/* * Copyright 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ package org.webrtc; import android.graphics.Point; import android.opengl.Matrix; import android.view.View; /** * Static helper functions for renderer implementations. */ public class RendererCommon { /** Interface for reporting rendering events. */ public static interface RendererEvents { /** * Callback fired once first frame is rendered. */ public void onFirstFrameRendered(); /** * Callback fired when rendered frame resolution or rotation has changed. */ public void onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation); } /** * Interface for rendering frames on an EGLSurface with specified viewport location. Rotation, * mirror, and cropping is specified using a 4x4 texture coordinate transform matrix. The frame * input can either be an OES texture, RGB texture, or YUV textures in I420 format. The function * release() must be called manually to free the resources held by this object. */ public static interface GlDrawer { /** * Functions for drawing frames with different sources. The rendering surface target is * implied by the current EGL context of the calling thread and requires no explicit argument. * The coordinates specify the viewport location on the surface target. */ void drawOes(int oesTextureId, float[] texMatrix, int frameWidth, int frameHeight, int viewportX, int viewportY, int viewportWidth, int viewportHeight); void drawRgb(int textureId, float[] texMatrix, int frameWidth, int frameHeight, int viewportX, int viewportY, int viewportWidth, int viewportHeight); void drawYuv(int[] yuvTextures, float[] texMatrix, int frameWidth, int frameHeight, int viewportX, int viewportY, int viewportWidth, int viewportHeight); /** * Release all GL resources. This needs to be done manually, otherwise resources may leak. */ void release(); } /** * Helper class for determining layout size based on layout requirements, scaling type, and video * aspect ratio. */ public static class VideoLayoutMeasure { // The scaling type determines how the video will fill the allowed layout area in measure(). It // can be specified separately for the case when video has matched orientation with layout size // and when there is an orientation mismatch. private float visibleFractionMatchOrientation = convertScalingTypeToVisibleFraction(ScalingType.SCALE_ASPECT_BALANCED); private float visibleFractionMismatchOrientation = convertScalingTypeToVisibleFraction(ScalingType.SCALE_ASPECT_BALANCED); public void setScalingType(ScalingType scalingType) { setScalingType(/* scalingTypeMatchOrientation= */ scalingType, /* scalingTypeMismatchOrientation= */ scalingType); } public void setScalingType( ScalingType scalingTypeMatchOrientation, ScalingType scalingTypeMismatchOrientation) { this.visibleFractionMatchOrientation = convertScalingTypeToVisibleFraction(scalingTypeMatchOrientation); this.visibleFractionMismatchOrientation = convertScalingTypeToVisibleFraction(scalingTypeMismatchOrientation); } public void setVisibleFraction( float visibleFractionMatchOrientation, float visibleFractionMismatchOrientation) { this.visibleFractionMatchOrientation = visibleFractionMatchOrientation; this.visibleFractionMismatchOrientation = visibleFractionMismatchOrientation; } public Point measure(boolean isCamera, int widthSpec, int heightSpec, int frameWidth, int frameHeight) { // Calculate max allowed layout size. final int maxWidth = View.getDefaultSize(Integer.MAX_VALUE, widthSpec); final int maxHeight = View.getDefaultSize(Integer.MAX_VALUE, heightSpec); if (frameWidth == 0 || frameHeight == 0 || maxWidth == 0 || maxHeight == 0) { return new Point(maxWidth, maxHeight); } // Calculate desired display size based on scaling type, video aspect ratio, // and maximum layout size. final float frameAspect = frameWidth / (float) frameHeight; final float displayAspect = maxWidth / (float) maxHeight; final float visibleFraction = (frameAspect > 1.0f) == (displayAspect > 1.0f) ? visibleFractionMatchOrientation : visibleFractionMismatchOrientation; final Point layoutSize = getDisplaySize(visibleFraction, frameAspect, maxWidth, maxHeight); // If the measure specification is forcing a specific size - yield. if (View.MeasureSpec.getMode(widthSpec) == View.MeasureSpec.EXACTLY) { layoutSize.x = maxWidth; } if (View.MeasureSpec.getMode(heightSpec) == View.MeasureSpec.EXACTLY || !isCamera && (frameAspect > 1.0f) == (displayAspect > 1.0f)) { layoutSize.y = maxHeight; } return layoutSize; } } // Types of video scaling: // SCALE_ASPECT_FIT - video frame is scaled to fit the size of the view by // maintaining the aspect ratio (black borders may be displayed). // SCALE_ASPECT_FILL - video frame is scaled to fill the size of the view by // maintaining the aspect ratio. Some portion of the video frame may be // clipped. // SCALE_ASPECT_BALANCED - Compromise between FIT and FILL. Video frame will fill as much as // possible of the view while maintaining aspect ratio, under the constraint that at least // |BALANCED_VISIBLE_FRACTION| of the frame content will be shown. public static enum ScalingType { SCALE_ASPECT_FIT, SCALE_ASPECT_FILL, SCALE_ASPECT_BALANCED } // The minimum fraction of the frame content that will be shown for |SCALE_ASPECT_BALANCED|. // This limits excessive cropping when adjusting display size. private static float BALANCED_VISIBLE_FRACTION = 0.5625f; /** * Returns layout transformation matrix that applies an optional mirror effect and compensates * for video vs display aspect ratio. */ public static float[] getLayoutMatrix( boolean mirror, float videoAspectRatio, float displayAspectRatio) { float scaleX = 1; float scaleY = 1; // Scale X or Y dimension so that video and display size have same aspect ratio. if (displayAspectRatio > videoAspectRatio) { scaleY = videoAspectRatio / displayAspectRatio; } else { scaleX = displayAspectRatio / videoAspectRatio; } // Apply optional horizontal flip. if (mirror) { scaleX *= -1; } final float matrix[] = new float[16]; Matrix.setIdentityM(matrix, 0); Matrix.scaleM(matrix, 0, scaleX, scaleY, 1); adjustOrigin(matrix); return matrix; } /** Converts a float[16] matrix array to android.graphics.Matrix. */ public static android.graphics.Matrix convertMatrixToAndroidGraphicsMatrix(float[] matrix4x4) { // clang-format off float[] values = { matrix4x4[0 * 4 + 0], matrix4x4[1 * 4 + 0], matrix4x4[3 * 4 + 0], matrix4x4[0 * 4 + 1], matrix4x4[1 * 4 + 1], matrix4x4[3 * 4 + 1], matrix4x4[0 * 4 + 3], matrix4x4[1 * 4 + 3], matrix4x4[3 * 4 + 3], }; // clang-format on android.graphics.Matrix matrix = new android.graphics.Matrix(); matrix.setValues(values); return matrix; } /** Converts android.graphics.Matrix to a float[16] matrix array. */ public static float[] convertMatrixFromAndroidGraphicsMatrix(android.graphics.Matrix matrix) { float[] values = new float[9]; matrix.getValues(values); // The android.graphics.Matrix looks like this: // [x1 y1 w1] // [x2 y2 w2] // [x3 y3 w3] // We want to contruct a matrix that looks like this: // [x1 y1 0 w1] // [x2 y2 0 w2] // [ 0 0 1 0] // [x3 y3 0 w3] // Since it is stored in column-major order, it looks like this: // [x1 x2 0 x3 // y1 y2 0 y3 // 0 0 1 0 // w1 w2 0 w3] // clang-format off float[] matrix4x4 = { values[0 * 3 + 0], values[1 * 3 + 0], 0, values[2 * 3 + 0], values[0 * 3 + 1], values[1 * 3 + 1], 0, values[2 * 3 + 1], 0, 0, 1, 0, values[0 * 3 + 2], values[1 * 3 + 2], 0, values[2 * 3 + 2], }; // clang-format on return matrix4x4; } /** * Calculate display size based on scaling type, video aspect ratio, and maximum display size. */ public static Point getDisplaySize( ScalingType scalingType, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight) { return getDisplaySize(convertScalingTypeToVisibleFraction(scalingType), videoAspectRatio, maxDisplayWidth, maxDisplayHeight); } /** * Move |matrix| transformation origin to (0.5, 0.5). This is the origin for texture coordinates * that are in the range 0 to 1. */ private static void adjustOrigin(float[] matrix) { // Note that OpenGL is using column-major order. // Pre translate with -0.5 to move coordinates to range [-0.5, 0.5]. matrix[12] -= 0.5f * (matrix[0] + matrix[4]); matrix[13] -= 0.5f * (matrix[1] + matrix[5]); // Post translate with 0.5 to move coordinates to range [0, 1]. matrix[12] += 0.5f; matrix[13] += 0.5f; } /** * Each scaling type has a one-to-one correspondence to a numeric minimum fraction of the video * that must remain visible. */ private static float convertScalingTypeToVisibleFraction(ScalingType scalingType) { switch (scalingType) { case SCALE_ASPECT_FIT: return 1.0f; case SCALE_ASPECT_FILL: return 0.0f; case SCALE_ASPECT_BALANCED: return BALANCED_VISIBLE_FRACTION; default: throw new IllegalArgumentException(); } } /** * Calculate display size based on minimum fraction of the video that must remain visible, * video aspect ratio, and maximum display size. */ public static Point getDisplaySize( float minVisibleFraction, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight) { // If there is no constraint on the amount of cropping, fill the allowed display area. if (minVisibleFraction == 0 || videoAspectRatio == 0) { return new Point(maxDisplayWidth, maxDisplayHeight); } // Each dimension is constrained on max display size and how much we are allowed to crop. final int width = Math.min( maxDisplayWidth, Math.round(maxDisplayHeight / minVisibleFraction * videoAspectRatio)); final int height = Math.min( maxDisplayHeight, Math.round(maxDisplayWidth / minVisibleFraction / videoAspectRatio)); return new Point(width, height); } }