NekoX/TMessagesProj/src/main/java/org/webrtc/GlGenericDrawer.java

463 lines
22 KiB
Java

/*
* Copyright 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
package org.webrtc;
import android.graphics.Bitmap;
import android.opengl.GLES11Ext;
import android.opengl.GLES20;
import org.telegram.messenger.FileLog;
import androidx.annotation.Nullable;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import javax.microedition.khronos.opengles.GL10;
/**
* Helper class to implement an instance of RendererCommon.GlDrawer that can accept multiple input
* sources (OES, RGB, or YUV) using a generic fragment shader as input. The generic fragment shader
* should sample pixel values from the function "sample" that will be provided by this class and
* provides an abstraction for the input source type (OES, RGB, or YUV). The texture coordinate
* variable name will be "tc" and the texture matrix in the vertex shader will be "tex_mat". The
* simplest possible generic shader that just draws pixel from the frame unmodified looks like:
* void main() {
* gl_FragColor = sample(tc);
* }
* This class covers the cases for most simple shaders and generates the necessary boiler plate.
* Advanced shaders can always implement RendererCommon.GlDrawer directly.
*/
public class GlGenericDrawer implements RendererCommon.GlDrawer {
/**
* The different shader types representing different input sources. YUV here represents three
* separate Y, U, V textures.
*/
private static final int OES = 0;
private static final int RGB = 1;
private static final int YUV = 2;
/**
* The shader callbacks is used to customize behavior for a GlDrawer. It provides a hook to set
* uniform variables in the shader before a frame is drawn.
*/
public interface ShaderCallbacks {
/**
* This callback is called when a new shader has been compiled and created. It will be called
* for the first frame as well as when the shader type is changed. This callback can be used to
* do custom initialization of the shader that only needs to happen once.
*/
void onNewShader(GlShader shader);
/**
* This callback is called before rendering a frame. It can be used to do custom preparation of
* the shader that needs to happen every frame.
*/
void onPrepareShader(GlShader shader, float[] texMatrix, int frameWidth, int frameHeight,
int viewportWidth, int viewportHeight);
}
private static final String INPUT_VERTEX_COORDINATE_NAME = "in_pos";
private static final String INPUT_TEXTURE_COORDINATE_NAME = "in_tc";
private static final String TEXTURE_MATRIX_NAME = "tex_mat";
private static final String DEFAULT_VERTEX_SHADER_STRING = "varying vec2 tc;\n"
+ "attribute vec4 in_pos;\n"
+ "attribute vec4 in_tc;\n"
+ "uniform mat4 tex_mat;\n"
+ "void main() {\n"
+ " gl_Position = in_pos;\n"
+ " tc = (tex_mat * in_tc).xy;\n"
+ "}\n";
// Vertex coordinates in Normalized Device Coordinates, i.e. (-1, -1) is bottom-left and (1, 1)
// is top-right.
private static final FloatBuffer FULL_RECTANGLE_BUFFER = GlUtil.createFloatBuffer(new float[] {
-1.0f, -1.0f, // Bottom left.
1.0f, -1.0f, // Bottom right.
-1.0f, 1.0f, // Top left.
1.0f, 1.0f, // Top right.
});
// Texture coordinates - (0, 0) is bottom-left and (1, 1) is top-right.
private static final FloatBuffer FULL_RECTANGLE_TEXTURE_BUFFER =
GlUtil.createFloatBuffer(new float[] {
0.0f, 0.0f, // Bottom left.
1.0f, 0.0f, // Bottom right.
0.0f, 1.0f, // Top left.
1.0f, 1.0f, // Top right.
});
static String createFragmentShaderString(String genericFragmentSource, int shaderType, boolean blur) {
final StringBuilder stringBuilder = new StringBuilder();
if (shaderType == OES) {
stringBuilder.append("#extension GL_OES_EGL_image_external : require\n");
}
stringBuilder.append("precision highp float;\n");
if (!blur) {
stringBuilder.append("varying vec2 tc;\n");
}
if (shaderType == YUV) {
stringBuilder.append("uniform sampler2D y_tex;\n");
stringBuilder.append("uniform sampler2D u_tex;\n");
stringBuilder.append("uniform sampler2D v_tex;\n");
// Add separate function for sampling texture.
// yuv_to_rgb_mat is inverse of the matrix defined in YuvConverter.
stringBuilder.append("vec4 sample(vec2 p) {\n");
stringBuilder.append(" float y = texture2D(y_tex, p).r * 1.16438;\n");
stringBuilder.append(" float u = texture2D(u_tex, p).r;\n");
stringBuilder.append(" float v = texture2D(v_tex, p).r;\n");
stringBuilder.append(" return vec4(y + 1.59603 * v - 0.874202,\n");
stringBuilder.append(" y - 0.391762 * u - 0.812968 * v + 0.531668,\n");
stringBuilder.append(" y + 2.01723 * u - 1.08563, 1);\n");
stringBuilder.append("}\n");
stringBuilder.append(genericFragmentSource);
} else {
final String samplerName = shaderType == OES ? "samplerExternalOES" : "sampler2D";
stringBuilder.append("uniform ").append(samplerName).append(" tex;\n");
if (blur) {
stringBuilder.append("precision mediump float;\n")
.append("varying vec2 tc;\n")
.append("const mediump vec3 satLuminanceWeighting = vec3(0.2126, 0.7152, 0.0722);\n")
.append("uniform float texelWidthOffset;\n")
.append("uniform float texelHeightOffset;\n")
.append("void main(){\n")
.append("int rad = 3;\n")
.append("int diameter = 2 * rad + 1;\n")
.append("vec4 sampleTex = vec4(0, 0, 0, 0);\n")
.append("vec3 col = vec3(0, 0, 0);\n")
.append("float weightSum = 0.0;\n")
.append("for(int i = 0; i < diameter; i++) {\n")
.append("vec2 offset = vec2(float(i - rad) * texelWidthOffset, float(i - rad) * texelHeightOffset);\n")
.append("sampleTex = vec4(texture2D(tex, tc.st+offset));\n")
.append("float index = float(i);\n")
.append("float boxWeight = float(rad) + 1.0 - abs(index - float(rad));\n")
.append("col += sampleTex.rgb * boxWeight;\n")
.append("weightSum += boxWeight;\n")
.append("}\n")
.append("vec3 result = col / weightSum;\n")
.append("lowp float satLuminance = dot(result.rgb, satLuminanceWeighting);\n")
.append("lowp vec3 greyScaleColor = vec3(satLuminance);\n")
.append("gl_FragColor = vec4(clamp(mix(greyScaleColor, result.rgb, 1.1), 0.0, 1.0), 1.0);\n")
.append("}\n");
} else {
// Update the sampling function in-place.
stringBuilder.append(genericFragmentSource.replace("sample(", "texture2D(tex, "));
}
}
return stringBuilder.toString();
}
private final String genericFragmentSource;
private final String vertexShader;
private final ShaderCallbacks shaderCallbacks;
@Nullable private GlShader[][] currentShader = new GlShader[3][3];
private int[][] inPosLocation = new int[3][3];
private int[][] inTcLocation = new int[3][3];
private int[][] texMatrixLocation = new int[3][3];
private int[][] texelLocation = new int[3][3];
public GlGenericDrawer(String genericFragmentSource, ShaderCallbacks shaderCallbacks) {
this(DEFAULT_VERTEX_SHADER_STRING, genericFragmentSource, shaderCallbacks);
}
public GlGenericDrawer(
String vertexShader, String genericFragmentSource, ShaderCallbacks shaderCallbacks) {
this.vertexShader = vertexShader;
this.genericFragmentSource = genericFragmentSource;
this.shaderCallbacks = shaderCallbacks;
}
// Visible for testing.
GlShader createShader(int shaderType, boolean blur) {
return new GlShader(vertexShader, createFragmentShaderString(genericFragmentSource, shaderType, blur));
}
/**
* Draw an OES texture frame with specified texture transformation matrix. Required resources are
* allocated at the first call to this function.
*/
private int[] renderTexture = new int[2];
private int[] renderFrameBuffer;
private float[] renderMatrix;
private int[] renderTextureWidth = new int[2];
private int[] renderTextureHeight = new int[2];
private float[] textureMatrix;
private float renderTextureDownscale;
private void ensureRenderTargetCreated(int originalWidth, int originalHeight, int texIndex) {
if (renderFrameBuffer == null) {
renderFrameBuffer = new int[2];
GLES20.glGenFramebuffers(2, renderFrameBuffer, 0);
GLES20.glGenTextures(2, renderTexture, 0);
for (int a = 0; a < renderTexture.length; a++) {
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, renderTexture[a]);
GLES20.glTexParameteri(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_LINEAR);
GLES20.glTexParameteri(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);
GLES20.glTexParameteri(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_CLAMP_TO_EDGE);
GLES20.glTexParameteri(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_CLAMP_TO_EDGE);
}
renderMatrix = new float[16];
android.opengl.Matrix.setIdentityM(renderMatrix, 0);
}
if (renderTextureWidth[texIndex] != originalWidth) {
renderTextureDownscale = Math.max(1.0f, Math.max(originalWidth, originalHeight) / 50f);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, renderTexture[texIndex]);
GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_RGBA, (int) (originalWidth / renderTextureDownscale), (int) (originalHeight / renderTextureDownscale), 0, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, null);
renderTextureWidth[texIndex] = originalWidth;
renderTextureHeight[texIndex] = originalHeight;
}
}
public interface TextureCallback {
void run(Bitmap bitmap, int rotation);
}
public void getRenderBufferBitmap(int baseRotation, TextureCallback callback) {
if (renderFrameBuffer == null || textureMatrix == null) {
callback.run(null, 0);
return;
}
int rotation;
double Ry = Math.asin(textureMatrix[2]);
if (Ry < Math.PI / 2 && Ry > -Math.PI / 2) {
rotation = (int) (-Math.atan(-textureMatrix[1] / textureMatrix[0]) / (Math.PI / 180));
} else {
rotation = baseRotation;
}
int viewportW = (int) (renderTextureWidth[0] / renderTextureDownscale);
int viewportH = (int) (renderTextureHeight[0] / renderTextureDownscale);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, renderFrameBuffer[0]);
GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0, GLES20.GL_TEXTURE_2D, renderTexture[0], 0);
ByteBuffer buffer = ByteBuffer.allocateDirect(viewportW * viewportH * 4);
GLES20.glReadPixels(0, 0, viewportW, viewportH, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, buffer);
Bitmap bitmap = Bitmap.createBitmap(viewportW, viewportH, Bitmap.Config.ARGB_8888);
bitmap.copyPixelsFromBuffer(buffer);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
callback.run(bitmap, rotation);
}
@Override
public void drawOes(int oesTextureId, int originalWidth, int originalHeight, int rotatedWidth, int rotatedHeight, float[] texMatrix, int frameWidth, int frameHeight,
int viewportX, int viewportY, int viewportWidth, int viewportHeight, boolean blur) {
if (blur) {
ensureRenderTargetCreated(originalWidth, originalHeight, 1);
textureMatrix = texMatrix;
int viewportW = (int) (originalWidth / renderTextureDownscale);
int viewportH = (int) (originalHeight / renderTextureDownscale);
GLES20.glViewport(0, 0, viewportW, viewportH);
prepareShader(OES, renderMatrix, rotatedWidth, rotatedHeight, frameWidth, frameHeight, viewportWidth, viewportHeight, 0);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, oesTextureId);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, renderFrameBuffer[1]);
GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0, GLES20.GL_TEXTURE_2D, renderTexture[1], 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, 0);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
if (rotatedWidth != originalWidth) {
int temp = viewportW;
viewportW = viewportH;
viewportH = temp;
}
ensureRenderTargetCreated(originalWidth, originalHeight, 0);
prepareShader(RGB, renderMatrix, rotatedWidth != originalWidth ? viewportH : viewportW, rotatedWidth != originalWidth ? viewportW : viewportH, frameWidth, frameHeight, viewportWidth, viewportHeight, 1);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, renderTexture[1]);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, renderFrameBuffer[0]);
GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0, GLES20.GL_TEXTURE_2D, renderTexture[0], 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
GLES20.glViewport(viewportX, viewportY, viewportWidth, viewportHeight);
prepareShader(RGB, texMatrix, rotatedWidth != originalWidth ? viewportH : viewportW, rotatedWidth != originalWidth ? viewportW : viewportH, frameWidth, frameHeight, viewportWidth, viewportHeight, 2);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, renderTexture[0]);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
} else {
prepareShader(OES, texMatrix, rotatedWidth, rotatedHeight, frameWidth, frameHeight, viewportWidth, viewportHeight, 0);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, oesTextureId);
GLES20.glViewport(viewportX, viewportY, viewportWidth, viewportHeight);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
GLES20.glBindTexture(GLES11Ext.GL_TEXTURE_EXTERNAL_OES, 0);
}
}
/**
* Draw a RGB(A) texture frame with specified texture transformation matrix. Required resources
* are allocated at the first call to this function.
*/
@Override
public void drawRgb(int textureId, int originalWidth, int originalHeight, int rotatedWidth, int rotatedHeight, float[] texMatrix, int frameWidth, int frameHeight,
int viewportX, int viewportY, int viewportWidth, int viewportHeight, boolean blur) {
prepareShader(RGB, texMatrix, rotatedWidth, rotatedHeight, frameWidth, frameHeight, viewportWidth, viewportHeight, 0);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);
GLES20.glViewport(viewportX, viewportY, viewportWidth, viewportHeight);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0);
}
/**
* Draw a YUV frame with specified texture transformation matrix. Required resources are allocated
* at the first call to this function.
*/
@Override
public void drawYuv(int[] yuvTextures, int originalWidth, int originalHeight, int rotatedWidth, int rotatedHeight, float[] texMatrix, int frameWidth, int frameHeight,
int viewportX, int viewportY, int viewportWidth, int viewportHeight, boolean blur) {
if (blur && originalWidth > 0 && originalHeight > 0) {
textureMatrix = texMatrix;
ensureRenderTargetCreated(originalWidth, originalHeight, 1);
int viewportW = (int) (originalWidth / renderTextureDownscale);
int viewportH = (int) (originalHeight / renderTextureDownscale);
GLES20.glViewport(0, 0, viewportW, viewportH);
prepareShader(YUV, renderMatrix, rotatedWidth, rotatedHeight, frameWidth, frameHeight, viewportWidth, viewportHeight, 0);
for (int i = 0; i < 3; ++i) {
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, yuvTextures[i]);
}
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, renderFrameBuffer[1]);
GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0, GLES20.GL_TEXTURE_2D, renderTexture[1], 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
for (int i = 0; i < 3; ++i) {
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0);
}
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
if (rotatedWidth != originalWidth) {
int temp = viewportW;
viewportW = viewportH;
viewportH = temp;
}
ensureRenderTargetCreated(originalWidth, originalHeight, 0);
prepareShader(RGB, renderMatrix, rotatedWidth != originalWidth ? viewportH : viewportW, rotatedWidth != originalWidth ? viewportW : viewportH, frameWidth, frameHeight, viewportWidth, viewportHeight, 1);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, renderTexture[1]);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, renderFrameBuffer[0]);
GLES20.glFramebufferTexture2D(GLES20.GL_FRAMEBUFFER, GLES20.GL_COLOR_ATTACHMENT0, GLES20.GL_TEXTURE_2D, renderTexture[0], 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
GLES20.glViewport(viewportX, viewportY, viewportWidth, viewportHeight);
prepareShader(RGB, texMatrix, rotatedWidth != originalWidth ? viewportH : viewportW, rotatedWidth != originalWidth ? viewportW : viewportH, frameWidth, frameHeight, viewportWidth, viewportHeight, 2);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, renderTexture[0]);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
} else {
prepareShader(YUV, texMatrix, rotatedWidth, rotatedHeight, frameWidth, frameHeight, viewportWidth, viewportHeight, 0);
for (int i = 0; i < 3; ++i) {
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, yuvTextures[i]);
}
GLES20.glViewport(viewportX, viewportY, viewportWidth, viewportHeight);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
for (int i = 0; i < 3; ++i) {
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0);
}
}
}
private void prepareShader(int shaderType, float[] texMatrix, int texWidth, int texHeight, int frameWidth,
int frameHeight, int viewportWidth, int viewportHeight, int blurPass) {
final GlShader shader;
boolean blur = blurPass != 0;
if (currentShader[shaderType][blurPass] != null) {
shader = currentShader[shaderType][blurPass];
} else {
try {
shader = createShader(shaderType, blur);
} catch (Exception e) {
FileLog.e(e);
return;
}
currentShader[shaderType][blurPass] = shader;
shader.useProgram();
// Set input texture units.
if (shaderType == YUV) {
GLES20.glUniform1i(shader.getUniformLocation("y_tex"), 0);
GLES20.glUniform1i(shader.getUniformLocation("u_tex"), 1);
GLES20.glUniform1i(shader.getUniformLocation("v_tex"), 2);
} else {
GLES20.glUniform1i(shader.getUniformLocation("tex"), 0);
}
GlUtil.checkNoGLES2Error("Create shader");
shaderCallbacks.onNewShader(shader);
if (blur) {
texelLocation[shaderType][0] = shader.getUniformLocation("texelWidthOffset");
texelLocation[shaderType][1] = shader.getUniformLocation("texelHeightOffset");
}
texMatrixLocation[shaderType][blurPass] = shader.getUniformLocation(TEXTURE_MATRIX_NAME);
inPosLocation[shaderType][blurPass] = shader.getAttribLocation(INPUT_VERTEX_COORDINATE_NAME);
inTcLocation[shaderType][blurPass] = shader.getAttribLocation(INPUT_TEXTURE_COORDINATE_NAME);
}
shader.useProgram();
if (blur) {
GLES20.glUniform1f(texelLocation[shaderType][0], blurPass == 1 ? 1.0f / texWidth : 0);
GLES20.glUniform1f(texelLocation[shaderType][1], blurPass == 2 ? 1.0f / texHeight : 0);
}
// Upload the vertex coordinates.
GLES20.glEnableVertexAttribArray(inPosLocation[shaderType][blurPass]);
GLES20.glVertexAttribPointer(inPosLocation[shaderType][blurPass], /* size= */ 2,
/* type= */ GLES20.GL_FLOAT, /* normalized= */ false, /* stride= */ 0,
FULL_RECTANGLE_BUFFER);
// Upload the texture coordinates.
GLES20.glEnableVertexAttribArray(inTcLocation[shaderType][blurPass]);
GLES20.glVertexAttribPointer(inTcLocation[shaderType][blurPass], /* size= */ 2,
/* type= */ GLES20.GL_FLOAT, /* normalized= */ false, /* stride= */ 0,
FULL_RECTANGLE_TEXTURE_BUFFER);
// Upload the texture transformation matrix.
GLES20.glUniformMatrix4fv(texMatrixLocation[shaderType][blurPass], 1 /* count= */, false /* transpose= */, texMatrix, 0 /* offset= */);
// Do custom per-frame shader preparation.
shaderCallbacks.onPrepareShader(shader, texMatrix, frameWidth, frameHeight, viewportWidth, viewportHeight);
GlUtil.checkNoGLES2Error("Prepare shader");
}
/**
* Release all GLES resources. This needs to be done manually, otherwise the resources are leaked.
*/
@Override
public void release() {
for (int a = 0; a < currentShader.length; a++) {
for (int b = 0; b < currentShader[a].length; b++) {
if (currentShader[a][b] != null) {
currentShader[a][b].release();
currentShader[a][b] = null;
}
}
}
if (renderFrameBuffer != null) {
GLES20.glDeleteFramebuffers(2, renderFrameBuffer, 0);
GLES20.glDeleteTextures(2, renderTexture, 0);
}
}
}