACES]; // for rotating bmodels
dplane_t g_backplanes[MAX_MAP_PLANES]; // equal to MAX_MAP_FACES, there is no errors
int g_overflowed_styles_onface[MAX_THREADS];
int g_overflowed_styles_onpatch[MAX_THREADS];
int g_direct_luxels[MAX_THREADS];
int g_lighted_luxels[MAX_THREADS];
vec3_t g_reflectivity[MAX_MAP_TEXTURES];
bool g_texture_init[MAX_MAP_TEXTURES];
static winding_t *g_windingArray[MAX_SUBDIVIDE];
static uint g_numwindings = 0;
static size_t g_transfer_data_bytes;
size_t g_transfer_data_size[MAX_THREADS];
uint g_numbounce = DEFAULT_BOUNCE; // originally this was 8
vec_t g_chop = DEFAULT_CHOP;
vec_t g_texchop = DEFAULT_TEXCHOP;
vec_t g_smoothvalue = DEFAULT_SMOOTHVALUE;
float g_totalarea;
bool g_fastmode = DEFAULT_FASTMODE;
vec_t g_direct_scale = DEFAULT_DLIGHT_SCALE;
vec_t g_indirect_scale = DEFAULT_LIGHT_SCALE;
vec_t g_blur = DEFAULT_BLUR;
vec_t g_gamma = DEFAULT_GAMMA;
bool g_drawsample = false;
vec3_t g_ambient = { 0, 0, 0 };
float g_maxlight = DEFAULT_LIGHTCLIP; // originally this was 196
float g_indirect_sun = DEFAULT_INDIRECT_SUN;
bool g_dirtmapping = DEFAULT_DIRTMAPPING;
bool g_lerp_enabled = DEFAULT_LERP_ENABLED;
bool g_extra = DEFAULT_EXTRAMODE;
bool g_nomodelshadow = false;
bool g_lightbalance = false;
bool g_onlylights = false;
float g_smoothing_threshold; // cosine of smoothing angle(in radians)
char source[MAX_PATH] = "";
uint g_gammamode = DEFAULT_GAMMAMODE;
static char global_lights[MAX_PATH] = "";
static char level_lights[MAX_PATH] = "";
// pre-quantized table normals from Quake1
vec_t g_anorms[NUMVERTEXNORMALS][3] =
{
#include "anorms.h"
};
/*
===================================================================
MISC
===================================================================
*/
const dplane_t *GetPlaneFromFace( const dface_t *face )
{
ASSERT( face != NULL );
if( face->side )
return &g_backplanes[face->planenum];
return &g_dplanes[face->planenum];
}
const dplane_t *GetPlaneFromFace( const uint facenum )
{
ASSERT( facenum < MAX_MAP_FACES );
dface_t *face = &g_dfaces[facenum];
if( face->side )
return &g_backplanes[face->planenum];
return &g_dplanes[face->planenum];
}
dleaf_t *PointInLeaf( const vec3_t point )
{
int nodenum = 0;
while( nodenum >= 0 )
{
dnode_t *node = &g_dnodes[nodenum];
if( PlaneDiff( point, &g_dplanes[node->planenum] ) > 0 )
nodenum = node->children[0];
else nodenum = node->children[1];
}
return &g_dleafs[-nodenum - 1];
}
dleaf_t *PointInLeaf_r( int nodenum, const vec3_t point )
{
dplane_t *plane;
dnode_t *node;
vec_t dist;
while( nodenum >= 0 )
{
node = &g_dnodes[nodenum];
plane = &g_dplanes[node->planenum];
dist = DotProduct( point, plane->normal ) - plane->dist;
if( dist > HUNT_WALL_EPSILON )
{
nodenum = node->children[0];
}
else if( dist < -HUNT_WALL_EPSILON )
{
nodenum = node->children[1];
}
else
{
dleaf_t *result[2];
result[0] = PointInLeaf_r( node->children[0], point );
result[1] = PointInLeaf_r( node->children[1], point );
if( result[0] == g_dleafs || result[0]->contents == CONTENTS_SOLID )
return result[0];
if( result[1] == g_dleafs || result[1]->contents == CONTENTS_SOLID )
return result[1];
if( result[0]->contents == CONTENTS_SKY )
return result[0];
if( result[1]->contents == CONTENTS_SKY )
return result[1];
return result[0];
}
}
return &g_dleafs[-nodenum - 1];
}
dleaf_t *PointInLeaf2( const vec3_t point )
{
return PointInLeaf_r( 0, point );
}
/*
==============
GetVisCache
decompress visibility string
==============
*/
int GetVisCache( int lastoffset, int offset, byte *pvs )
{
// get the PVS for the pos to limit the number of checks
if( !g_visdatasize )
{
if( offset != lastoffset )
{
memset( pvs, 255, (g_numvisleafs + 7) / 8 );
lastoffset = -1;
}
}
else if( offset != lastoffset )
{
if( offset == -1 ) memset( pvs, 0, (g_numvisleafs + 7) / 8 );
else DecompressVis( &g_dvisdata[offset], pvs );
lastoffset = offset;
}
return lastoffset;
}
/*
==============
SetDLightVis
Init dlight visibility
==============
*/
void SetDLightVis( directlight_t *dl, int leafnum )
{
if( !dl->pvs )
dl->pvs = (byte *)Mem_Alloc( (g_numvisleafs + 7) / 8 );
GetVisCache( -2, g_dleafs[leafnum].visofs, dl->pvs );
}
/*
==============
MergeDLightVis
Merge dlight vis with another leaf
==============
*/
void MergeDLightVis( directlight_t *dl, int leafnum )
{
if( !dl->pvs )
{
SetDLightVis( dl, leafnum );
}
else
{
byte pvs[(MAX_MAP_LEAFS + 7) / 8];
GetVisCache( -2, g_dleafs[leafnum].visofs, pvs );
// merge both vis graphs
for( int i = 0; i < (g_numvisleafs + 7) / 8; i++ )
dl->pvs[i] |= pvs[i];
}
}
/*
==============
PatchPlaneDist
Fixes up patch planes for brush models with an origin brush
==============
*/
vec_t PatchPlaneDist( patch_t *patch )
{
const dplane_t *plane = GetPlaneFromFace( patch->faceNumber );
return DotProduct( g_face_offset[patch->faceNumber], plane->normal ) + plane->dist;
}
bool PvsForOrigin( const vec3_t org, byte *pvs )
{
dleaf_t *leaf;
if( !g_visdatasize )
{
memset( pvs, 255, (g_numvisleafs + 7) / 8 );
return true;
}
leaf = PointInLeaf( org );
if( leaf->visofs == -1 )
COM_FatalError( "leaf->visofs == -1\n" );
if( leaf->contents == CONTENTS_SOLID )
return false;
DecompressVis( &g_dvisdata[leaf->visofs], pvs );
return true;
}
/*
=============
HuntForWorld
never return CONTENTS_SKY or CONTENTS_SOLID leafs
=============
*/
dleaf_t *HuntForWorld( vec3_t point, const vec3_t plane_offset, const dplane_t *plane, int hunt_size, vec_t hunt_scale, vec_t hunt_offset )
{
vec3_t current_point;
vec3_t original_point;
dleaf_t *best_leaf = NULL;
vec_t best_dist = 99999999.0;
dplane_t new_plane = *plane;
int a, x, y, z;
vec3_t best_point;
vec3_t scales;
dleaf_t *leaf;
scales[0] = 0.0;
scales[1] = -hunt_scale;
scales[2] = hunt_scale;
VectorCopy( point, best_point );
VectorCopy( point, original_point );
new_plane.dist += DotProduct( plane->normal, plane_offset );
for( a = 0; a < hunt_size; a++ )
{
for( x = 0; x < 3; x++ )
{
current_point[0] = original_point[0] + (scales[x % 3] * a);
for( y = 0; y < 3; y++ )
{
current_point[1] = original_point[1] + (scales[y % 3] * a);
for( z = 0; z < 3; z++ )
{
if( a == 0 && ( x || y || z ))
{
continue;
}
vec3_t delta;
vec_t dist;
current_point[2] = original_point[2] + (scales[z % 3] * a);
dist = DotProduct( current_point, new_plane.normal ) - new_plane.dist - hunt_offset;
VectorMA( current_point, -dist, new_plane.normal, current_point );
VectorSubtract( current_point, original_point, delta );
dist = DotProduct( delta, delta );
if( dist < best_dist )
{
if(( leaf = PointInLeaf2( current_point )) != g_dleafs )
{
if(( leaf->contents != CONTENTS_SKY ) && ( leaf->contents != CONTENTS_SOLID ))
{
if( x || y || z )
{
VectorCopy( current_point, best_point );
best_dist = dist;
best_leaf = leaf;
continue;
}
else
{
VectorCopy( current_point, point );
return leaf;
}
}
}
}
}
}
}
if( best_leaf )
break;
}
VectorCopy( best_point, point );
return best_leaf;
}
dworldlight_t *AllocWorldLight( word *lightnum )
{
if( g_numworldlights == MAX_MAP_WORLDLIGHTS )
COM_FatalError( "MAX_MAP_WORLDLIGHTS limit exceeded\n" );
if( lightnum ) *lightnum = g_numworldlights;
return &g_dworldlights[g_numworldlights++];
}
void InitWorldLightFromDlight( directlight_t *dl, int leafnum )
{
dworldlight_t *wl;
if( dl->type != emit_skylight && leafnum == 0 )
return; // light that be removed
wl = AllocWorldLight( &dl->lightnum );
wl->emittype = dl->type;
wl->style = dl->style;
VectorCopy( dl->origin, wl->origin );
VectorCopy( dl->intensity, wl->intensity );
VectorCopy( dl->normal, wl->normal );
wl->stopdot = dl->stopdot;
wl->stopdot2 = dl->stopdot2;
wl->fade = dl->fade;
wl->falloff = dl->falloff;
wl->leafnum = leafnum; // leaf where light is located
wl->radius = dl->radius;
wl->facenum = dl->facenum;
wl->modelnumber = dl->modelnum;
}
void InitWorldLightFromPatch( dworldlight_t *wl, patch_t *p )
{
dleaf_t *leaf;
leaf = PointInLeaf( p->origin );
wl->emittype = emit_surface;
wl->style = p->emitstyle;
VectorCopy( p->origin, wl->origin );
VectorCopy( p->baselight, wl->intensity );
VectorScale( wl->intensity, p->area, wl->intensity );
VectorScale( wl->intensity, p->exposure, wl->intensity );
if( !VectorIsNull( p->reflectivity ))
{
VectorScale( wl->intensity, 0.5 / M_PI, wl->intensity );
VectorMultiply( wl->intensity, p->reflectivity, wl->intensity );
}
else
{
VectorScale( wl->intensity, DIRECT_SCALE, wl->intensity );
}
VectorCopy( GetPlaneFromFace( p->faceNumber )->normal, wl->normal );
wl->stopdot = wl->stopdot2 = 0.0f; // not used
wl->fade = p->fade; // constant
wl->falloff = falloff_valve; // inverse square falloff
wl->leafnum = leaf - g_dleafs; // leaf where light is located
wl->radius = VectorLength2( wl->intensity ) * 0.5f;
wl->facenum = p->faceNumber;
wl->modelnumber = p->modelnum;
}
// =====================================================================================
// CalcSightArea
// =====================================================================================
vec_t CalcSightArea( const vec3_t receiver_origin, const vec3_t receiver_normal, const winding_t *emitter_winding, int skylevel )
{
// maybe there are faster ways in calculating the weighted area, but at least this way is not bad.
int numedges = emitter_winding->numpoints;
vec3_t *edges = (vec3_t *)Mem_Alloc( numedges * sizeof( vec3_t ));
vec3_t *pnormal, *pedge;
vec_t *psize, dot;
vec_t area = 0.0;
int i, j;
for( int x = 0; x < numedges; x++ )
{
vec3_t v1, v2, normal;
VectorSubtract( emitter_winding->p[x], receiver_origin, v1 );
VectorSubtract( emitter_winding->p[(x + 1) % numedges], receiver_origin, v2 );
CrossProduct( v1, v2, normal ); // pointing inward
if( !VectorNormalize( normal ))
break;
VectorCopy( normal, edges[x] );
}
if( x != numedges )
{
Mem_Free( edges );
return area;
}
for( i = 0, pnormal = g_skynormals[skylevel], psize = g_skynormalsizes[skylevel]; i < g_numskynormals[skylevel]; i++, pnormal++, psize++ )
{
dot = DotProduct( *pnormal, receiver_normal );
if( dot <= 0 ) continue;
for( j = 0, pedge = edges; j < numedges; j++, pedge++ )
{
if( DotProduct( *pnormal, *pedge ) <= 0 )
break;
}
if( j < numedges )
continue;
area += dot * (*psize);
}
area = area * 4.0 * M_PI; // convert to absolute sphere area
Mem_Free( edges );
return area;
}
// =====================================================================================
// GetAlternateOrigin
// =====================================================================================
void GetAlternateOrigin( const vec3_t pos, const vec3_t normal, const patch_t *patch, vec3_t origin )
{
const dplane_t *faceplane;
const vec_t *faceplaneoffset;
const vec_t *facenormal;
dplane_t clipplane;
winding_t *w;
faceplane = GetPlaneFromFace( patch->faceNumber );
faceplaneoffset = g_face_offset[patch->faceNumber];
facenormal = faceplane->normal;
VectorCopy( normal, clipplane.normal );
clipplane.dist = DotProduct( pos, clipplane.normal );
if( WindingOnPlaneSide( patch->winding, clipplane.normal, clipplane.dist, ON_EPSILON ) != SIDE_CROSS )
{
VectorCopy( patch->origin, origin );
}
else
{
w = CopyWinding( patch->winding );
ChopWindingInPlace( &w, clipplane.normal, clipplane.dist, ON_EPSILON, false );
if( w == NULL )
{
VectorCopy( patch->origin, origin );
}
else
{
vec3_t v, point, bestpoint;
vec_t dist, bestdist = -1.0;
bool found = false;
vec3_t center;
WindingCenter( w, center );
VectorMA( center, DEFAULT_HUNT_OFFSET, facenormal, point );
if( HuntForWorld( point, faceplaneoffset, faceplane, 2, 1.0, DEFAULT_HUNT_OFFSET ))
{
VectorSubtract( point, center, v );
dist = VectorLength( v );
if( !found || dist < bestdist )
{
VectorCopy( point, bestpoint );
bestdist = dist;
found = true;
}
}
if( !found )
{
for( int i = 0; i < (int)w->numpoints; i++ )
{
const vec_t *p1 = w->p[i];
const vec_t *p2 = w->p[(i + 1) % w->numpoints];
VectorAdd( p1, p2, point );
VectorAdd( point, center, point );
VectorScale( point, 1.0 / 3.0, point );
VectorMA( point, DEFAULT_HUNT_OFFSET, facenormal, point );
if( HuntForWorld( point, faceplaneoffset, faceplane, 1, 0.0, DEFAULT_HUNT_OFFSET ))
{
VectorSubtract( point, center, v );
dist = VectorLength( v );
if( !found || dist < bestdist )
{
VectorCopy( point, bestpoint );
bestdist = dist;
found = true;
}
}
}
}
if( found ) VectorCopy( bestpoint, origin );
else VectorCopy( patch->origin, origin );
FreeWinding( w );
}
}
}
/*
=============
MakeBackplanes
=============
*/
void MakeBackplanes( void )
{
for( int i = 0; i < g_numplanes; i++ )
{
VectorNegate( g_dplanes[i].normal, g_backplanes[i].normal );
g_backplanes[i].dist = -g_dplanes[i].dist;
}
}
/*
===================================================================
TEXTURE LIGHT VALUES
===================================================================
*/
static texlight_t g_texlights[MAX_TEXLIGHTS];
static int g_num_texlights;
int ParseInfoTexlights( entity_t *mapent )
{
int numtexlights = 0;
float r, g, b, i;
int j, values;
epair_t *ep;
if( Q_strcmp( ValueForKey( mapent, "classname" ), "info_texlights" ))
return 0;
MsgDev( D_REPORT, "Reading texlights from info_texlights map entity\n" );
for( ep = mapent->epairs; ep; ep = ep->next )
{
if( !Q_strcmp( ep->key, "classname" ) || !Q_strcmp( ep->key, "origin" ))
continue; // we dont care about these keyvalues
values = sscanf( ep->value, "%f %f %f %f", &r, &g, &b, &i );
if( values == 1 )
{
g = b = r;
}
else if( values == 4 ) // use brightness value.
{
r *= i / 255.0;
g *= i / 255.0;
b *= i / 255.0;
}
else if( values != 3 )
{
MsgDev( D_WARN, "ignoring bad texlight '%s' in info_texlights entity", ep->key );
continue;
}
for( j = 0; j < g_num_texlights; j++ )
{
texlight_t *tl = &g_texlights[j];
if( !Q_strcmp( tl->name, ep->key ))
{
if( !Q_strcmp( tl->filename, "info_texlights" ))
{
MsgDev( D_REPORT, "duplication of '%s' in info_texlights map entity!\n", tl->name );
}
else if( tl->value[0] != r || tl->value[1] != g || tl->value[2] != b )
{
MsgDev( D_REPORT, "overriding '%s' from '%s' with info_texlights map entity!\n",
tl->name, tl->filename );
}
else
{
MsgDev( D_WARN, "redundant '%s' def in '%s' AND info_texlights map entity!\n",
tl->name, tl->filename );
}
break;
}
}
Q_strncpy( g_texlights[j].name, ep->key, sizeof( g_texlights[0].name ));
g_texlights[j].filename = "info_texlights";
VectorSet( g_texlights[j].value, r, g, b );
g_texlights[j].fade = 1.0f;
numtexlights++;
g_num_texlights = Q_max( g_num_texlights, j + 1 );
if( g_num_texlights == MAX_TEXLIGHTS )
COM_FatalError( "MAX_TEXLIGHTS limit exceeded\n" );
}
return numtexlights;
}
int ParseSurfaceLights( entity_t *mapent )
{
char name[64];
char *pLight = NULL;
char *pColor = NULL;
vec3_t intensity;
int j, argCnt;
if( Q_strcmp( ValueForKey( mapent, "classname" ), "light" ))
return 0;
if( !CheckKey( mapent, "_surface" ))
return 0;
Q_strncpy( name, ValueForKey( mapent, "_surface" ), sizeof( name ));
if( CheckKey( mapent, "_light" ))
pLight = ValueForKey( mapent, "_light" );
else pLight = ValueForKey( mapent, "light" );
argCnt = ParseLightIntensity( pLight, intensity );
if( name[0] == '*' ) name[0] = '!';
// quake light
if( argCnt <= 1 )
{
double r, g, b, scaler;
scaler = intensity[0];
r = g = b = 0;
if( CheckKey( mapent, "_color" ))
pColor = ValueForKey( mapent, "_color" );
else pColor = ValueForKey( mapent, "color" );
if( pColor[0] && sscanf( pColor, "%lf %lf %lf", &r, &g, &b ) == 3 )
{
intensity[0] = r * (float)scaler;
intensity[1] = g * (float)scaler;
intensity[2] = b * (float)scaler;
}
}
for( j = 0; j < g_num_texlights; j++ )
{
texlight_t *tl = &g_texlights[j];
if( !Q_strcmp( tl->name, name ))
{
if( !Q_strcmp( tl->filename, "info_texlights" ))
{
MsgDev( D_REPORT, "duplication of '%s' in info_texlights map entity!\n", tl->name );
}
else if( !VectorCompareEpsilon( tl->value, intensity, ON_EPSILON ))
{
MsgDev( D_REPORT, "overriding '%s' from '%s' with info_texlights map entity!\n", tl->name, tl->filename );
}
else
{
MsgDev( D_WARN, "redundant '%s' def in '%s' AND info_texlights map entity!\n", tl->name, tl->filename );
}
break;
}
}
Q_strncpy( g_texlights[j].name, name, sizeof( g_texlights[0].name ));
VectorCopy( intensity, g_texlights[j].value );
g_texlights[j].filename = "light_surface";
g_texlights[j].fade = FloatForKey( mapent, "wait" );
// to prevent division by zero
if( g_texlights[j].fade <= 0.0 ) g_texlights[j].fade = 1.0;
g_num_texlights = Q_max( g_num_texlights, j + 1 );
if( g_num_texlights == MAX_TEXLIGHTS )
COM_FatalError( "MAX_TEXLIGHTS limit exceeded\n" );
return 1;
}
// =====================================================================================
// ReadInfoTexlights
// try and parse texlight info from the info_texlights entity
// =====================================================================================
void ReadInfoTexlights( void )
{
int numtexlights = 0;
entity_t *mapent;
for( int k = 0; k < g_numentities; k++ )
{
mapent = &g_entities[k];
// all the vertex cache ID's should be removed now
RemoveKey( mapent, "_vlight_id" );
numtexlights += ParseInfoTexlights( mapent );
numtexlights += ParseSurfaceLights( mapent );
}
MsgDev( D_REPORT, "[%i texlights parsed from info_texlights map entity]\n\n", numtexlights );
}
/*
============
ReadLightFile
============
*/
void ReadLightFile( const char *filename, bool use_direct_path )
{
int file_texlights = 0;
int result = 0;
char scan[128];
int j, argCnt;
file_t *f;
FS_AllowDirectPaths( use_direct_path );
f = FS_Open( filename, "r", false );
FS_AllowDirectPaths( false );
if( !f ) return;
while( result != EOF )
{
char szTexlight[256];
vec_t r, g, b, i = 1;
char *comment = scan;
result = FS_Gets( f, (byte *)&scan, sizeof( scan ));
// skip the comments
if( comment[0] == '/' && comment[1] == '/' )
continue;
argCnt = sscanf( scan, "%s %f %f %f %f", szTexlight, &r, &g, &b, &i );
if( argCnt == 2 )
{
// eith 1+1 args, the R,G,B values are all equal to the first value
g = b = r;
}
else if( argCnt == 5 )
{
// With 1 + 4 args, the R,G,B values are "scaled" by the fourth numeric value i;
r *= i / 255.0;
g *= i / 255.0;
b *= i / 255.0;
}
else if( argCnt != 4 )
{
if( Q_strlen( scan ) > 4 )
MsgDev( D_WARN, "ignoring bad texlight '%s' in %s", scan, filename );
continue;
}
for( j = 0; j < g_num_texlights; j++ )
{
texlight_t *tl = &g_texlights[j];
if( !Q_strcmp( tl->name, szTexlight ))
{
if( !Q_strcmp( tl->filename, filename ))
{
MsgDev( D_REPORT, "duplication of '%s' in file '%s'!\n", tl->name, tl->filename );
}
else if( tl->value[0] != r || tl->value[1] != g || tl->value[2] != b )
{
MsgDev( D_REPORT, "overriding '%s' from '%s' with '%s'!\n", tl->name, tl->filename, filename );
}
else
{
MsgDev( D_WARN, "redundant '%s' def in '%s' AND '%s'!\n", tl->name, tl->filename, filename );
}
break;
}
}
Q_strncpy( g_texlights[j].name, szTexlight, sizeof( g_texlights[0].name ));
VectorSet( g_texlights[j].value, r, g, b );
g_texlights[j].filename = filename;
g_texlights[j].fade = 1.0f;
file_texlights++;
g_num_texlights = Q_max( g_num_texlights, j + 1 );
if( g_num_texlights == MAX_TEXLIGHTS )
COM_FatalError( "MAX_TEXLIGHTS limit exceeded\n" );
}
MsgDev( D_INFO, "[%i texlights parsed from '%s']\n\n", file_texlights, filename );
FS_Close( f );
}
/*
============
LightForTexture
============
*/
vec_t LightForTexture( const char *name, vec3_t result )
{
VectorClear( result );
for( int i = 0; i < g_num_texlights; i++ )
{
if( !Q_stricmp( name, g_texlights[i].name ))
{
VectorCopy( g_texlights[i].value, result );
MsgDev( D_REPORT, "Texture '%s': baselight is (%f,%f,%f).\n", name, result[0], result[1], result[2] );
return g_texlights[i].fade;
}
}
return 1.0f;
}
/*
=======================================================================
MAKE FACES
=======================================================================
*/
/*
=============
WindingFromFace
=============
*/
winding_t *WindingFromFace( const dface_t *f )
{
int i, se, v;
dvertex_t *dv;
winding_t *w;
w = AllocWinding( f->numedges );
w->numpoints = f->numedges;
for( i = 0; i < f->numedges; i++ )
{
se = g_dsurfedges[f->firstedge + i];
if( se < 0 ) v = g_dedges[-se].v[1];
else v = g_dedges[se].v[0];
dv = &g_dvertexes[v];
VectorCopy( dv->point, w->p[i] );
}
RemoveColinearPointsEpsilon( w, ON_EPSILON );
return w;
}
/*
=============
BaseLightForFace
=============
*/
vec_t BaseLightForFace( dface_t *f, vec3_t light, vec3_t reflectivity )
{
int miptex = g_texinfo[f->texinfo].miptex;
vec_t fade;
miptex_t *mt;
// check for light emited by texture
mt = GetTextureByMiptex( miptex );
if( !mt ) return 1.0f;
fade = LightForTexture( mt->name, light );
VectorClear( reflectivity );
#ifdef HLRAD_REFLECTIVITY
int samples = mt->width * mt->height;
byte *pal = ((byte *)mt) + mt->offsets[0] + (((mt->width * mt->height) * 85) >> 6);
byte *buf = ((byte *)mt) + mt->offsets[0];
vec3_t total;
// check for cache
if( g_texture_init[miptex] )
{
VectorCopy( g_reflectivity[miptex], reflectivity );
return fade;
}
pal += sizeof( short ); // skip colorsize
VectorClear( total );
for( int i = 0; i < samples; i++ )
{
vec3_t reflectivity;
if( mt->name[0] == '{' && buf[i] == 0xFF )
{
VectorClear( reflectivity );
}
else
{
int texel = buf[i];
reflectivity[0] = pow( pal[texel*3+0] * (1.0f / 255.0f), DEFAULT_TEXREFLECTGAMMA );
reflectivity[1] = pow( pal[texel*3+1] * (1.0f / 255.0f), DEFAULT_TEXREFLECTGAMMA );
reflectivity[2] = pow( pal[texel*3+2] * (1.0f / 255.0f), DEFAULT_TEXREFLECTGAMMA );
VectorScale( reflectivity, DEFAULT_TEXREFLECTSCALE, reflectivity );
}
VectorAdd( total, reflectivity, total );
}
VectorScale( total, 1.0 / (double)(mt->width * mt->height), g_reflectivity[miptex] );
VectorCopy( g_reflectivity[miptex], reflectivity );
MsgDev( D_REPORT, "Texture '%s': reflectivity is (%f,%f,%f).\n", mt->name, reflectivity[0], reflectivity[1], reflectivity[2] );
g_texture_init[miptex] = true;
#endif
return fade;
}
static void UpdateEmitterInfo( patch_t *patch )
{
const vec_t *origin = patch->origin;
const winding_t *winding = patch->winding;
vec_t radius = ON_EPSILON;
for( int x = 0; x < winding->numpoints; x++ )
{
vec3_t delta;
vec_t dist;
VectorSubtract( winding->p[x], origin, delta );
dist = VectorLength( delta );
radius = Q_max( dist, radius );
}
int skylevel = ACCURATEBOUNCE_DEFAULT_SKYLEVEL;
vec_t area = WindingArea( winding );
vec_t size = 0.8f;
if( area < size * radius * radius ) // the shape is too thin
{
skylevel++;
size *= 0.25f;
if( area < size * radius * radius )
{
skylevel++;
size *= 0.25f;
if( area < size * radius * radius )
{
// stop here
radius = sqrt( area / size );
// just decrease the range to limit the use of the new method.
// because when the area is small, the new method becomes randomized and unstable.
}
}
}
patch->emitter_range = ACCURATEBOUNCE_THRESHOLD * radius;
patch->emitter_skylevel = skylevel;
}
// =====================================================================================
// PlacePatchInside
// =====================================================================================
static bool PlacePatchInside( patch_t *patch )
{
const vec_t *face_offset = g_face_offset[patch->faceNumber];
vec_t offset = DEFAULT_HUNT_OFFSET;
vec3_t v, center, point, bestpoint;
vec_t pointsfound, pointstested;
vec_t dist, bestdist = -1.0;
const dplane_t *plane;
bool found;
plane = GetPlaneFromFace( patch->faceNumber );
WindingCenter( patch->winding, center );
pointsfound = pointstested = 0;
found = false;
VectorMA( center, offset, plane->normal, point );
pointstested++;
if( HuntForWorld( point, face_offset, plane, 4, 0.2, offset ) || HuntForWorld( point, face_offset, plane, 4, 0.8, offset ))
{
VectorSubtract( point, center, v );
dist = VectorLength( v );
pointsfound++;
if( !found || dist < bestdist )
{
VectorCopy( point, bestpoint );
bestdist = dist;
found = true;
}
}
for( int i = 0; i < patch->winding->numpoints; i++ )
{
const vec_t *p1 = patch->winding->p[i];
const vec_t *p2 = patch->winding->p[(i+1) % patch->winding->numpoints];
VectorAdd( p1, p2, point );
VectorAdd( point, center, point );
VectorScale( point, 1.0 / 3.0, point );
VectorMA( point, offset, plane->normal, point );
pointstested++;
if( HuntForWorld( point, face_offset, plane, 4, 0.2, offset ) || HuntForWorld( point, face_offset, plane, 4, 0.8, offset ))
{
VectorSubtract( point, center, v );
dist = VectorLength( v );
pointsfound++;
if( !found || dist < bestdist )
{
VectorCopy( point, bestpoint );
bestdist = dist;
found = true;
}
}
}
patch->exposure = pointsfound / pointstested;
if( found )
{
VectorCopy( bestpoint, patch->origin );
return true;
}
else
{
VectorMA( center, offset, plane->normal, patch->origin );
SetBits( patch->flags, PATCH_OUTSIDE );
return false;
}
}
// =====================================================================================
//
// SUBDIVIDE PATCHES
//
// =====================================================================================
// =====================================================================================
// CutWindingWithGrid
// Caller must free this returned value at some point
// =====================================================================================
static void CutWindingWithGrid( patch_t *patch, const dplane_t *plA, const dplane_t *plB )
{
// patch->winding->m_NumPoints must > 0
// plA->dist and plB->dist will not be used
winding_t *winding = NULL;
vec_t chop, epsilon;
const int max_gridsize = 64;
vec_t gridstartA, minA, maxA;
vec_t gridstartB, minB, maxB;
int gridsizeA;
int gridsizeB;
vec_t gridchopA;
vec_t gridchopB;
int i, numstrips;
winding = CopyWinding( patch->winding ); // perform all the operations on the copy
chop = Q_max( 1.0, patch->chop );
epsilon = 0.6;
// optimize the grid
minA = minB = BOGUS_RANGE;
maxA = maxB = -BOGUS_RANGE;
for( int x = 0; x < winding->numpoints; x++ )
{
vec_t dotA, dotB;
vec_t *point;
point = winding->p[x];
dotA = DotProduct( point, plA->normal );
minA = Q_min( minA, dotA );
maxA = Q_max( maxA, dotA );
dotB = DotProduct( point, plB->normal );
minB = Q_min( minB, dotB );
maxB = Q_max( maxB, dotB );
}
gridchopA = chop;
gridsizeA = (int)ceil(( maxA - minA - 2 * epsilon ) / gridchopA );
gridsizeA = Q_max( 1, gridsizeA );
if( gridsizeA > max_gridsize )
{
gridsizeA = max_gridsize;
gridchopA = (maxA - minA) / (vec_t)gridsizeA;
}
gridstartA = (minA + maxA) / 2.0 - (gridsizeA / 2.0) * gridchopA;
gridchopB = chop;
gridsizeB = (int)ceil(( maxB - minB - 2 * epsilon ) / gridchopB);
gridsizeB = Q_max( 1, gridsizeB );
if( gridsizeB > max_gridsize )
{
gridsizeB = max_gridsize;
gridchopB = (maxB - minB) / (vec_t)gridsizeB;
}
gridstartB = (minB + maxB) / 2.0 - (gridsizeB / 2.0) * gridchopB;
// cut the winding by the direction of plane A and save into windingArray
g_numwindings = 0;
for( i = 1; i < gridsizeA; i++ )
{
winding_t *front = NULL;
winding_t *back = NULL;
vec_t dist;
dist = gridstartA + i * gridchopA;
ClipWindingEpsilon( winding, plA->normal, dist, ON_EPSILON, &front, &back );
if( !front || WindingOnPlaneSide( front, plA->normal, dist, epsilon ) == SIDE_ON ) // ended
{
if( front )
{
FreeWinding( front );
front = NULL;
}
if( back )
{
FreeWinding( back );
back = NULL;
}
break;
}
if( !back || WindingOnPlaneSide( back, plA->normal, dist, epsilon ) == SIDE_ON ) // didn't begin
{
if( front )
{
FreeWinding( front );
front = NULL;
}
if( back )
{
FreeWinding( back );
back = NULL;
}
continue;
}
FreeWinding( winding );
winding = NULL;
g_windingArray[g_numwindings] = back;
g_numwindings++;
back = NULL;
winding = front;
front = NULL;
}
g_windingArray[g_numwindings] = winding;
g_numwindings++;
winding = NULL;
// cut by the direction of plane B
numstrips = g_numwindings;
for( i = 0; i < numstrips; i++ )
{
winding_t *strip = g_windingArray[i];
g_windingArray[i] = NULL;
for( int j = 1; j < gridsizeB; j++ )
{
winding_t *front = NULL;
winding_t *back = NULL;
vec_t dist;
dist = gridstartB + j * gridchopB;
ClipWindingEpsilon( strip, plB->normal, dist, ON_EPSILON, &front, &back );
if( !front || WindingOnPlaneSide( front, plB->normal, dist, epsilon ) == SIDE_ON ) // ended
{
if( front )
{
FreeWinding( front );
front = NULL;
}
if( back )
{
FreeWinding( back );
back = NULL;
}
break;
}
if( !back || WindingOnPlaneSide( back, plB->normal, dist, epsilon ) == SIDE_ON ) // didn't begin
{
if( front )
{
FreeWinding( front );
front = NULL;
}
if( back )
{
FreeWinding( back );
back = NULL;
}
continue;
}
FreeWinding( strip );
strip = NULL;
g_windingArray[g_numwindings] = back;
g_numwindings++;
back = NULL;
strip = front;
front = NULL;
}
g_windingArray[g_numwindings] = strip;
g_numwindings++;
strip = NULL;
}
FreeWinding( patch->winding );
patch->winding = NULL;
}
// =====================================================================================
// GetGridPlanes
// From patch, determine perpindicular grid planes to subdivide with (returned in planeA and planeB)
// assume S and T is perpindicular (they SHOULD be in worldcraft 3.3 but aren't always...)
// =====================================================================================
static void GetGridPlanes( const patch_t *p, dplane_t *pl )
{
const dface_t *f = g_dfaces + p->faceNumber;
dtexinfo_t *tx = &g_texinfo[f->texinfo];
const dplane_t *faceplane = GetPlaneFromFace( p->faceNumber );
dplane_t *plane = pl;
float lmvecs[2][4];
LightMatrixFromTexMatrix( tx, lmvecs );
for( int x = 0; x < 2; x++, plane++ )
{
// cut the patch along texel grid planes
vec_t val = DotProduct( faceplane->normal, lmvecs[!x] );
VectorMA( lmvecs[!x], -val, faceplane->normal, plane->normal );
VectorNormalize( plane->normal );
plane->dist = DotProduct( plane->normal, p->origin );
}
}
// =====================================================================================
// SubdividePatch
// =====================================================================================
static void SubdividePatch( patch_t *patch )
{
dplane_t planes[2];
dplane_t *plA = &planes[0];
dplane_t *plB = &planes[1];
patch_t *new_patch;
winding_t **winding;
int x;
memset( g_windingArray, 0, sizeof( g_windingArray ));
g_numwindings = 0;
GetGridPlanes( patch, planes );
CutWindingWithGrid( patch, plA, plB );
x = 0;
patch->next = NULL;
winding = g_windingArray;
while( *winding == NULL )
{
winding++;
x++;
}
patch->winding = *winding;
winding++;
x++;
patch->area = WindingAreaAndBalancePoint( patch->winding, patch->origin );
SetBits( patch->flags, PATCH_SOURCE );
PlacePatchInside( patch );
UpdateEmitterInfo( patch );
new_patch = &g_patches[g_num_patches];
for( ; x < g_numwindings; x++, winding++ )
{
if( *winding )
{
memcpy( new_patch, patch, sizeof( patch_t ));
ClearBits( new_patch->flags, PATCH_SOURCE );
new_patch->winding = *winding;
new_patch->area = WindingAreaAndBalancePoint( new_patch->winding, new_patch->origin );
SetBits( new_patch->flags, PATCH_CHILD );
PlacePatchInside( new_patch );
UpdateEmitterInfo( new_patch );
g_num_patches++;
new_patch++;
if( g_num_patches == MAX_PATCHES )
COM_FatalError( "MAX_PATCHES limit exceeded\n" );
}
}
// ATTENTION: We let SortPatches relink all the ->next correctly! instead of doing it here too which is somewhat complicated
}
/*
============
getScale
compute scale for patch
============
*/
static vec_t getScale( const patch_t *patch )
{
dface_t *f = &g_dfaces[patch->faceNumber];
dtexinfo_t *tx = &g_texinfo[f->texinfo];
const dplane_t *faceplane = GetPlaneFromFace( f );
vec3_t outvecs[2];
vec_t scale[2];
vec_t dot;
// snap texture "vecs" to faceplane without affecting texture alignment
for( int x = 0; x < 2; x++ )
{
dot = DotProduct( faceplane->normal, tx->vecs[x] );
VectorMA( tx->vecs[x], -dot, faceplane->normal, outvecs[x] );
}
scale[0] = 1.0 / Q_max( NORMAL_EPSILON, VectorLength( outvecs[0] ));
scale[1] = 1.0 / Q_max( NORMAL_EPSILON, VectorLength( outvecs[1] ));
// don't care about the angle between vecs[0] and vecs[1]
// (given the length of "vecs", smaller angle = larger texel area),
// because gridplanes will have the same angle (also smaller angle = larger patch area)
return sqrt( scale[0] * scale[1] );
}
/*
============
getEmitMode
some pathches are emit_surfaces
============
*/
static bool getEmitMode( const patch_t *patch )
{
bool emitmode = false;
vec_t value;
if( !VectorIsNull( patch->reflectivity ))
value = DotProduct( patch->baselight, patch->reflectivity ) / 3.0;
else value = VectorAvg( patch->baselight );
// this patch is emitting surface
if( value >= DLIGHT_THRESHOLD )
emitmode = true;
return emitmode;
}
/*
============
getChop
compute chop value for patch
============
*/
static vec_t getChop( const patch_t *patch )
{
vec_t rval;
if( FBitSet( patch->flags, PATCH_EMITLIGHT ))
rval = g_texchop * getScale( patch );
else rval = g_chop * getScale( patch );
return rval;
}
/*
=============
IsSpecial
=============
*/
static bool IsSpecial( const dface_t *f )
{
return FBitSet( g_texinfo[f->texinfo].flags, TEX_SPECIAL );
}
/*
=============
MakePatchForFace
=============
*/
bool MakePatchForFace( int modelnum, int fn, winding_t *w, int style )
{
dface_t *f = g_dfaces + fn;
vec3_t centroid = { 0, 0, 0 };
vec3_t mins, maxs, delta;
patch_t *patch;
vec_t fade;
dworldlight_t *wl;
int i;
// No patches at all for the sky!
if( IsSpecial( f )) return false;
if( w->numpoints < 3 ) // g-cont. how this possible?
return false;
patch = &g_patches[g_num_patches];
if( g_num_patches == MAX_PATCHES )
COM_FatalError( "MAX_PATCHES limit exceeded\n" );
memset( patch, 0, sizeof( patch_t ));
patch->area = WindingAreaAndBalancePoint( w, patch->origin );
patch->modelnum = modelnum;
patch->faceNumber = fn;
patch->winding = w;
// update debug info
g_totalarea += patch->area;
fade = BaseLightForFace( f, patch->baselight, patch->reflectivity );
for( i = 0; i < MAXLIGHTMAPS; i++ )
patch->totalstyle[i] = 255;
if( getEmitMode( patch ))
{
SetBits( patch->flags, PATCH_EMITLIGHT );
if( style )
{
patch->totalstyle[0] = style;
patch->emitstyle = style;
}
}
SetBits( patch->flags, PATCH_SOURCE );
patch->scale = getScale( patch );
patch->chop = getChop( patch );
PlacePatchInside( patch );
UpdateEmitterInfo( patch );
patch->fade = fade;
// NOTE: we alloc worldlights only once per face.
// all child patches after subdivision has the same lightnum
if( FBitSet( patch->flags, PATCH_EMITLIGHT ))
{
wl = AllocWorldLight( &patch->lightnum );
InitWorldLightFromPatch( wl, patch );
}
g_face_patches[fn] = patch;
g_num_patches++;
// per-face data
for( i = 0; i < f->numedges; i++ )
{
int edge = g_dsurfedges[f->firstedge + i];
if( edge > 0 )
{
VectorAdd( g_dvertexes[g_dedges[edge].v[0]].point, centroid, centroid );
VectorAdd( g_dvertexes[g_dedges[edge].v[1]].point, centroid, centroid );
}
else
{
VectorAdd( g_dvertexes[g_dedges[-edge].v[1]].point, centroid, centroid );
VectorAdd( g_dvertexes[g_dedges[-edge].v[0]].point, centroid, centroid );
}
}
VectorScale( centroid, 1.0 / (f->numedges * 2), centroid );
VectorAdd( centroid, g_face_offset[fn], g_face_centroids[fn] ); // save them for generating the patch normals later.
WindingBounds( patch->winding, mins, maxs );
VectorSubtract( maxs, mins, delta );
if( VectorLength( delta ) > patch->chop )
{
if( patch->area < 1.0 )
MsgDev( D_WARN, "patch at face %d tiny area (%4.3f) not subdividing\n", patch->faceNumber, patch->area );
else SubdividePatch( patch );
}
return true;
}
/*
=============
MakePatches
=============
*/
void MakePatches( void )
{
int fn, style = 0;
vec3_t light_origin;
vec3_t model_center;
bool b_light_origin;
bool b_model_center;
int i, j, k;
vec3_t origin;
entity_t *ent;
dmodel_t *mod;
dface_t *f;
winding_t *w;
char *s;
g_patches = (patch_t *)Mem_Alloc( sizeof( patch_t ) * MAX_PATCHES );
g_numworldlights = 0;
for( i = 0; i < g_nummodels; i++ )
{
mod = &g_dmodels[i];
ent = EntityForModel( i );
VectorClear( origin );
b_light_origin = false;
b_model_center = false;
// bmodels with origin brushes need to be offset
// into their in-use position
if( *( s = ValueForKey( ent, "origin" )))
{
double v1, v2, v3;
if( sscanf( s, "%lf %lf %lf", &v1, &v2, &v3 ) == 3 )
VectorSet( origin, v1, v2, v3 );
}
// allow models to be lit in an alternate location (pt1)
if( *( s = ValueForKey( ent, "light_origin" )))
{
entity_t *e = FindTargetEntity( s );
if( e )
{
if( *( s = ValueForKey( e, "origin" )))
{
double v1, v2, v3;
if( sscanf( s, "%lf %lf %lf", &v1, &v2, &v3 ) == 3 )
{
VectorSet( light_origin, v1, v2, v3 );
b_light_origin = true;
}
}
}
}
// allow models to be lit in an alternate location (pt2)
if( *( s = ValueForKey( ent, "model_center" )))
{
double v1, v2, v3;
if( sscanf( s, "%lf %lf %lf", &v1, &v2, &v3 ) == 3 )
{
VectorSet( model_center, v1, v2, v3 );
b_model_center = true;
}
}
#ifndef HLRAD_PARANOIA_BUMP
if( CheckKey( ent, "style" ))
style = abs( IntForKey( ent, "style" ));
else style = 0;
#endif
// allow models to be lit in an alternate location (pt3)
if( b_light_origin && b_model_center )
{
VectorSubtract( light_origin, model_center, origin );
}
for( j = 0; j < mod->numfaces; j++ )
{
fn = mod->firstface + j;
g_face_entity[fn] = ent;
VectorCopy( origin, g_face_offset[fn] );
f = &g_dfaces[fn];
w = WindingFromFace( f );
// adjust model origins
for( k = 0; k < w->numpoints; k++ )
VectorAdd( w->p[k], origin, w->p[k] );
// some faces won't create patch on them
if( !MakePatchForFace( i, fn, w, style ))
FreeWinding( w );
}
}
MsgDev( D_REPORT, "%i square feet [%.2f square inches]\n", (int)(g_totalarea / 144), g_totalarea );
MsgDev( D_INFO, "%i base patches, required %s\n", g_num_patches, Q_memprint( sizeof( patch_t ) * g_num_patches ));
MsgDev( D_NOTE, "patch_t = %s\n", Q_memprint( sizeof( patch_t )));
MsgDev( D_NOTE, "sample_t = %s\n", Q_memprint( sizeof( sample_t )));
}
// =====================================================================================
// patch_sorter
// =====================================================================================
static int CDECL patch_sorter( const void *p1, const void *p2 )
{
patch_t *patch1 = (patch_t *)p1;
patch_t *patch2 = (patch_t *)p2;
if( patch1->faceNumber < patch2->faceNumber )
return -1;
else if( patch1->faceNumber > patch2->faceNumber )
return 1;
return 0;
}
/*
=============
SortPatches
=============
*/
static void SortPatches( void )
{
patch_t *old_patches = g_patches;
g_patches = (patch_t *)Mem_Alloc( sizeof( patch_t ) * ( g_num_patches + 1 ));
memcpy( g_patches, old_patches, g_num_patches * sizeof( patch_t ));
Mem_Free( old_patches );
qsort((void *)g_patches, (size_t)g_num_patches, sizeof( patch_t ), patch_sorter );
// fixup g_face_patches & fFixup patch->next
memset( g_face_patches, 0, sizeof( g_face_patches ));
patch_t *patch = g_patches + 1;
patch_t *prev = g_patches;
int x;
g_face_patches[prev->faceNumber] = prev;
for( x = 1; x < g_num_patches; x++, patch++ )
{
if( patch->faceNumber != prev->faceNumber )
{
prev->next = NULL;
g_face_patches[patch->faceNumber] = patch;
}
else
{
prev->next = patch;
}
prev = patch;
}
for( x = 0; x < g_num_patches; x++ )
{
patch_t *patch = &g_patches[x];
patch->leafnum = PointInLeaf( patch->origin ) - g_dleafs;
}
// validate chains (debug thing)
for( int facenum = 0; facenum < g_numfaces; facenum++ )
{
for( patch = g_face_patches[facenum]; patch != NULL; patch = patch->next )
{
ASSERT( patch->faceNumber == facenum );
}
}
// if we haven't patches we don't need bounces
if( g_num_patches <= 0 ) g_numbounce = 0;
if( g_numbounce <= 0 ) g_indirect_sun = 0.0f;
}
/*
=============
FreePatches
=============
*/
static void FreePatches( void )
{
patch_t *patch = g_patches;
for( int i = 0; i < g_num_patches; i++, patch++ )
FreeWinding( patch->winding );
memset( g_patches, 0, sizeof( patch_t ) * g_num_patches );
Mem_Free( g_patches );
g_patches = NULL;
}
/*
=============
FreeTransfers
=============
*/
static void FreeTransfers( void )
{
patch_t *patch = g_patches;
for( int i = 0; i < g_num_patches; i++, patch++ )
{
if( patch->tData )
{
Mem_Free( patch->tData );
patch->tData = NULL;
}
if( patch->tIndex )
{
Mem_Free( patch->tIndex );
patch->tIndex = NULL;
}
}
}
//=====================================================================
#ifdef HLRAD_COMPRESS_TRANSFERS
static uint GetLengthOfRun( const uint *raw, const uint *end )
{
uint run_size = 0;
while( raw < end )
{
if((( *raw ) + 1 ) == (*( raw + 1 )))
{
run_size++;
raw++;
if( run_size >= MAX_COMPRESSED_TRANSFER_INDEX )
return run_size;
}
else
{
return run_size;
}
}
return run_size;
}
static transfer_index_t *CompressTransferIndicies( const uint *tRaw, const uint rawSize, uint *iSize, int threadnum )
{
uint *end = (uint *)tRaw + rawSize - 1;
uint compressed_count_1 = 0;
uint compressed_count = 0;
uint *raw = (uint *)tRaw;
uint x, size = rawSize;
if( !size ) return NULL;
for( x = 0; x < rawSize; x++ )
{
x += GetLengthOfRun( tRaw + x, end );
compressed_count_1++;
}
if( !compressed_count_1 )
return NULL;
transfer_index_t *CompressedArray = (transfer_index_t *)Mem_Alloc( sizeof( transfer_index_t ) * compressed_count_1 );
transfer_index_t *compressed = CompressedArray;
for( x = 0; x < size; x++, raw++, compressed++ )
{
compressed->index = (*raw);
// zero based (count 0 still implies 1 item in the list, so 256 max entries result)
compressed->size = GetLengthOfRun( raw, end );
raw += compressed->size;
x += compressed->size;
compressed_count++; // number of entries in compressed table
}
*iSize = compressed_count;
if( compressed_count != compressed_count_1 )
COM_FatalError( "CompressTransferIndicies: internal error\n" );
g_transfer_data_size[threadnum] += sizeof( transfer_index_t ) * compressed_count;
return CompressedArray;
}
#else
static transfer_index_t *CompressTransferIndicies( const uint *tRaw, const uint rawSize, uint *iSize, int threadnum )
{
uint *end = (uint *)tRaw + rawSize;
uint compressed_count = 0;
uint *raw = (uint *)tRaw;
uint x, size = rawSize;
if( !size ) return NULL;
transfer_index_t *CompressedArray = (transfer_index_t *)Mem_Alloc( sizeof( transfer_index_t ) * size );
transfer_index_t *compressed = CompressedArray;
for( x = 0; x < size; x++, raw++, compressed++ )
{
compressed->index = (*raw);
compressed->size = 0;
compressed_count++; // number of entries in compressed table
}
*iSize = compressed_count;
g_transfer_data_size[threadnum] += sizeof( transfer_index_t ) * compressed_count;
return CompressedArray;
}
#endif
/*
===========
MakeTransfers
This is run by multiple threads
===========
*/
static void MakeTransfers( int threadnum )
{
transfer_data_t *tData_All = (transfer_data_t *)Mem_Alloc( sizeof( transfer_data_t ) * ( g_num_patches + 1 ));
uint *tIndex_All = (uint *)Mem_Alloc( sizeof( transfer_index_t ) * ( g_num_patches + 1 ));
patch_t **vispatches = (patch_t **)Mem_Alloc(( g_num_patches + 1 ) * sizeof( patch_t* ));
byte pvs[(MAX_MAP_LEAFS+7)/8];
const vec_t *normal1, *normal2;
float trans, total, dist;
bool check_vis = true;
patch_t *patch1, *patch2;
int i, j, lastoffset;
int count = 0;
uint *tIndex;
transfer_data_t *tData;
vec3_t delta;
while( 1 )
{
if(( i = GetThreadWork( )) == -1 )
break;
patch1 = g_patches + i;
// calculate visibility for the patch
if( !g_visdatasize )
{
if( check_vis )
{
memset( pvs, 255, (g_numvisleafs + 7) / 8 );
check_vis = false;
}
}
else
{
dleaf_t *leaf = &g_dleafs[patch1->leafnum];
int thisoffset = leaf->visofs;
if( check_vis || thisoffset != lastoffset )
{
if( thisoffset == -1 )
{
memset( pvs, 0, (g_numvisleafs + 7) / 8 );
}
else
{
DecompressVis( &g_dvisdata[leaf->visofs], pvs );
}
check_vis = false;
}
lastoffset = thisoffset;
}
const dplane_t *plane1 = GetPlaneFromFace( patch1->faceNumber );
count = 0;
// find out which patch2's will collect light from patch
for( j = 0, patch2 = g_patches; j < g_num_patches; j++, patch2++ )
{
if( i == j ) continue;
if( !patch2->leafnum || !CHECKVISBIT( pvs, patch2->leafnum - 1 ))
continue;
const dplane_t *plane2 = GetPlaneFromFace( patch2->faceNumber );
if( DotProduct( patch1->origin, plane2->normal ) <= PatchPlaneDist( patch2 ) + ON_EPSILON - patch1->emitter_range )
continue;
// we need to do a real test
vec3_t origin1, origin2, delta;
vec_t dist;
VectorSubtract( patch1->origin, patch2->origin, delta );
dist = VectorLength( delta );
if( dist < patch2->emitter_range - ON_EPSILON )
GetAlternateOrigin( patch1->origin, plane1->normal, patch2, origin2 );
else VectorCopy( patch2->origin, origin2 );
if( DotProduct( origin2, plane1->normal ) <= PatchPlaneDist( patch1 ) + MINIMUM_PATCH_DISTANCE )
continue;
if( dist < patch1->emitter_range - ON_EPSILON )
GetAlternateOrigin( patch2->origin, plane2->normal, patch1, origin1 );
else VectorCopy( patch1->origin, origin1 );
if( DotProduct( origin1, plane2->normal ) <= PatchPlaneDist( patch2 ) + MINIMUM_PATCH_DISTANCE )
continue;
// we ignore models here, brushes only
if( TestLine( threadnum, origin1, origin2, true ) != CONTENTS_EMPTY )
continue;
vispatches[count] = patch2;
count++;
}
// compute transfers for this patch
patch1->iIndex = patch1->iData = 0;
normal1 = plane1->normal;
tIndex = tIndex_All;
tData = tData_All;
for( j = 0; j < count; j++ )
{
bool light_behind_surface = false;
vec_t dot1, dot2;
patch2 = vispatches[j];
normal2 = GetPlaneFromFace( patch2->faceNumber )->normal;
// calculate transference
VectorSubtract( patch2->origin, patch1->origin, delta );
// move emitter back to its plane
VectorMA( delta, -DEFAULT_HUNT_OFFSET, normal2, delta );
dist = VectorNormalize( delta );
dot1 = DotProduct( delta, normal1 );
dot2 = -DotProduct( delta, normal2 );
if( dot1 <= NORMAL_EPSILON )
light_behind_surface = true;
if( dot2 * dist <= MINIMUM_PATCH_DISTANCE )
continue;
// inverse square falloff factoring angle between patch normals
trans = (dot1 * dot2) / (dist * dist);
// HLRAD_TRANSWEIRDFIX:
// we should limit "trans( patch2receive ) * patch1area"
// instead of "trans( patch2receive ) * patch2area".
// also raise "0.4f" to "0.8f" ( 0.8 / M_PI = 1 / 4).
if( trans * patch2->area > 0.8f )
trans = 0.8f / patch2->area;
if( dist < patch2->emitter_range - ON_EPSILON )
{
if( light_behind_surface )
trans = 0.0;
vec_t sightarea = CalcSightArea( patch1->origin, normal1, patch2->winding, patch2->emitter_skylevel );
vec_t frac = dist / patch2->emitter_range;
frac = (frac - 0.5f) * 2.0f; // make a smooth transition between the two methods
frac = bound( 0.0, frac, 1.0 );
trans = frac * trans + (1 - frac) * (sightarea / patch2->area); // because later we will multiply this back
}
else if( light_behind_surface )
{
continue;
}
trans *= patch2->exposure;
// scale to 16 bit (black magic)
trans = trans * patch2->area * INVERSE_TRANSFER_SCALE;
if( trans > TRANSFER_SCALE_MAX )
trans = TRANSFER_SCALE_MAX;
if( trans <= 0.0 ) continue;
*tData = trans;
patch1->iData++;
*tIndex = patch2 - g_patches;
tIndex++;
tData++;
}
// copy the transfers out
if( patch1->iData )
{
uint data_size = patch1->iData * sizeof( transfer_data_t );
transfer_data_t *t1, *t2;
patch1->tData = (transfer_data_t *)Mem_Alloc( data_size );
patch1->tIndex = CompressTransferIndicies( tIndex_All, patch1->iData, &patch1->iIndex, threadnum );
g_transfer_data_size[threadnum] += data_size;
total = 0.5 / M_PI;
t1 = patch1->tData;
t2 = tData_All;
for( uint x = 0; x < patch1->iData; x++, t1++, t2++ )
(*t1) = (*t2) * total;
}
}
Mem_Free( vispatches );
Mem_Free( tIndex_All );
Mem_Free( tData_All );
}
/*
============
CalcTransferSize
============
*/
void CalcTransferSize( void )
{
g_transfer_data_bytes = 0;
for( int i = 0; i < MAX_THREADS; i++ )
g_transfer_data_bytes += g_transfer_data_size[i];
MsgDev( D_INFO, "transfer lists: %s\n", Q_memprint( g_transfer_data_bytes ));
}
/*
==============
MakeTransfers
==============
*/
void MakeTransfers( void )
{
RunThreadsOn( g_num_patches, true, MakeTransfers );
// display transfer size
CalcTransferSize();
}
/*
=============
CollectLight
=============
*/
void CollectLight( void )
{
patch_t *patch;
int i, j;
for( i = 0, patch = g_patches; i < g_num_patches; i++, patch++ )
{
for( j = 0; j < MAXLIGHTMAPS && newstyles[i][j] != 255; j++ )
{
VectorAdd( patch->totallight[j], addlight[i][j], patch->totallight[j] );
VectorScale( addlight[i][j], TRANSFER_SCALE, emitlight[i][j] );
VectorClear( addlight[i][j] );
#ifdef HLRAD_DELUXEMAPPING
VectorAdd( patch->totallight_dir[j], addlight_dir[i][j], patch->totallight_dir[j] );
VectorCopy( addlight_dir[i][j], emitlight_dir[i][j] );
VectorClear( addlight_dir[i][j] );
#endif
}
// store new styles back into patch
memcpy( g_patches[i].totalstyle, newstyles[i], sizeof( byte[MAXLIGHTMAPS] ));
}
}
/*
=============
BounceLight
Get light from other patches
Run multi-threaded
=============
*/
void BounceLight( int threadnum )
{
int j, k, m;
patch_t *patch;
vec3_t v;
while( 1 )
{
if(( j = GetThreadWork()) == -1 )
break;
patch = &g_patches[j];
transfer_data_t *tData = patch->tData;
transfer_index_t *tIndex = patch->tIndex;
uint iIndex = patch->iIndex;
int overflowed_styles = 0;
for( m = 0; m < MAXLIGHTMAPS && newstyles[j][m] != 255; m++ )
VectorClear( addlight[j][m] );
for( k = 0; k < iIndex; k++, tIndex++ )
{
uint size = (tIndex->size + 1);
uint patchnum = tIndex->index;
uint l;
for( l = 0; l < size; l++, tData++, patchnum++ )
{
if( patchnum < 0 || patchnum >= g_num_patches )
{
MsgDev( D_ERROR, "bad patchnum %i, max %i\n", patchnum, g_num_patches );
continue;
}
patch_t *emitpatch = &g_patches[patchnum];
#ifdef HLRAD_DELUXEMAPPING
vec3_t direction;
VectorSubtract( patch->origin, emitpatch->origin, direction );
VectorNormalize( direction );
#endif
// for each style on the emitting patch
for( int emitstyle = 0; emitstyle < MAXLIGHTMAPS && emitpatch->totalstyle[emitstyle] != 255; emitstyle++ )
{
// find the matching style on this (destination) patch
for( m = 0; m < MAXLIGHTMAPS && newstyles[j][m] != 255; m++ )
{
if( newstyles[j][m] == emitpatch->totalstyle[emitstyle] )
break;
}
if( m < MAXLIGHTMAPS )
{
VectorScale( emitlight[patchnum][emitstyle], (float)(*tData), v );
if( !VectorIsFinite( v )) continue;
if( VectorMaximum( v ) < EQUAL_EPSILON )
continue;
if( newstyles[j][m] == 255 )
newstyles[j][m] = emitpatch->totalstyle[emitstyle];
VectorAdd( addlight[j][m], v, addlight[j][m] );
#ifdef HLRAD_DELUXEMAPPING
vec_t brightness = VectorAvg( v );
VectorMA( addlight_dir[j][m], brightness, direction, addlight_dir[j][m] );
#endif
}
else
{
overflowed_styles++;
}
}
}
}
g_overflowed_styles_onpatch[threadnum] += overflowed_styles;
}
}
/*
=============
BounceLight
=============
*/
void BounceLight( void )
{
int i, j;
for( i = 0; i < g_num_patches; i++ )
{
patch_t *patch = &g_patches[i];
for( j = 0; j < MAXLIGHTMAPS && g_patches[i].totalstyle[j] != 255; j++ )
{
VectorScale( patch->totallight[j], TRANSFER_SCALE, emitlight[i][j] );
#ifdef HLRAD_DELUXEMAPPING
VectorCopy( patch->totallight_dir[j], emitlight_dir[i][j] );
#endif
}
memcpy( newstyles[i], g_patches[i].totalstyle, sizeof( byte[MAXLIGHTMAPS] ));
}
for( i = 0; i < g_numbounce; i++ )
{
RunThreadsOnIncremental( g_num_patches, true, BounceLight, i + 1 );
CollectLight();
}
}
//==============================================================
/*
=============
RadWorld
=============
*/
void RadWorld( void )
{
MakeBackplanes();
// turn each face into a single patch
MakePatches ();
SortPatches ();
PairEdges ();
BuildFaceNeighbors();
BuildDiffuseNormals();
// create directlights out of patches and lights
CreateDirectLights ();
if( g_onlylights )
{
DeleteDirectLights ();
FreeDiffuseNormals ();
FreeFaceNeighbors();
FreeSharedEdges();
FreeFaceLights();
FreePatches();
return;
}
InitWorldTrace();
// generate a position map for each face
RunThreadsOnIndividual( g_numfaces, true, FindFacePositions );
CalcPositionsSize();
// build initial facelights
RunThreadsOnIndividual( g_numfaces, true, BuildFaceLights );
CalcSampleSize ();
#ifdef HLRAD_LIGHTMAPMODELS
BuildModelLightmaps();
CalcModelSampleSize();
#endif
#ifdef HLRAD_VERTEXLIGHTING
BuildVertexLights();
#endif
// free up the direct lights now that we have facelights
DeleteDirectLights ();
FreeFacePositions ();
CalcLuxelsCount();
if( g_numbounce > 0 )
{
// build transfer lists
MakeTransfers();
emitlight = (vec3_t (*)[MAXLIGHTMAPS])Mem_Alloc(( g_num_patches + 1 ) * sizeof( vec3_t[MAXLIGHTMAPS] ));
addlight = (vec3_t (*)[MAXLIGHTMAPS])Mem_Alloc(( g_num_patches + 1 ) * sizeof( vec3_t[MAXLIGHTMAPS] ));
newstyles = (byte (*)[MAXLIGHTMAPS])Mem_Alloc(( g_num_patches + 1 ) * sizeof( byte[MAXLIGHTMAPS] ));
#ifdef HLRAD_DELUXEMAPPING
emitlight_dir = (vec3_t (*)[MAXLIGHTMAPS])Mem_Alloc(( g_num_patches + 1 ) * sizeof( vec3_t[MAXLIGHTMAPS] ));
addlight_dir = (vec3_t (*)[MAXLIGHTMAPS])Mem_Alloc(( g_num_patches + 1 ) * sizeof( vec3_t[MAXLIGHTMAPS] ));
#endif
// spread light around
BounceLight ();
Mem_Free( emitlight );
Mem_Free( addlight );
Mem_Free( newstyles );
emitlight = NULL;
addlight = NULL;
newstyles = NULL;
#ifdef HLRAD_DELUXEMAPPING
Mem_Free( emitlight_dir );
Mem_Free( addlight_dir );
emitlight_dir = NULL;
addlight_dir = NULL;
#endif
// transfers don't need anymore
FreeTransfers();
}
// remove direct light from patches
for( int i = 0; i < g_num_patches; i++ )
{
patch_t *p = &g_patches[i];
for( int j = 0; j < MAXLIGHTMAPS && p->totalstyle[j] != 255; j++ )
{
VectorSubtract( p->totallight[j], p->directlight[j], p->totallight[j] );
#ifdef HLRAD_DELUXEMAPPING
VectorSubtract( p->totallight_dir[j], p->directlight_dir[j], p->totallight_dir[j] );
#endif
}
}
if( !g_lightbalance )
ScaleDirectLights();
// because fastmode uses patches instead of samples
if( g_numbounce > 0 || g_fastmode )
RunThreadsOnIndividual( g_numfaces, false, CreateTriangulations );
// blend bounced light into direct light and save
PrecompLightmapOffsets();
if( g_numbounce > 0 || g_fastmode )
{
CreateFacelightDependencyList();
RunThreadsOnIndividual( g_numfaces, true, FacePatchLights );
#ifdef HLRAD_VERTEXLIGHTING
VertexPatchLights();
#endif
FreeFacelightDependencyList();
}
FreeDiffuseNormals ();
if( g_numbounce > 0 || g_fastmode )
FreeTriangulations();
if( g_lightbalance )
ScaleDirectLights();
RunThreadsOnIndividual( g_numfaces, true, FinalLightFace );
#ifdef HLRAD_LIGHTMAPMODELS
FinalModelLightFace();
#endif
// now can be freed
FreeFaceLights();
#ifndef HLRAD_PARANOIA_BUMP
ReduceLightmap();
#endif
#ifdef HLRAD_AMBIENTCUBES
ComputeLeafAmbientLighting();
#endif
#ifdef HLRAD_LIGHTMAPMODELS
WriteModelLighting();
#endif
#ifdef HLRAD_VERTEXLIGHTING
FinalLightVertex();
UnparseEntities();
#endif
FreeFaceNeighbors();
FreeSharedEdges();
FreePatches();
}
/*
============
PrintRadSettings
show compiler settings like ZHLT
============
*/
static void PrintRadSettings( void )
{
char buf1[1024];
char buf2[1024];
Msg( "\nCurrent p2rad settings\n" );
Msg( "Name | Setting | Default\n" );
Msg( "---------------------|-----------|-------------------------\n" );
Msg( "developer [ %7d ] [ %7d ]\n", GetDeveloperLevel(), DEFAULT_DEVELOPER );
Msg( "fast rad [ %7s ] [ %7s ]\n", g_fastmode ? "on" : "off", DEFAULT_FASTMODE ? "on" : "off" );
Msg( "extra rad [ %7s ] [ %7s ]\n", g_extra ? "on" : "off", DEFAULT_EXTRAMODE ? "on" : "off" );
Msg( "bounces [ %7d ] [ %7d ]\n", g_numbounce, DEFAULT_BOUNCE );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_smoothvalue );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_SMOOTHVALUE );
Msg( "smoothing threshold [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_blur );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_BLUR );
Msg( "blur size [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_lightbalance ? 1.0f : g_direct_scale );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_DLIGHT_SCALE );
Msg( "direct light scale [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_lightbalance ? g_direct_scale : 1.0f );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_LIGHT_SCALE );
Msg( "global light scale [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_gamma );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_GAMMA );
Msg( "gamma factor [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_chop );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_CHOP );
Msg( "chop value [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_texchop );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_TEXCHOP );
Msg( "texchop value [ %7s ] [ %7s ]\n", buf1, buf2 );
Q_snprintf( buf1, sizeof( buf1 ), "%3.3f", g_indirect_sun );
Q_snprintf( buf2, sizeof( buf2 ), "%3.3f", DEFAULT_INDIRECT_SUN );
Msg( "global sky diffusion [ %7s ] [ %7s ]\n", buf1, buf2 );
Msg( "dirtmapping [ %7s ] [ %7s ]\n", g_dirtmapping ? "on" : "off", DEFAULT_DIRTMAPPING ? "on" : "off" );
#ifdef HLRAD_PARANOIA_BUMP
Msg( "gamma mode [ %7d ] [ %7d ]\n", g_gammamode, DEFAULT_GAMMAMODE );
#endif
Msg( "\n" );
}
/*
============
PrintRadUsage
show compiler usage like ZHLT
============
*/
static void PrintRadUsage( void )
{
Msg( "\n-= p2rad Options =-\n\n" );
Msg( " -dev # : compile with developer message (1 - 4). default is %d\n", DEFAULT_DEVELOPER );
Msg( " -threads # : manually specify the number of threads to run\n" );
Msg( " -extra : improve lighting quality with lightmap filtering\n" );
Msg( " -bounce # : set number of radiosity bounces\n" );
Msg( " -ambient r g b : set ambient world light (0.0 to 1.0, r g b)\n" );
Msg( " -smooth # : set smoothing threshold for blending (in degrees)\n" );
Msg( " -blur : filtering the lightmap by post-processing\n" );
Msg( " -dscale : direct light scaling factor\n" );
Msg( " -gamma : set global gamma value\n" );
Msg( " -chop # : set radiosity patch size for normal textures\n" );
Msg( " -texchop # : set radiosity patch size for texture light faces\n" );
Msg( " -sky # : set ambient sunlight contribution in the shade outside\n" );
Msg( " -nomodelshadow : ignore shadows from alias and studiomodels\n" );
Msg( " -balance : -dscale will be interpret as global scaling factor\n" );
Msg( " -dirty : enable dirtmapping (baked AO)\n" );
Msg( " -onlylights : update only worldlights lump\n" );
#ifdef HLRAD_PARANOIA_BUMP
Msg( " -gammamode # : gamma correction mode (0, 1, 2)\n" );
#endif
Msg( " bspfile : The bspfile to compile\n\n" );
exit( 1 );
}
/*
========
main
light modelfile
========
*/
int main( int argc, char **argv )
{
double start, end;
char str[64];
int i;
atexit( Sys_CloseLog );
source[0] = '\0';
g_smoothing_threshold = cos( DEG2RAD( g_smoothvalue )); // Originally zero.
for( i = 1; i < argc; i++ )
{
if( !Q_strcmp( argv[i], "-dev" ))
{
SetDeveloperLevel( atoi( argv[i+1] ));
i++;
}
else if( !Q_strcmp( argv[i], "-threads" ))
{
g_numthreads = atoi( argv[i+1] );
i++;
}
else if( !Q_strcmp( argv[i], "-fast" ))
{
g_nomodelshadow = true;
g_lerp_enabled = false;
g_dirtmapping = false;
g_fastmode = true;
}
else if( !Q_strcmp( argv[i], "-extra" ))
{
g_lerp_enabled = true;
g_extra = true;
g_blur = 1.5f;
}
else if( !Q_strcmp( argv[i], "-bounce" ))
{
g_numbounce = atoi( argv[i+1] );
g_numbounce = bound( 0, g_numbounce, 128 );
i++;
}
else if( !Q_strcmp( argv[i], "-ambient" ))
{
if( argc > ( i + 3 ))
{
g_ambient[0] = (float)atof( argv[i+1] ) * 0.5f;
g_ambient[1] = (float)atof( argv[i+2] ) * 0.5f;
g_ambient[2] = (float)atof( argv[i+3] ) * 0.5f;
i += 3;
}
else
{
break;
}
}
else if( !Q_strcmp( argv[i], "-smooth" ))
{
g_smoothvalue = atof( argv[i+1] );
g_smoothing_threshold = (float)cos( DEG2RAD( g_smoothvalue ));
i++;
}
else if( !Q_strcmp( argv[i], "-blur" ))
{
g_blur = atof( argv[i+1] );
i++;
}
else if( !Q_strcmp( argv[i], "-dscale" ))
{
g_direct_scale = (float)atof( argv[i+1] );
i++;
}
else if( !Q_strcmp( argv[i], "-gamma" ))
{
g_gamma = (float)atof( argv[i+1] );
i++;
}
else if( !Q_strcmp( argv[i], "-chop" ))
{
g_chop = (float)atof( argv[i+1] );
g_chop = bound( 32, g_chop, 128 );
i++;
}
else if( !Q_strcmp( argv[i], "-texchop" ))
{
g_texchop = (float)atof( argv[i+1] );
g_texchop = bound( 32, g_texchop, 128 );
i++;
}
else if( !Q_strcmp( argv[i], "-sky" ))
{
g_indirect_sun = (float)atof( argv[i+1] );
g_indirect_sun = bound( 0.0f, g_indirect_sun, 2.0f );
i++;
}
else if( !Q_strcmp( argv[i], "-nomodelshadow" ))
{
g_nomodelshadow = true;
}
else if( !Q_strcmp( argv[i], "-balance" ))
{
g_lightbalance = true;
}
else if( !Q_strcmp( argv[i], "-onlylights" ))
{
g_onlylights = true;
}
else if( !Q_strcmp( argv[i], "-quake" ))
{
// special preset for quake
g_lightbalance = true;
g_indirect_scale = 1.0f;
g_direct_scale = 0.5f;
g_indirect_sun = 0.0f;
g_gamma = 1.0f;
}
else if( !Q_strcmp( argv[i], "-dirty" ))
{
g_dirtmapping = !g_fastmode;
}
#ifdef HLRAD_PARANOIA_BUMP
else if( !Q_strcmp( argv[i], "-gammamode" ))
{
g_gammamode = (float)atoi( argv[i+1] );
i++;
}
#endif
else if( argv[i][0] == '-' )
{
MsgDev( D_ERROR, "\nUnknown option \"%s\"\n", argv[i] );
break;
}
else if( !source[0] )
{
Q_strncpy( source, COM_ExpandArg( argv[i] ), sizeof( source ));
COM_StripExtension( source );
}
else
{
MsgDev( D_ERROR, "\nUnknown option \"%s\"\n", argv[i] );
break;
}
}
if( i != argc || !source[0] )
{
if( !source[0] )
Msg( "no mapfile specified\n" );
PrintRadUsage();
}
start = I_FloatTime ();
Sys_InitLogAppend( va( "%s.log", source ));
Msg( "\n%s %s (%s)\n", TOOLNAME, VERSIONSTRING, __DATE__ );
PrintRadSettings();
ThreadSetDefault ();
// starting base filesystem
FS_Init( source );
// Set the required global lights filename
// try looking in the directory we were run from
GetModuleFileName( NULL, global_lights, sizeof( global_lights ));
COM_ExtractFilePath( global_lights, global_lights );
Q_strncat( global_lights, "\\lights.rad", sizeof( global_lights ));
// Set the optional level specific lights filename
COM_FileBase( source, str );
Q_snprintf( level_lights, sizeof( level_lights ), "maps/%s.rad", str );
if( !FS_FileExists( level_lights, false )) level_lights[0] = '\0';
ReadLightFile( global_lights, true ); // Required
if( *level_lights ) ReadLightFile( level_lights, false ); // Optional & implied
COM_DefaultExtension( source, ".bsp" );
LoadBSPFile( source );
if( g_nummodels <= 0 )
COM_FatalError( "map %s without any models\n", source );
ParseEntities();
TEX_LoadTextures();
ReadInfoTexlights();
SetupDirt();
if( !g_visdatasize && g_numbounce > 0 )
MsgDev( D_ERROR, "no vis information, compile time may be adversely affected.\n" );
// keep it in acceptable range
g_blur = bound( 1.0, g_blur, 8.0 );
g_gamma = bound( 0.3, g_gamma, 1.0 );
RadWorld ();
WriteBSPFile( source );
TEX_FreeTextures ();
FreeWorldTrace ();
FreeEntities ();
FS_Shutdown();
SetDeveloperLevel( D_REPORT );
Mem_Check();
end = I_FloatTime ();
Q_timestring((int)( end - start ), str );
Msg( "%s elapsed\n", str );
return 0;
}