//====== Copyright © 1996-2005, Valve Corporation, All rights reserved. =======// // // Purpose: // // $NoKeywords: $ // // A growable array class that maintains a free list and keeps elements // in the same location //=============================================================================// #ifndef UTLVECTOR_H #define UTLVECTOR_H #ifdef _WIN32 #pragma once #endif #include #include #include "utlmemory.h" #include "utlblockmemory.h" #define FOR_EACH_VEC( vecName, iteratorName ) \ for ( int iteratorName = 0; iteratorName < vecName.Count(); iteratorName++ ) //----------------------------------------------------------------------------- // The CUtlArray class: // A growable array class which doubles in size by default. // It will always keep all elements consecutive in memory, and may move the // elements around in memory (via a PvRealloc) when elements are inserted or // removed. Clients should therefore refer to the elements of the vector // by index (they should *never* maintain pointers to elements in the vector). //----------------------------------------------------------------------------- template< class T, class A = CUtlMemory > class CUtlArray { typedef A CAllocator; public: typedef T ElemType_t; // constructor, destructor CUtlArray( int growSize = 0, int initSize = 0 ); CUtlArray( T* pMemory, int allocationCount, int numElements = 0 ); ~CUtlArray(); // Copy the array. CUtlArray& operator=( const CUtlArray &other ); // element access T& operator[]( int i ); const T& operator[]( int i ) const; T& Element( int i ); const T& Element( int i ) const; T& Head(); const T& Head() const; T& Tail(); const T& Tail() const; // Gets the base address (can change when adding elements!) T* Base() { return m_Memory.Base(); } const T* Base() const { return m_Memory.Base(); } // Returns the number of elements in the vector // SIZE IS DEPRECATED! int Count() const; int Size() const; // don't use me! // Is element index valid? bool IsValidIndex( int i ) const; static int InvalidIndex(); // Adds an element, uses default constructor int AddToHead(); int AddToTail(); int InsertBefore( int elem ); int InsertAfter( int elem ); // Adds an element, uses copy constructor int AddToHead( const T& src ); int AddToTail( const T& src ); int InsertBefore( int elem, const T& src ); int InsertAfter( int elem, const T& src ); // Adds multiple elements, uses default constructor int AddMultipleToHead( int num ); int AddMultipleToTail( int num, const T *pToCopy=NULL ); int InsertMultipleBefore( int elem, int num, const T *pToCopy=NULL ); // If pToCopy is set, then it's an array of length 'num' and int InsertMultipleAfter( int elem, int num ); // Calls RemoveAll() then AddMultipleToTail. void SetSize( int size ); void SetCount( int count ); // Calls SetSize and copies each element. void CopyArray( const T *pArray, int size ); // Fast swap void Swap( CUtlArray< T, A > &vec ); // Add the specified array to the tail. int AddVectorToTail( CUtlArray const &src ); // Finds an element (element needs operator== defined) int Find( const T& src ) const; bool HasElement( const T& src ) const; // Makes sure we have enough memory allocated to store a requested # of elements void EnsureCapacity( int num ); // Makes sure we have at least this many elements void EnsureCount( int num ); // Element removal void FastRemove( int elem ); // doesn't preserve order void Remove( int elem ); // preserves order, shifts elements bool FindAndRemove( const T& src ); // removes first occurrence of src, preserves order, shifts elements void RemoveMultiple( int elem, int num ); // preserves order, shifts elements void RemoveAll(); // doesn't deallocate memory // Memory deallocation void Purge(); // Purges the list and calls delete on each element in it. void PurgeAndDeleteElements(); // Compacts the vector to the number of elements actually in use void Compact(); // Set the size by which it grows when it needs to allocate more memory. void SetGrowSize( int size ) { m_Memory.SetGrowSize( size ); } int NumAllocated() const; // Only use this if you really know what you're doing! void Sort( int (__cdecl *pfnCompare)(const T *, const T *) ); #ifdef DBGFLAG_VALIDATE void Validate( CValidator &validator, char *pchName ); // Validate our internal structures #endif // DBGFLAG_VALIDATE protected: // Can't copy this unless we explicitly do it! CUtlArray( CUtlArray const& vec ) { assert(0); } // Grows the vector void GrowVector( int num = 1 ); // Shifts elements.... void ShiftElementsRight( int elem, int num = 1 ); void ShiftElementsLeft( int elem, int num = 1 ); CAllocator m_Memory; int m_Size; // For easier access to the elements through the debugger // it's in release builds so this can be used in libraries correctly T *m_pElements; inline void ResetDbgInfo() { m_pElements = Base(); } }; // this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice template < class T > class CUtlBlockVector : public CUtlArray< T, CUtlBlockMemory< T, int > > { public: CUtlBlockVector( int growSize = 0, int initSize = 0 ) : CUtlArray< T, CUtlBlockMemory< T, int > >( growSize, initSize ) {} }; //----------------------------------------------------------------------------- // The CUtlArrayFixed class: // A array class with a fixed allocation scheme //----------------------------------------------------------------------------- template< class BASE_UTLVECTOR, class MUTEX_TYPE = CThreadFastMutex > class CUtlArrayMT : public BASE_UTLVECTOR, public MUTEX_TYPE { typedef BASE_UTLVECTOR BaseClass; public: MUTEX_TYPE Mutex_t; // constructor, destructor CUtlArrayMT( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlArrayMT( typename BaseClass::ElemType_t* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} }; //----------------------------------------------------------------------------- // The CUtlArrayFixed class: // A array class with a fixed allocation scheme //----------------------------------------------------------------------------- template< class T, size_t MAX_SIZE > class CUtlArrayFixed : public CUtlArray< T, CUtlMemoryFixed > { typedef CUtlArray< T, CUtlMemoryFixed > BaseClass; public: // constructor, destructor CUtlArrayFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlArrayFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} }; //----------------------------------------------------------------------------- // The CUtlArrayFixed class: // A array class with a fixed allocation scheme //----------------------------------------------------------------------------- template< class T, size_t MAX_SIZE > class CUtlArrayFixedGrowable : public CUtlArray< T, CUtlMemoryFixedGrowable > { typedef CUtlArray< T, CUtlMemoryFixedGrowable > BaseClass; public: // constructor, destructor CUtlArrayFixedGrowable( int growSize = 0 ) : BaseClass( growSize, MAX_SIZE ) {} }; //----------------------------------------------------------------------------- // The CCopyableUtlVector class: // A array class that allows copy construction (so you can nest a CUtlArray inside of another one of our containers) // WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens // Only use this when nesting a CUtlArray() inside of another one of our container classes (i.e a CUtlMap) //----------------------------------------------------------------------------- template< class T > class CCopyableUtlVector : public CUtlArray< T, CUtlMemory > { typedef CUtlArray< T, CUtlMemory > BaseClass; public: CCopyableUtlVector( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CCopyableUtlVector( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} virtual ~CCopyableUtlVector() {} CCopyableUtlVector( CCopyableUtlVector const& vec ) { CopyArray( vec.Base(), vec.Count() ); } }; //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template< typename T, class A > inline CUtlArray::CUtlArray( int growSize, int initSize ) : m_Memory(growSize, initSize), m_Size(0) { ResetDbgInfo(); } template< typename T, class A > inline CUtlArray::CUtlArray( T* pMemory, int allocationCount, int numElements ) : m_Memory(pMemory, allocationCount), m_Size(numElements) { ResetDbgInfo(); } template< typename T, class A > inline CUtlArray::~CUtlArray() { Purge(); } template< typename T, class A > inline CUtlArray& CUtlArray::operator=( const CUtlArray &other ) { int nCount = other.Count(); SetSize( nCount ); for ( int i = 0; i < nCount; i++ ) { (*this)[ i ] = other[ i ]; } return *this; } //----------------------------------------------------------------------------- // element access //----------------------------------------------------------------------------- template< typename T, class A > inline T& CUtlArray::operator[]( int i ) { return m_Memory[ i ]; } template< typename T, class A > inline const T& CUtlArray::operator[]( int i ) const { return m_Memory[ i ]; } template< typename T, class A > inline T& CUtlArray::Element( int i ) { return m_Memory[ i ]; } template< typename T, class A > inline const T& CUtlArray::Element( int i ) const { return m_Memory[ i ]; } template< typename T, class A > inline T& CUtlArray::Head() { assert( m_Size > 0 ); return m_Memory[ 0 ]; } template< typename T, class A > inline const T& CUtlArray::Head() const { assert( m_Size > 0 ); return m_Memory[ 0 ]; } template< typename T, class A > inline T& CUtlArray::Tail() { assert( m_Size > 0 ); return m_Memory[ m_Size - 1 ]; } template< typename T, class A > inline const T& CUtlArray::Tail() const { assert( m_Size > 0 ); return m_Memory[ m_Size - 1 ]; } //----------------------------------------------------------------------------- // Count //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlArray::Size() const { return m_Size; } template< typename T, class A > inline int CUtlArray::Count() const { return m_Size; } //----------------------------------------------------------------------------- // Is element index valid? //----------------------------------------------------------------------------- template< typename T, class A > inline bool CUtlArray::IsValidIndex( int i ) const { return (i >= 0) && (i < m_Size); } //----------------------------------------------------------------------------- // Returns in invalid index //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlArray::InvalidIndex() { return -1; } //----------------------------------------------------------------------------- // Grows the vector //----------------------------------------------------------------------------- template< typename T, class A > void CUtlArray::GrowVector( int num ) { if (m_Size + num > m_Memory.NumAllocated()) { m_Memory.Grow( m_Size + num - m_Memory.NumAllocated() ); } m_Size += num; ResetDbgInfo(); } //----------------------------------------------------------------------------- // Sorts the vector //----------------------------------------------------------------------------- template< typename T, class A > void CUtlArray::Sort( int (__cdecl *pfnCompare)(const T *, const T *) ) { typedef int (__cdecl *QSortCompareFunc_t)(const void *, const void *); if ( Count() <= 1 ) return; if ( Base() ) { qsort( Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare) ); } else { assert( 0 ); // this path is untested // if you want to sort vectors that use a non-sequential memory allocator, // you'll probably want to patch in a quicksort algorithm here // I just threw in this bubble sort to have something just in case... for ( int i = m_Size - 1; i >= 0; --i ) { for ( int j = 1; j <= i; ++j ) { if ( pfnCompare( &Element( j - 1 ), &Element( j ) ) < 0 ) { swap( Element( j - 1 ), Element( j ) ); } } } } } //----------------------------------------------------------------------------- // Makes sure we have enough memory allocated to store a requested # of elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlArray::EnsureCapacity( int num ) { m_Memory.EnsureCapacity(num); ResetDbgInfo(); } //----------------------------------------------------------------------------- // Makes sure we have at least this many elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlArray::EnsureCount( int num ) { if (Count() < num) AddMultipleToTail( num - Count() ); } //----------------------------------------------------------------------------- // Shifts elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlArray::ShiftElementsRight( int elem, int num ) { assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) memmove( &Element(elem+num), &Element(elem), numToMove * sizeof(T) ); } template< typename T, class A > void CUtlArray::ShiftElementsLeft( int elem, int num ) { assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) { memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) ); #ifdef _DEBUG memset( &Element(m_Size-num), 0xDD, num * sizeof(T) ); #endif } } //----------------------------------------------------------------------------- // Adds an element, uses default constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlArray::AddToHead() { return InsertBefore(0); } template< typename T, class A > inline int CUtlArray::AddToTail() { return InsertBefore( m_Size ); } template< typename T, class A > inline int CUtlArray::InsertAfter( int elem ) { return InsertBefore( elem + 1 ); } template< typename T, class A > int CUtlArray::InsertBefore( int elem ) { // Can insert at the end assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(); ShiftElementsRight(elem); Construct( &Element(elem) ); return elem; } //----------------------------------------------------------------------------- // Adds an element, uses copy constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlArray::AddToHead( const T& src ) { // Can't insert something that's in the list... reallocation may hose us assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( 0, src ); } template< typename T, class A > inline int CUtlArray::AddToTail( const T& src ) { // Can't insert something that's in the list... reallocation may hose us assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( m_Size, src ); } template< typename T, class A > inline int CUtlArray::InsertAfter( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( elem + 1, src ); } template< typename T, class A > int CUtlArray::InsertBefore( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) ); // Can insert at the end assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(); ShiftElementsRight(elem); CopyConstruct( &Element(elem), src ); return elem; } //----------------------------------------------------------------------------- // Adds multiple elements, uses default constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlArray::AddMultipleToHead( int num ) { return InsertMultipleBefore( 0, num ); } template< typename T, class A > inline int CUtlArray::AddMultipleToTail( int num, const T *pToCopy ) { // Can't insert something that's in the list... reallocation may hose us assert( (Base() == NULL) || !pToCopy || (pToCopy + num < Base()) || (pToCopy >= (Base() + Count()) ) ); return InsertMultipleBefore( m_Size, num, pToCopy ); } template< typename T, class A > int CUtlArray::InsertMultipleAfter( int elem, int num ) { return InsertMultipleBefore( elem + 1, num ); } template< typename T, class A > void CUtlArray::SetCount( int count ) { RemoveAll(); AddMultipleToTail( count ); } template< typename T, class A > inline void CUtlArray::SetSize( int size ) { SetCount( size ); } template< typename T, class A > void CUtlArray::CopyArray( const T *pArray, int size ) { // Can't insert something that's in the list... reallocation may hose us assert( (Base() == NULL) || !pArray || (Base() >= (pArray + size)) || (pArray >= (Base() + Count()) ) ); SetSize( size ); for( int i=0; i < size; i++ ) { (*this)[i] = pArray[i]; } } template< typename T, class A > void CUtlArray::Swap( CUtlArray< T, A > &vec ) { m_Memory.Swap( vec.m_Memory ); swap( m_Size, vec.m_Size ); swap( m_pElements, vec.m_pElements ); } template< typename T, class A > int CUtlArray::AddVectorToTail( CUtlArray const &src ) { assert( &src != this ); int base = Count(); // Make space. AddMultipleToTail( src.Count() ); // Copy the elements. for ( int i=0; i < src.Count(); i++ ) { (*this)[base + i] = src[i]; } return base; } template< typename T, class A > inline int CUtlArray::InsertMultipleBefore( int elem, int num, const T *pToInsert ) { if( num == 0 ) return elem; // Can insert at the end assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(num); ShiftElementsRight(elem, num); // Invoke default constructors for (int i = 0; i < num; ++i) Construct( &Element(elem+i) ); // Copy stuff in? if ( pToInsert ) { for ( int i=0; i < num; i++ ) { Element( elem+i ) = pToInsert[i]; } } return elem; } //----------------------------------------------------------------------------- // Finds an element (element needs operator== defined) //----------------------------------------------------------------------------- template< typename T, class A > int CUtlArray::Find( const T& src ) const { for ( int i = 0; i < Count(); ++i ) { if (Element(i) == src) return i; } return -1; } template< typename T, class A > bool CUtlArray::HasElement( const T& src ) const { return ( Find(src) >= 0 ); } //----------------------------------------------------------------------------- // Element removal //----------------------------------------------------------------------------- template< typename T, class A > void CUtlArray::FastRemove( int elem ) { assert( IsValidIndex(elem) ); Destruct( &Element(elem) ); if (m_Size > 0) { memcpy( &Element(elem), &Element(m_Size-1), sizeof(T) ); --m_Size; } } template< typename T, class A > void CUtlArray::Remove( int elem ) { Destruct( &Element(elem) ); ShiftElementsLeft(elem); --m_Size; } template< typename T, class A > bool CUtlArray::FindAndRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { Remove( elem ); return true; } return false; } template< typename T, class A > void CUtlArray::RemoveMultiple( int elem, int num ) { assert( elem >= 0 ); assert( elem + num <= Count() ); for (int i = elem + num; --i >= elem; ) Destruct(&Element(i)); ShiftElementsLeft(elem, num); m_Size -= num; } template< typename T, class A > void CUtlArray::RemoveAll() { for (int i = m_Size; --i >= 0; ) { Destruct(&Element(i)); } m_Size = 0; } //----------------------------------------------------------------------------- // Memory deallocation //----------------------------------------------------------------------------- template< typename T, class A > inline void CUtlArray::Purge() { RemoveAll(); m_Memory.Purge(); ResetDbgInfo(); } template< typename T, class A > inline void CUtlArray::PurgeAndDeleteElements() { for( int i=0; i < m_Size; i++ ) { delete Element(i); } Purge(); } template< typename T, class A > inline void CUtlArray::Compact() { m_Memory.Purge(m_Size); } template< typename T, class A > inline int CUtlArray::NumAllocated() const { return m_Memory.NumAllocated(); } #endif // CCVECTOR_H