mirror of
https://github.com/NekoX-Dev/NekoX.git
synced 2024-12-15 05:29:45 +01:00
1373 lines
42 KiB
C
1373 lines
42 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2010 Xiph.Org Foundation
|
|
Copyright (c) 2008 Gregory Maxwell
|
|
Written by Jean-Marc Valin and Gregory Maxwell */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#define CELT_DECODER_C
|
|
|
|
#include "cpu_support.h"
|
|
#include "os_support.h"
|
|
#include "mdct.h"
|
|
#include <math.h>
|
|
#include "celt.h"
|
|
#include "pitch.h"
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "entcode.h"
|
|
#include "quant_bands.h"
|
|
#include "rate.h"
|
|
#include "stack_alloc.h"
|
|
#include "mathops.h"
|
|
#include "float_cast.h"
|
|
#include <stdarg.h>
|
|
#include "celt_lpc.h"
|
|
#include "vq.h"
|
|
|
|
/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save
|
|
CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The
|
|
current value corresponds to a pitch of 66.67 Hz. */
|
|
#define PLC_PITCH_LAG_MAX (720)
|
|
/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a
|
|
pitch of 480 Hz. */
|
|
#define PLC_PITCH_LAG_MIN (100)
|
|
|
|
#if defined(SMALL_FOOTPRINT) && defined(FIXED_POINT)
|
|
#define NORM_ALIASING_HACK
|
|
#endif
|
|
/**********************************************************************/
|
|
/* */
|
|
/* DECODER */
|
|
/* */
|
|
/**********************************************************************/
|
|
#define DECODE_BUFFER_SIZE 2048
|
|
|
|
/** Decoder state
|
|
@brief Decoder state
|
|
*/
|
|
struct OpusCustomDecoder {
|
|
const OpusCustomMode *mode;
|
|
int overlap;
|
|
int channels;
|
|
int stream_channels;
|
|
|
|
int downsample;
|
|
int start, end;
|
|
int signalling;
|
|
int disable_inv;
|
|
int arch;
|
|
|
|
/* Everything beyond this point gets cleared on a reset */
|
|
#define DECODER_RESET_START rng
|
|
|
|
opus_uint32 rng;
|
|
int error;
|
|
int last_pitch_index;
|
|
int loss_count;
|
|
int skip_plc;
|
|
int postfilter_period;
|
|
int postfilter_period_old;
|
|
opus_val16 postfilter_gain;
|
|
opus_val16 postfilter_gain_old;
|
|
int postfilter_tapset;
|
|
int postfilter_tapset_old;
|
|
|
|
celt_sig preemph_memD[2];
|
|
|
|
celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
|
|
/* opus_val16 lpc[], Size = channels*LPC_ORDER */
|
|
/* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
|
|
/* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
|
|
/* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
|
|
/* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
|
|
};
|
|
|
|
#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS)
|
|
/* Make basic checks on the CELT state to ensure we don't end
|
|
up writing all over memory. */
|
|
void validate_celt_decoder(CELTDecoder *st)
|
|
{
|
|
#ifndef CUSTOM_MODES
|
|
celt_assert(st->mode == opus_custom_mode_create(48000, 960, NULL));
|
|
celt_assert(st->overlap == 120);
|
|
#endif
|
|
celt_assert(st->channels == 1 || st->channels == 2);
|
|
celt_assert(st->stream_channels == 1 || st->stream_channels == 2);
|
|
celt_assert(st->downsample > 0);
|
|
celt_assert(st->start == 0 || st->start == 17);
|
|
celt_assert(st->start < st->end);
|
|
celt_assert(st->end <= 21);
|
|
#ifdef OPUS_ARCHMASK
|
|
celt_assert(st->arch >= 0);
|
|
celt_assert(st->arch <= OPUS_ARCHMASK);
|
|
#endif
|
|
celt_assert(st->last_pitch_index <= PLC_PITCH_LAG_MAX);
|
|
celt_assert(st->last_pitch_index >= PLC_PITCH_LAG_MIN || st->last_pitch_index == 0);
|
|
celt_assert(st->postfilter_period < MAX_PERIOD);
|
|
celt_assert(st->postfilter_period >= COMBFILTER_MINPERIOD || st->postfilter_period == 0);
|
|
celt_assert(st->postfilter_period_old < MAX_PERIOD);
|
|
celt_assert(st->postfilter_period_old >= COMBFILTER_MINPERIOD || st->postfilter_period_old == 0);
|
|
celt_assert(st->postfilter_tapset <= 2);
|
|
celt_assert(st->postfilter_tapset >= 0);
|
|
celt_assert(st->postfilter_tapset_old <= 2);
|
|
celt_assert(st->postfilter_tapset_old >= 0);
|
|
}
|
|
#endif
|
|
|
|
int celt_decoder_get_size(int channels)
|
|
{
|
|
const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
|
|
return opus_custom_decoder_get_size(mode, channels);
|
|
}
|
|
|
|
OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
|
|
{
|
|
int size = sizeof(struct CELTDecoder)
|
|
+ (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
|
|
+ channels*LPC_ORDER*sizeof(opus_val16)
|
|
+ 4*2*mode->nbEBands*sizeof(opus_val16);
|
|
return size;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
|
|
{
|
|
int ret;
|
|
CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
|
|
ret = opus_custom_decoder_init(st, mode, channels);
|
|
if (ret != OPUS_OK)
|
|
{
|
|
opus_custom_decoder_destroy(st);
|
|
st = NULL;
|
|
}
|
|
if (error)
|
|
*error = ret;
|
|
return st;
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
|
|
{
|
|
int ret;
|
|
ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
|
|
if (ret != OPUS_OK)
|
|
return ret;
|
|
st->downsample = resampling_factor(sampling_rate);
|
|
if (st->downsample==0)
|
|
return OPUS_BAD_ARG;
|
|
else
|
|
return OPUS_OK;
|
|
}
|
|
|
|
OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
|
|
{
|
|
if (channels < 0 || channels > 2)
|
|
return OPUS_BAD_ARG;
|
|
|
|
if (st==NULL)
|
|
return OPUS_ALLOC_FAIL;
|
|
|
|
OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
|
|
|
|
st->mode = mode;
|
|
st->overlap = mode->overlap;
|
|
st->stream_channels = st->channels = channels;
|
|
|
|
st->downsample = 1;
|
|
st->start = 0;
|
|
st->end = st->mode->effEBands;
|
|
st->signalling = 1;
|
|
#ifndef DISABLE_UPDATE_DRAFT
|
|
st->disable_inv = channels == 1;
|
|
#else
|
|
st->disable_inv = 0;
|
|
#endif
|
|
st->arch = opus_select_arch();
|
|
|
|
opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
|
|
|
|
return OPUS_OK;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
void opus_custom_decoder_destroy(CELTDecoder *st)
|
|
{
|
|
opus_free(st);
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
#ifndef CUSTOM_MODES
|
|
/* Special case for stereo with no downsampling and no accumulation. This is
|
|
quite common and we can make it faster by processing both channels in the
|
|
same loop, reducing overhead due to the dependency loop in the IIR filter. */
|
|
static void deemphasis_stereo_simple(celt_sig *in[], opus_val16 *pcm, int N, const opus_val16 coef0,
|
|
celt_sig *mem)
|
|
{
|
|
celt_sig * OPUS_RESTRICT x0;
|
|
celt_sig * OPUS_RESTRICT x1;
|
|
celt_sig m0, m1;
|
|
int j;
|
|
x0=in[0];
|
|
x1=in[1];
|
|
m0 = mem[0];
|
|
m1 = mem[1];
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_sig tmp0, tmp1;
|
|
/* Add VERY_SMALL to x[] first to reduce dependency chain. */
|
|
tmp0 = x0[j] + VERY_SMALL + m0;
|
|
tmp1 = x1[j] + VERY_SMALL + m1;
|
|
m0 = MULT16_32_Q15(coef0, tmp0);
|
|
m1 = MULT16_32_Q15(coef0, tmp1);
|
|
pcm[2*j ] = SCALEOUT(SIG2WORD16(tmp0));
|
|
pcm[2*j+1] = SCALEOUT(SIG2WORD16(tmp1));
|
|
}
|
|
mem[0] = m0;
|
|
mem[1] = m1;
|
|
}
|
|
#endif
|
|
|
|
#ifndef RESYNTH
|
|
static
|
|
#endif
|
|
void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef,
|
|
celt_sig *mem, int accum)
|
|
{
|
|
int c;
|
|
int Nd;
|
|
int apply_downsampling=0;
|
|
opus_val16 coef0;
|
|
VARDECL(celt_sig, scratch);
|
|
SAVE_STACK;
|
|
#ifndef CUSTOM_MODES
|
|
/* Short version for common case. */
|
|
if (downsample == 1 && C == 2 && !accum)
|
|
{
|
|
deemphasis_stereo_simple(in, pcm, N, coef[0], mem);
|
|
return;
|
|
}
|
|
#endif
|
|
#ifndef FIXED_POINT
|
|
(void)accum;
|
|
celt_assert(accum==0);
|
|
#endif
|
|
ALLOC(scratch, N, celt_sig);
|
|
coef0 = coef[0];
|
|
Nd = N/downsample;
|
|
c=0; do {
|
|
int j;
|
|
celt_sig * OPUS_RESTRICT x;
|
|
opus_val16 * OPUS_RESTRICT y;
|
|
celt_sig m = mem[c];
|
|
x =in[c];
|
|
y = pcm+c;
|
|
#ifdef CUSTOM_MODES
|
|
if (coef[1] != 0)
|
|
{
|
|
opus_val16 coef1 = coef[1];
|
|
opus_val16 coef3 = coef[3];
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_sig tmp = x[j] + m + VERY_SMALL;
|
|
m = MULT16_32_Q15(coef0, tmp)
|
|
- MULT16_32_Q15(coef1, x[j]);
|
|
tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2);
|
|
scratch[j] = tmp;
|
|
}
|
|
apply_downsampling=1;
|
|
} else
|
|
#endif
|
|
if (downsample>1)
|
|
{
|
|
/* Shortcut for the standard (non-custom modes) case */
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_sig tmp = x[j] + VERY_SMALL + m;
|
|
m = MULT16_32_Q15(coef0, tmp);
|
|
scratch[j] = tmp;
|
|
}
|
|
apply_downsampling=1;
|
|
} else {
|
|
/* Shortcut for the standard (non-custom modes) case */
|
|
#ifdef FIXED_POINT
|
|
if (accum)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_sig tmp = x[j] + m + VERY_SMALL;
|
|
m = MULT16_32_Q15(coef0, tmp);
|
|
y[j*C] = SAT16(ADD32(y[j*C], SCALEOUT(SIG2WORD16(tmp))));
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_sig tmp = x[j] + VERY_SMALL + m;
|
|
m = MULT16_32_Q15(coef0, tmp);
|
|
y[j*C] = SCALEOUT(SIG2WORD16(tmp));
|
|
}
|
|
}
|
|
}
|
|
mem[c] = m;
|
|
|
|
if (apply_downsampling)
|
|
{
|
|
/* Perform down-sampling */
|
|
#ifdef FIXED_POINT
|
|
if (accum)
|
|
{
|
|
for (j=0;j<Nd;j++)
|
|
y[j*C] = SAT16(ADD32(y[j*C], SCALEOUT(SIG2WORD16(scratch[j*downsample]))));
|
|
} else
|
|
#endif
|
|
{
|
|
for (j=0;j<Nd;j++)
|
|
y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample]));
|
|
}
|
|
}
|
|
} while (++c<C);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
#ifndef RESYNTH
|
|
static
|
|
#endif
|
|
void celt_synthesis(const CELTMode *mode, celt_norm *X, celt_sig * out_syn[],
|
|
opus_val16 *oldBandE, int start, int effEnd, int C, int CC,
|
|
int isTransient, int LM, int downsample,
|
|
int silence, int arch)
|
|
{
|
|
int c, i;
|
|
int M;
|
|
int b;
|
|
int B;
|
|
int N, NB;
|
|
int shift;
|
|
int nbEBands;
|
|
int overlap;
|
|
VARDECL(celt_sig, freq);
|
|
SAVE_STACK;
|
|
|
|
overlap = mode->overlap;
|
|
nbEBands = mode->nbEBands;
|
|
N = mode->shortMdctSize<<LM;
|
|
ALLOC(freq, N, celt_sig); /**< Interleaved signal MDCTs */
|
|
M = 1<<LM;
|
|
|
|
if (isTransient)
|
|
{
|
|
B = M;
|
|
NB = mode->shortMdctSize;
|
|
shift = mode->maxLM;
|
|
} else {
|
|
B = 1;
|
|
NB = mode->shortMdctSize<<LM;
|
|
shift = mode->maxLM-LM;
|
|
}
|
|
|
|
if (CC==2&&C==1)
|
|
{
|
|
/* Copying a mono streams to two channels */
|
|
celt_sig *freq2;
|
|
denormalise_bands(mode, X, freq, oldBandE, start, effEnd, M,
|
|
downsample, silence);
|
|
/* Store a temporary copy in the output buffer because the IMDCT destroys its input. */
|
|
freq2 = out_syn[1]+overlap/2;
|
|
OPUS_COPY(freq2, freq, N);
|
|
for (b=0;b<B;b++)
|
|
clt_mdct_backward(&mode->mdct, &freq2[b], out_syn[0]+NB*b, mode->window, overlap, shift, B, arch);
|
|
for (b=0;b<B;b++)
|
|
clt_mdct_backward(&mode->mdct, &freq[b], out_syn[1]+NB*b, mode->window, overlap, shift, B, arch);
|
|
} else if (CC==1&&C==2)
|
|
{
|
|
/* Downmixing a stereo stream to mono */
|
|
celt_sig *freq2;
|
|
freq2 = out_syn[0]+overlap/2;
|
|
denormalise_bands(mode, X, freq, oldBandE, start, effEnd, M,
|
|
downsample, silence);
|
|
/* Use the output buffer as temp array before downmixing. */
|
|
denormalise_bands(mode, X+N, freq2, oldBandE+nbEBands, start, effEnd, M,
|
|
downsample, silence);
|
|
for (i=0;i<N;i++)
|
|
freq[i] = ADD32(HALF32(freq[i]), HALF32(freq2[i]));
|
|
for (b=0;b<B;b++)
|
|
clt_mdct_backward(&mode->mdct, &freq[b], out_syn[0]+NB*b, mode->window, overlap, shift, B, arch);
|
|
} else {
|
|
/* Normal case (mono or stereo) */
|
|
c=0; do {
|
|
denormalise_bands(mode, X+c*N, freq, oldBandE+c*nbEBands, start, effEnd, M,
|
|
downsample, silence);
|
|
for (b=0;b<B;b++)
|
|
clt_mdct_backward(&mode->mdct, &freq[b], out_syn[c]+NB*b, mode->window, overlap, shift, B, arch);
|
|
} while (++c<CC);
|
|
}
|
|
/* Saturate IMDCT output so that we can't overflow in the pitch postfilter
|
|
or in the */
|
|
c=0; do {
|
|
for (i=0;i<N;i++)
|
|
out_syn[c][i] = SATURATE(out_syn[c][i], SIG_SAT);
|
|
} while (++c<CC);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
|
|
{
|
|
int i, curr, tf_select;
|
|
int tf_select_rsv;
|
|
int tf_changed;
|
|
int logp;
|
|
opus_uint32 budget;
|
|
opus_uint32 tell;
|
|
|
|
budget = dec->storage*8;
|
|
tell = ec_tell(dec);
|
|
logp = isTransient ? 2 : 4;
|
|
tf_select_rsv = LM>0 && tell+logp+1<=budget;
|
|
budget -= tf_select_rsv;
|
|
tf_changed = curr = 0;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
if (tell+logp<=budget)
|
|
{
|
|
curr ^= ec_dec_bit_logp(dec, logp);
|
|
tell = ec_tell(dec);
|
|
tf_changed |= curr;
|
|
}
|
|
tf_res[i] = curr;
|
|
logp = isTransient ? 4 : 5;
|
|
}
|
|
tf_select = 0;
|
|
if (tf_select_rsv &&
|
|
tf_select_table[LM][4*isTransient+0+tf_changed] !=
|
|
tf_select_table[LM][4*isTransient+2+tf_changed])
|
|
{
|
|
tf_select = ec_dec_bit_logp(dec, 1);
|
|
}
|
|
for (i=start;i<end;i++)
|
|
{
|
|
tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
|
|
}
|
|
}
|
|
|
|
static int celt_plc_pitch_search(celt_sig *decode_mem[2], int C, int arch)
|
|
{
|
|
int pitch_index;
|
|
VARDECL( opus_val16, lp_pitch_buf );
|
|
SAVE_STACK;
|
|
ALLOC( lp_pitch_buf, DECODE_BUFFER_SIZE>>1, opus_val16 );
|
|
pitch_downsample(decode_mem, lp_pitch_buf,
|
|
DECODE_BUFFER_SIZE, C, arch);
|
|
pitch_search(lp_pitch_buf+(PLC_PITCH_LAG_MAX>>1), lp_pitch_buf,
|
|
DECODE_BUFFER_SIZE-PLC_PITCH_LAG_MAX,
|
|
PLC_PITCH_LAG_MAX-PLC_PITCH_LAG_MIN, &pitch_index, arch);
|
|
pitch_index = PLC_PITCH_LAG_MAX-pitch_index;
|
|
RESTORE_STACK;
|
|
return pitch_index;
|
|
}
|
|
|
|
static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM)
|
|
{
|
|
int c;
|
|
int i;
|
|
const int C = st->channels;
|
|
celt_sig *decode_mem[2];
|
|
celt_sig *out_syn[2];
|
|
opus_val16 *lpc;
|
|
opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
|
|
const OpusCustomMode *mode;
|
|
int nbEBands;
|
|
int overlap;
|
|
int start;
|
|
int loss_count;
|
|
int noise_based;
|
|
const opus_int16 *eBands;
|
|
SAVE_STACK;
|
|
|
|
mode = st->mode;
|
|
nbEBands = mode->nbEBands;
|
|
overlap = mode->overlap;
|
|
eBands = mode->eBands;
|
|
|
|
c=0; do {
|
|
decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
|
|
out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N;
|
|
} while (++c<C);
|
|
lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*C);
|
|
oldBandE = lpc+C*LPC_ORDER;
|
|
oldLogE = oldBandE + 2*nbEBands;
|
|
oldLogE2 = oldLogE + 2*nbEBands;
|
|
backgroundLogE = oldLogE2 + 2*nbEBands;
|
|
|
|
loss_count = st->loss_count;
|
|
start = st->start;
|
|
noise_based = loss_count >= 5 || start != 0 || st->skip_plc;
|
|
if (noise_based)
|
|
{
|
|
/* Noise-based PLC/CNG */
|
|
#ifdef NORM_ALIASING_HACK
|
|
celt_norm *X;
|
|
#else
|
|
VARDECL(celt_norm, X);
|
|
#endif
|
|
opus_uint32 seed;
|
|
int end;
|
|
int effEnd;
|
|
opus_val16 decay;
|
|
end = st->end;
|
|
effEnd = IMAX(start, IMIN(end, mode->effEBands));
|
|
|
|
#ifdef NORM_ALIASING_HACK
|
|
/* This is an ugly hack that breaks aliasing rules and would be easily broken,
|
|
but it saves almost 4kB of stack. */
|
|
X = (celt_norm*)(out_syn[C-1]+overlap/2);
|
|
#else
|
|
ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
|
|
#endif
|
|
|
|
/* Energy decay */
|
|
decay = loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
|
|
c=0; do
|
|
{
|
|
for (i=start;i<end;i++)
|
|
oldBandE[c*nbEBands+i] = MAX16(backgroundLogE[c*nbEBands+i], oldBandE[c*nbEBands+i] - decay);
|
|
} while (++c<C);
|
|
seed = st->rng;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=start;i<effEnd;i++)
|
|
{
|
|
int j;
|
|
int boffs;
|
|
int blen;
|
|
boffs = N*c+(eBands[i]<<LM);
|
|
blen = (eBands[i+1]-eBands[i])<<LM;
|
|
for (j=0;j<blen;j++)
|
|
{
|
|
seed = celt_lcg_rand(seed);
|
|
X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
|
|
}
|
|
renormalise_vector(X+boffs, blen, Q15ONE, st->arch);
|
|
}
|
|
}
|
|
st->rng = seed;
|
|
|
|
c=0; do {
|
|
OPUS_MOVE(decode_mem[c], decode_mem[c]+N,
|
|
DECODE_BUFFER_SIZE-N+(overlap>>1));
|
|
} while (++c<C);
|
|
|
|
celt_synthesis(mode, X, out_syn, oldBandE, start, effEnd, C, C, 0, LM, st->downsample, 0, st->arch);
|
|
} else {
|
|
int exc_length;
|
|
/* Pitch-based PLC */
|
|
const opus_val16 *window;
|
|
opus_val16 *exc;
|
|
opus_val16 fade = Q15ONE;
|
|
int pitch_index;
|
|
VARDECL(opus_val32, etmp);
|
|
VARDECL(opus_val16, _exc);
|
|
VARDECL(opus_val16, fir_tmp);
|
|
|
|
if (loss_count == 0)
|
|
{
|
|
st->last_pitch_index = pitch_index = celt_plc_pitch_search(decode_mem, C, st->arch);
|
|
} else {
|
|
pitch_index = st->last_pitch_index;
|
|
fade = QCONST16(.8f,15);
|
|
}
|
|
|
|
/* We want the excitation for 2 pitch periods in order to look for a
|
|
decaying signal, but we can't get more than MAX_PERIOD. */
|
|
exc_length = IMIN(2*pitch_index, MAX_PERIOD);
|
|
|
|
ALLOC(etmp, overlap, opus_val32);
|
|
ALLOC(_exc, MAX_PERIOD+LPC_ORDER, opus_val16);
|
|
ALLOC(fir_tmp, exc_length, opus_val16);
|
|
exc = _exc+LPC_ORDER;
|
|
window = mode->window;
|
|
c=0; do {
|
|
opus_val16 decay;
|
|
opus_val16 attenuation;
|
|
opus_val32 S1=0;
|
|
celt_sig *buf;
|
|
int extrapolation_offset;
|
|
int extrapolation_len;
|
|
int j;
|
|
|
|
buf = decode_mem[c];
|
|
for (i=0;i<MAX_PERIOD+LPC_ORDER;i++)
|
|
exc[i-LPC_ORDER] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD-LPC_ORDER+i], SIG_SHIFT);
|
|
|
|
if (loss_count == 0)
|
|
{
|
|
opus_val32 ac[LPC_ORDER+1];
|
|
/* Compute LPC coefficients for the last MAX_PERIOD samples before
|
|
the first loss so we can work in the excitation-filter domain. */
|
|
_celt_autocorr(exc, ac, window, overlap,
|
|
LPC_ORDER, MAX_PERIOD, st->arch);
|
|
/* Add a noise floor of -40 dB. */
|
|
#ifdef FIXED_POINT
|
|
ac[0] += SHR32(ac[0],13);
|
|
#else
|
|
ac[0] *= 1.0001f;
|
|
#endif
|
|
/* Use lag windowing to stabilize the Levinson-Durbin recursion. */
|
|
for (i=1;i<=LPC_ORDER;i++)
|
|
{
|
|
/*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
|
|
#ifdef FIXED_POINT
|
|
ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
|
|
#else
|
|
ac[i] -= ac[i]*(0.008f*0.008f)*i*i;
|
|
#endif
|
|
}
|
|
_celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
|
|
#ifdef FIXED_POINT
|
|
/* For fixed-point, apply bandwidth expansion until we can guarantee that
|
|
no overflow can happen in the IIR filter. This means:
|
|
32768*sum(abs(filter)) < 2^31 */
|
|
while (1) {
|
|
opus_val16 tmp=Q15ONE;
|
|
opus_val32 sum=QCONST16(1., SIG_SHIFT);
|
|
for (i=0;i<LPC_ORDER;i++)
|
|
sum += ABS16(lpc[c*LPC_ORDER+i]);
|
|
if (sum < 65535) break;
|
|
for (i=0;i<LPC_ORDER;i++)
|
|
{
|
|
tmp = MULT16_16_Q15(QCONST16(.99f,15), tmp);
|
|
lpc[c*LPC_ORDER+i] = MULT16_16_Q15(lpc[c*LPC_ORDER+i], tmp);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
/* Initialize the LPC history with the samples just before the start
|
|
of the region for which we're computing the excitation. */
|
|
{
|
|
/* Compute the excitation for exc_length samples before the loss. We need the copy
|
|
because celt_fir() cannot filter in-place. */
|
|
celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER,
|
|
fir_tmp, exc_length, LPC_ORDER, st->arch);
|
|
OPUS_COPY(exc+MAX_PERIOD-exc_length, fir_tmp, exc_length);
|
|
}
|
|
|
|
/* Check if the waveform is decaying, and if so how fast.
|
|
We do this to avoid adding energy when concealing in a segment
|
|
with decaying energy. */
|
|
{
|
|
opus_val32 E1=1, E2=1;
|
|
int decay_length;
|
|
#ifdef FIXED_POINT
|
|
int shift = IMAX(0,2*celt_zlog2(celt_maxabs16(&exc[MAX_PERIOD-exc_length], exc_length))-20);
|
|
#endif
|
|
decay_length = exc_length>>1;
|
|
for (i=0;i<decay_length;i++)
|
|
{
|
|
opus_val16 e;
|
|
e = exc[MAX_PERIOD-decay_length+i];
|
|
E1 += SHR32(MULT16_16(e, e), shift);
|
|
e = exc[MAX_PERIOD-2*decay_length+i];
|
|
E2 += SHR32(MULT16_16(e, e), shift);
|
|
}
|
|
E1 = MIN32(E1, E2);
|
|
decay = celt_sqrt(frac_div32(SHR32(E1, 1), E2));
|
|
}
|
|
|
|
/* Move the decoder memory one frame to the left to give us room to
|
|
add the data for the new frame. We ignore the overlap that extends
|
|
past the end of the buffer, because we aren't going to use it. */
|
|
OPUS_MOVE(buf, buf+N, DECODE_BUFFER_SIZE-N);
|
|
|
|
/* Extrapolate from the end of the excitation with a period of
|
|
"pitch_index", scaling down each period by an additional factor of
|
|
"decay". */
|
|
extrapolation_offset = MAX_PERIOD-pitch_index;
|
|
/* We need to extrapolate enough samples to cover a complete MDCT
|
|
window (including overlap/2 samples on both sides). */
|
|
extrapolation_len = N+overlap;
|
|
/* We also apply fading if this is not the first loss. */
|
|
attenuation = MULT16_16_Q15(fade, decay);
|
|
for (i=j=0;i<extrapolation_len;i++,j++)
|
|
{
|
|
opus_val16 tmp;
|
|
if (j >= pitch_index) {
|
|
j -= pitch_index;
|
|
attenuation = MULT16_16_Q15(attenuation, decay);
|
|
}
|
|
buf[DECODE_BUFFER_SIZE-N+i] =
|
|
SHL32(EXTEND32(MULT16_16_Q15(attenuation,
|
|
exc[extrapolation_offset+j])), SIG_SHIFT);
|
|
/* Compute the energy of the previously decoded signal whose
|
|
excitation we're copying. */
|
|
tmp = ROUND16(
|
|
buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j],
|
|
SIG_SHIFT);
|
|
S1 += SHR32(MULT16_16(tmp, tmp), 10);
|
|
}
|
|
{
|
|
opus_val16 lpc_mem[LPC_ORDER];
|
|
/* Copy the last decoded samples (prior to the overlap region) to
|
|
synthesis filter memory so we can have a continuous signal. */
|
|
for (i=0;i<LPC_ORDER;i++)
|
|
lpc_mem[i] = ROUND16(buf[DECODE_BUFFER_SIZE-N-1-i], SIG_SHIFT);
|
|
/* Apply the synthesis filter to convert the excitation back into
|
|
the signal domain. */
|
|
celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER,
|
|
buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER,
|
|
lpc_mem, st->arch);
|
|
#ifdef FIXED_POINT
|
|
for (i=0; i < extrapolation_len; i++)
|
|
buf[DECODE_BUFFER_SIZE-N+i] = SATURATE(buf[DECODE_BUFFER_SIZE-N+i], SIG_SAT);
|
|
#endif
|
|
}
|
|
|
|
/* Check if the synthesis energy is higher than expected, which can
|
|
happen with the signal changes during our window. If so,
|
|
attenuate. */
|
|
{
|
|
opus_val32 S2=0;
|
|
for (i=0;i<extrapolation_len;i++)
|
|
{
|
|
opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT);
|
|
S2 += SHR32(MULT16_16(tmp, tmp), 10);
|
|
}
|
|
/* This checks for an "explosion" in the synthesis. */
|
|
#ifdef FIXED_POINT
|
|
if (!(S1 > SHR32(S2,2)))
|
|
#else
|
|
/* The float test is written this way to catch NaNs in the output
|
|
of the IIR filter at the same time. */
|
|
if (!(S1 > 0.2f*S2))
|
|
#endif
|
|
{
|
|
for (i=0;i<extrapolation_len;i++)
|
|
buf[DECODE_BUFFER_SIZE-N+i] = 0;
|
|
} else if (S1 < S2)
|
|
{
|
|
opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
|
|
for (i=0;i<overlap;i++)
|
|
{
|
|
opus_val16 tmp_g = Q15ONE
|
|
- MULT16_16_Q15(window[i], Q15ONE-ratio);
|
|
buf[DECODE_BUFFER_SIZE-N+i] =
|
|
MULT16_32_Q15(tmp_g, buf[DECODE_BUFFER_SIZE-N+i]);
|
|
}
|
|
for (i=overlap;i<extrapolation_len;i++)
|
|
{
|
|
buf[DECODE_BUFFER_SIZE-N+i] =
|
|
MULT16_32_Q15(ratio, buf[DECODE_BUFFER_SIZE-N+i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Apply the pre-filter to the MDCT overlap for the next frame because
|
|
the post-filter will be re-applied in the decoder after the MDCT
|
|
overlap. */
|
|
comb_filter(etmp, buf+DECODE_BUFFER_SIZE,
|
|
st->postfilter_period, st->postfilter_period, overlap,
|
|
-st->postfilter_gain, -st->postfilter_gain,
|
|
st->postfilter_tapset, st->postfilter_tapset, NULL, 0, st->arch);
|
|
|
|
/* Simulate TDAC on the concealed audio so that it blends with the
|
|
MDCT of the next frame. */
|
|
for (i=0;i<overlap/2;i++)
|
|
{
|
|
buf[DECODE_BUFFER_SIZE+i] =
|
|
MULT16_32_Q15(window[i], etmp[overlap-1-i])
|
|
+ MULT16_32_Q15(window[overlap-i-1], etmp[i]);
|
|
}
|
|
} while (++c<C);
|
|
}
|
|
|
|
st->loss_count = loss_count+1;
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data,
|
|
int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec, int accum)
|
|
{
|
|
int c, i, N;
|
|
int spread_decision;
|
|
opus_int32 bits;
|
|
ec_dec _dec;
|
|
#ifdef NORM_ALIASING_HACK
|
|
celt_norm *X;
|
|
#else
|
|
VARDECL(celt_norm, X);
|
|
#endif
|
|
VARDECL(int, fine_quant);
|
|
VARDECL(int, pulses);
|
|
VARDECL(int, cap);
|
|
VARDECL(int, offsets);
|
|
VARDECL(int, fine_priority);
|
|
VARDECL(int, tf_res);
|
|
VARDECL(unsigned char, collapse_masks);
|
|
celt_sig *decode_mem[2];
|
|
celt_sig *out_syn[2];
|
|
opus_val16 *lpc;
|
|
opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
|
|
|
|
int shortBlocks;
|
|
int isTransient;
|
|
int intra_ener;
|
|
const int CC = st->channels;
|
|
int LM, M;
|
|
int start;
|
|
int end;
|
|
int effEnd;
|
|
int codedBands;
|
|
int alloc_trim;
|
|
int postfilter_pitch;
|
|
opus_val16 postfilter_gain;
|
|
int intensity=0;
|
|
int dual_stereo=0;
|
|
opus_int32 total_bits;
|
|
opus_int32 balance;
|
|
opus_int32 tell;
|
|
int dynalloc_logp;
|
|
int postfilter_tapset;
|
|
int anti_collapse_rsv;
|
|
int anti_collapse_on=0;
|
|
int silence;
|
|
int C = st->stream_channels;
|
|
const OpusCustomMode *mode;
|
|
int nbEBands;
|
|
int overlap;
|
|
const opus_int16 *eBands;
|
|
ALLOC_STACK;
|
|
|
|
VALIDATE_CELT_DECODER(st);
|
|
mode = st->mode;
|
|
nbEBands = mode->nbEBands;
|
|
overlap = mode->overlap;
|
|
eBands = mode->eBands;
|
|
start = st->start;
|
|
end = st->end;
|
|
frame_size *= st->downsample;
|
|
|
|
lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC);
|
|
oldBandE = lpc+CC*LPC_ORDER;
|
|
oldLogE = oldBandE + 2*nbEBands;
|
|
oldLogE2 = oldLogE + 2*nbEBands;
|
|
backgroundLogE = oldLogE2 + 2*nbEBands;
|
|
|
|
#ifdef CUSTOM_MODES
|
|
if (st->signalling && data!=NULL)
|
|
{
|
|
int data0=data[0];
|
|
/* Convert "standard mode" to Opus header */
|
|
if (mode->Fs==48000 && mode->shortMdctSize==120)
|
|
{
|
|
data0 = fromOpus(data0);
|
|
if (data0<0)
|
|
return OPUS_INVALID_PACKET;
|
|
}
|
|
st->end = end = IMAX(1, mode->effEBands-2*(data0>>5));
|
|
LM = (data0>>3)&0x3;
|
|
C = 1 + ((data0>>2)&0x1);
|
|
data++;
|
|
len--;
|
|
if (LM>mode->maxLM)
|
|
return OPUS_INVALID_PACKET;
|
|
if (frame_size < mode->shortMdctSize<<LM)
|
|
return OPUS_BUFFER_TOO_SMALL;
|
|
else
|
|
frame_size = mode->shortMdctSize<<LM;
|
|
} else {
|
|
#else
|
|
{
|
|
#endif
|
|
for (LM=0;LM<=mode->maxLM;LM++)
|
|
if (mode->shortMdctSize<<LM==frame_size)
|
|
break;
|
|
if (LM>mode->maxLM)
|
|
return OPUS_BAD_ARG;
|
|
}
|
|
M=1<<LM;
|
|
|
|
if (len<0 || len>1275 || pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
N = M*mode->shortMdctSize;
|
|
c=0; do {
|
|
decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
|
|
out_syn[c] = decode_mem[c]+DECODE_BUFFER_SIZE-N;
|
|
} while (++c<CC);
|
|
|
|
effEnd = end;
|
|
if (effEnd > mode->effEBands)
|
|
effEnd = mode->effEBands;
|
|
|
|
if (data == NULL || len<=1)
|
|
{
|
|
celt_decode_lost(st, N, LM);
|
|
deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, accum);
|
|
RESTORE_STACK;
|
|
return frame_size/st->downsample;
|
|
}
|
|
|
|
/* Check if there are at least two packets received consecutively before
|
|
* turning on the pitch-based PLC */
|
|
st->skip_plc = st->loss_count != 0;
|
|
|
|
if (dec == NULL)
|
|
{
|
|
ec_dec_init(&_dec,(unsigned char*)data,len);
|
|
dec = &_dec;
|
|
}
|
|
|
|
if (C==1)
|
|
{
|
|
for (i=0;i<nbEBands;i++)
|
|
oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]);
|
|
}
|
|
|
|
total_bits = len*8;
|
|
tell = ec_tell(dec);
|
|
|
|
if (tell >= total_bits)
|
|
silence = 1;
|
|
else if (tell==1)
|
|
silence = ec_dec_bit_logp(dec, 15);
|
|
else
|
|
silence = 0;
|
|
if (silence)
|
|
{
|
|
/* Pretend we've read all the remaining bits */
|
|
tell = len*8;
|
|
dec->nbits_total+=tell-ec_tell(dec);
|
|
}
|
|
|
|
postfilter_gain = 0;
|
|
postfilter_pitch = 0;
|
|
postfilter_tapset = 0;
|
|
if (start==0 && tell+16 <= total_bits)
|
|
{
|
|
if(ec_dec_bit_logp(dec, 1))
|
|
{
|
|
int qg, octave;
|
|
octave = ec_dec_uint(dec, 6);
|
|
postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
|
|
qg = ec_dec_bits(dec, 3);
|
|
if (ec_tell(dec)+2<=total_bits)
|
|
postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
|
|
postfilter_gain = QCONST16(.09375f,15)*(qg+1);
|
|
}
|
|
tell = ec_tell(dec);
|
|
}
|
|
|
|
if (LM > 0 && tell+3 <= total_bits)
|
|
{
|
|
isTransient = ec_dec_bit_logp(dec, 3);
|
|
tell = ec_tell(dec);
|
|
}
|
|
else
|
|
isTransient = 0;
|
|
|
|
if (isTransient)
|
|
shortBlocks = M;
|
|
else
|
|
shortBlocks = 0;
|
|
|
|
/* Decode the global flags (first symbols in the stream) */
|
|
intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
|
|
/* Get band energies */
|
|
unquant_coarse_energy(mode, start, end, oldBandE,
|
|
intra_ener, dec, C, LM);
|
|
|
|
ALLOC(tf_res, nbEBands, int);
|
|
tf_decode(start, end, isTransient, tf_res, LM, dec);
|
|
|
|
tell = ec_tell(dec);
|
|
spread_decision = SPREAD_NORMAL;
|
|
if (tell+4 <= total_bits)
|
|
spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
|
|
|
|
ALLOC(cap, nbEBands, int);
|
|
|
|
init_caps(mode,cap,LM,C);
|
|
|
|
ALLOC(offsets, nbEBands, int);
|
|
|
|
dynalloc_logp = 6;
|
|
total_bits<<=BITRES;
|
|
tell = ec_tell_frac(dec);
|
|
for (i=start;i<end;i++)
|
|
{
|
|
int width, quanta;
|
|
int dynalloc_loop_logp;
|
|
int boost;
|
|
width = C*(eBands[i+1]-eBands[i])<<LM;
|
|
/* quanta is 6 bits, but no more than 1 bit/sample
|
|
and no less than 1/8 bit/sample */
|
|
quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
|
|
dynalloc_loop_logp = dynalloc_logp;
|
|
boost = 0;
|
|
while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
|
|
{
|
|
int flag;
|
|
flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
|
|
tell = ec_tell_frac(dec);
|
|
if (!flag)
|
|
break;
|
|
boost += quanta;
|
|
total_bits -= quanta;
|
|
dynalloc_loop_logp = 1;
|
|
}
|
|
offsets[i] = boost;
|
|
/* Making dynalloc more likely */
|
|
if (boost>0)
|
|
dynalloc_logp = IMAX(2, dynalloc_logp-1);
|
|
}
|
|
|
|
ALLOC(fine_quant, nbEBands, int);
|
|
alloc_trim = tell+(6<<BITRES) <= total_bits ?
|
|
ec_dec_icdf(dec, trim_icdf, 7) : 5;
|
|
|
|
bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
|
|
anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
|
|
bits -= anti_collapse_rsv;
|
|
|
|
ALLOC(pulses, nbEBands, int);
|
|
ALLOC(fine_priority, nbEBands, int);
|
|
|
|
codedBands = clt_compute_allocation(mode, start, end, offsets, cap,
|
|
alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
|
|
fine_quant, fine_priority, C, LM, dec, 0, 0, 0);
|
|
|
|
unquant_fine_energy(mode, start, end, oldBandE, fine_quant, dec, C);
|
|
|
|
c=0; do {
|
|
OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap/2);
|
|
} while (++c<CC);
|
|
|
|
/* Decode fixed codebook */
|
|
ALLOC(collapse_masks, C*nbEBands, unsigned char);
|
|
|
|
#ifdef NORM_ALIASING_HACK
|
|
/* This is an ugly hack that breaks aliasing rules and would be easily broken,
|
|
but it saves almost 4kB of stack. */
|
|
X = (celt_norm*)(out_syn[CC-1]+overlap/2);
|
|
#else
|
|
ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
|
|
#endif
|
|
|
|
quant_all_bands(0, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks,
|
|
NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
|
|
len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng, 0,
|
|
st->arch, st->disable_inv);
|
|
|
|
if (anti_collapse_rsv > 0)
|
|
{
|
|
anti_collapse_on = ec_dec_bits(dec, 1);
|
|
}
|
|
|
|
unquant_energy_finalise(mode, start, end, oldBandE,
|
|
fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
|
|
|
|
if (anti_collapse_on)
|
|
anti_collapse(mode, X, collapse_masks, LM, C, N,
|
|
start, end, oldBandE, oldLogE, oldLogE2, pulses, st->rng, st->arch);
|
|
|
|
if (silence)
|
|
{
|
|
for (i=0;i<C*nbEBands;i++)
|
|
oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
|
|
celt_synthesis(mode, X, out_syn, oldBandE, start, effEnd,
|
|
C, CC, isTransient, LM, st->downsample, silence, st->arch);
|
|
|
|
c=0; do {
|
|
st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
|
|
st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
|
|
comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize,
|
|
st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
|
|
mode->window, overlap, st->arch);
|
|
if (LM!=0)
|
|
comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize,
|
|
st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
|
|
mode->window, overlap, st->arch);
|
|
|
|
} while (++c<CC);
|
|
st->postfilter_period_old = st->postfilter_period;
|
|
st->postfilter_gain_old = st->postfilter_gain;
|
|
st->postfilter_tapset_old = st->postfilter_tapset;
|
|
st->postfilter_period = postfilter_pitch;
|
|
st->postfilter_gain = postfilter_gain;
|
|
st->postfilter_tapset = postfilter_tapset;
|
|
if (LM!=0)
|
|
{
|
|
st->postfilter_period_old = st->postfilter_period;
|
|
st->postfilter_gain_old = st->postfilter_gain;
|
|
st->postfilter_tapset_old = st->postfilter_tapset;
|
|
}
|
|
|
|
if (C==1)
|
|
OPUS_COPY(&oldBandE[nbEBands], oldBandE, nbEBands);
|
|
|
|
/* In case start or end were to change */
|
|
if (!isTransient)
|
|
{
|
|
opus_val16 max_background_increase;
|
|
OPUS_COPY(oldLogE2, oldLogE, 2*nbEBands);
|
|
OPUS_COPY(oldLogE, oldBandE, 2*nbEBands);
|
|
/* In normal circumstances, we only allow the noise floor to increase by
|
|
up to 2.4 dB/second, but when we're in DTX, we allow up to 6 dB
|
|
increase for each update.*/
|
|
if (st->loss_count < 10)
|
|
max_background_increase = M*QCONST16(0.001f,DB_SHIFT);
|
|
else
|
|
max_background_increase = QCONST16(1.f,DB_SHIFT);
|
|
for (i=0;i<2*nbEBands;i++)
|
|
backgroundLogE[i] = MIN16(backgroundLogE[i] + max_background_increase, oldBandE[i]);
|
|
} else {
|
|
for (i=0;i<2*nbEBands;i++)
|
|
oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
|
|
}
|
|
c=0; do
|
|
{
|
|
for (i=0;i<start;i++)
|
|
{
|
|
oldBandE[c*nbEBands+i]=0;
|
|
oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
for (i=end;i<nbEBands;i++)
|
|
{
|
|
oldBandE[c*nbEBands+i]=0;
|
|
oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
} while (++c<2);
|
|
st->rng = dec->rng;
|
|
|
|
deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, accum);
|
|
st->loss_count = 0;
|
|
RESTORE_STACK;
|
|
if (ec_tell(dec) > 8*len)
|
|
return OPUS_INTERNAL_ERROR;
|
|
if(ec_get_error(dec))
|
|
st->error = 1;
|
|
return frame_size/st->downsample;
|
|
}
|
|
|
|
|
|
#ifdef CUSTOM_MODES
|
|
|
|
#ifdef FIXED_POINT
|
|
int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL, 0);
|
|
}
|
|
|
|
#ifndef DISABLE_FLOAT_API
|
|
int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
int j, ret, C, N;
|
|
VARDECL(opus_int16, out);
|
|
ALLOC_STACK;
|
|
|
|
if (pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
C = st->channels;
|
|
N = frame_size;
|
|
|
|
ALLOC(out, C*N, opus_int16);
|
|
ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL, 0);
|
|
if (ret>0)
|
|
for (j=0;j<C*ret;j++)
|
|
pcm[j]=out[j]*(1.f/32768.f);
|
|
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
#endif /* DISABLE_FLOAT_API */
|
|
|
|
#else
|
|
|
|
int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL, 0);
|
|
}
|
|
|
|
int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
int j, ret, C, N;
|
|
VARDECL(celt_sig, out);
|
|
ALLOC_STACK;
|
|
|
|
if (pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
C = st->channels;
|
|
N = frame_size;
|
|
ALLOC(out, C*N, celt_sig);
|
|
|
|
ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL, 0);
|
|
|
|
if (ret>0)
|
|
for (j=0;j<C*ret;j++)
|
|
pcm[j] = FLOAT2INT16 (out[j]);
|
|
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, request);
|
|
switch (request)
|
|
{
|
|
case CELT_SET_START_BAND_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<0 || value>=st->mode->nbEBands)
|
|
goto bad_arg;
|
|
st->start = value;
|
|
}
|
|
break;
|
|
case CELT_SET_END_BAND_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<1 || value>st->mode->nbEBands)
|
|
goto bad_arg;
|
|
st->end = value;
|
|
}
|
|
break;
|
|
case CELT_SET_CHANNELS_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<1 || value>2)
|
|
goto bad_arg;
|
|
st->stream_channels = value;
|
|
}
|
|
break;
|
|
case CELT_GET_AND_CLEAR_ERROR_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (value==NULL)
|
|
goto bad_arg;
|
|
*value=st->error;
|
|
st->error = 0;
|
|
}
|
|
break;
|
|
case OPUS_GET_LOOKAHEAD_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (value==NULL)
|
|
goto bad_arg;
|
|
*value = st->overlap/st->downsample;
|
|
}
|
|
break;
|
|
case OPUS_RESET_STATE:
|
|
{
|
|
int i;
|
|
opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
|
|
lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
|
|
oldBandE = lpc+st->channels*LPC_ORDER;
|
|
oldLogE = oldBandE + 2*st->mode->nbEBands;
|
|
oldLogE2 = oldLogE + 2*st->mode->nbEBands;
|
|
OPUS_CLEAR((char*)&st->DECODER_RESET_START,
|
|
opus_custom_decoder_get_size(st->mode, st->channels)-
|
|
((char*)&st->DECODER_RESET_START - (char*)st));
|
|
for (i=0;i<2*st->mode->nbEBands;i++)
|
|
oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
|
|
st->skip_plc = 1;
|
|
}
|
|
break;
|
|
case OPUS_GET_PITCH_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (value==NULL)
|
|
goto bad_arg;
|
|
*value = st->postfilter_period;
|
|
}
|
|
break;
|
|
case CELT_GET_MODE_REQUEST:
|
|
{
|
|
const CELTMode ** value = va_arg(ap, const CELTMode**);
|
|
if (value==0)
|
|
goto bad_arg;
|
|
*value=st->mode;
|
|
}
|
|
break;
|
|
case CELT_SET_SIGNALLING_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
st->signalling = value;
|
|
}
|
|
break;
|
|
case OPUS_GET_FINAL_RANGE_REQUEST:
|
|
{
|
|
opus_uint32 * value = va_arg(ap, opus_uint32 *);
|
|
if (value==0)
|
|
goto bad_arg;
|
|
*value=st->rng;
|
|
}
|
|
break;
|
|
case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if(value<0 || value>1)
|
|
{
|
|
goto bad_arg;
|
|
}
|
|
st->disable_inv = value;
|
|
}
|
|
break;
|
|
case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (!value)
|
|
{
|
|
goto bad_arg;
|
|
}
|
|
*value = st->disable_inv;
|
|
}
|
|
break;
|
|
default:
|
|
goto bad_request;
|
|
}
|
|
va_end(ap);
|
|
return OPUS_OK;
|
|
bad_arg:
|
|
va_end(ap);
|
|
return OPUS_BAD_ARG;
|
|
bad_request:
|
|
va_end(ap);
|
|
return OPUS_UNIMPLEMENTED;
|
|
}
|