1
0
mirror of https://github.com/NekoX-Dev/NekoX.git synced 2024-12-15 11:00:08 +01:00
NekoX/TMessagesProj/jni/tgnet/Datacenter.cpp
2020-01-02 18:08:53 +03:00

1572 lines
58 KiB
C++

/*
* This is the source code of tgnet library v. 1.1
* It is licensed under GNU GPL v. 2 or later.
* You should have received a copy of the license in this archive (see LICENSE).
*
* Copyright Nikolai Kudashov, 2015-2018.
*/
#include <stdlib.h>
#include <algorithm>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include <openssl/bn.h>
#include <openssl/pem.h>
#include <openssl/aes.h>
#include <memory.h>
#include <inttypes.h>
#include "Datacenter.h"
#include "Connection.h"
#include "MTProtoScheme.h"
#include "ApiScheme.h"
#include "FileLog.h"
#include "NativeByteBuffer.h"
#include "ByteArray.h"
#include "BuffersStorage.h"
#include "ConnectionsManager.h"
#include "Config.h"
#include "Handshake.h"
thread_local static SHA256_CTX sha256Ctx;
Datacenter::Datacenter(int32_t instance, uint32_t id) {
instanceNum = instance;
datacenterId = id;
for (uint32_t a = 0; a < UPLOAD_CONNECTIONS_COUNT; a++) {
uploadConnection[a] = nullptr;
}
for (uint32_t a = 0; a < DOWNLOAD_CONNECTIONS_COUNT; a++) {
downloadConnection[a] = nullptr;
}
for (uint32_t a = 0; a < PROXY_CONNECTIONS_COUNT; a++) {
proxyConnection[a] = nullptr;
}
}
Datacenter::Datacenter(int32_t instance, NativeByteBuffer *data) {
instanceNum = instance;
for (uint32_t a = 0; a < UPLOAD_CONNECTIONS_COUNT; a++) {
uploadConnection[a] = nullptr;
}
for (uint32_t a = 0; a < DOWNLOAD_CONNECTIONS_COUNT; a++) {
downloadConnection[a] = nullptr;
}
for (uint32_t a = 0; a < PROXY_CONNECTIONS_COUNT; a++) {
proxyConnection[a] = nullptr;
}
uint32_t currentVersion = data->readUint32(nullptr);
if (currentVersion >= 2 && currentVersion <= configVersion) {
datacenterId = data->readUint32(nullptr);
if (currentVersion >= 3) {
lastInitVersion = data->readUint32(nullptr);
}
if (currentVersion >= 10) {
lastInitMediaVersion = data->readUint32(nullptr);
}
int count = currentVersion >= 5 ? 4 : 1;
for (int b = 0; b < count; b++) {
std::vector<TcpAddress> *array;
switch (b) {
case 0:
array = &addressesIpv4;
break;
case 1:
array = &addressesIpv6;
break;
case 2:
array = &addressesIpv4Download;
break;
case 3:
array = &addressesIpv6Download;
break;
default:
array = nullptr;
break;
}
if (array == nullptr) {
continue;
}
uint32_t len = data->readUint32(nullptr);
for (uint32_t a = 0; a < len; a++) {
std::string address = data->readString(nullptr);
uint32_t port = data->readUint32(nullptr);
int32_t flags;
std::string secret;
if (currentVersion >= 7) {
flags = data->readInt32(nullptr);
} else {
flags = 0;
}
if (currentVersion >= 11) {
secret = data->readString(nullptr);
} else if (currentVersion >= 9) {
secret = data->readString(nullptr);
if (!secret.empty()) {
size_t size = secret.size() / 2;
char *result = new char[size];
for (int32_t i = 0; i < size; i++) {
result[i] = (char) (char2int(secret[i * 2]) * 16 + char2int(secret[i * 2 + 1]));
}
secret = std::string(result, size);
delete[] result;
}
}
(*array).push_back(TcpAddress(address, port, flags, secret));
}
}
if (currentVersion >= 6) {
isCdnDatacenter = data->readBool(nullptr);
}
uint32_t len = data->readUint32(nullptr);
if (len != 0) {
authKeyPerm = data->readBytes(len, nullptr);
}
if (currentVersion >= 4) {
authKeyPermId = data->readInt64(nullptr);
} else {
len = data->readUint32(nullptr);
if (len != 0) {
authKeyPermId = data->readInt64(nullptr);
}
}
if (currentVersion >= 8) {
len = data->readUint32(nullptr);
if (len != 0) {
authKeyTemp = data->readBytes(len, nullptr);
}
authKeyTempId = data->readInt64(nullptr);
}
if (currentVersion >= 12) {
len = data->readUint32(nullptr);
if (len != 0) {
authKeyMediaTemp = data->readBytes(len, nullptr);
}
authKeyMediaTempId = data->readInt64(nullptr);
}
authorized = data->readInt32(nullptr) != 0;
len = data->readUint32(nullptr);
for (uint32_t a = 0; a < len; a++) {
TL_future_salt *salt = new TL_future_salt();
salt->valid_since = data->readInt32(nullptr);
salt->valid_until = data->readInt32(nullptr);
salt->salt = data->readInt64(nullptr);
serverSalts.push_back(std::unique_ptr<TL_future_salt>(salt));
}
if (currentVersion >= 13) {
len = data->readUint32(nullptr);
for (uint32_t a = 0; a < len; a++) {
TL_future_salt *salt = new TL_future_salt();
salt->valid_since = data->readInt32(nullptr);
salt->valid_until = data->readInt32(nullptr);
salt->salt = data->readInt64(nullptr);
mediaServerSalts.push_back(std::unique_ptr<TL_future_salt>(salt));
}
}
}
if (config == nullptr) {
config = new Config(instanceNum, "dc" + to_string_int32(datacenterId) + "conf.dat");
}
NativeByteBuffer *buffer = config->readConfig();
if (buffer != nullptr) {
uint32_t version = buffer->readUint32(nullptr);
if (version >= 1) {
currentPortNumIpv4 = buffer->readUint32(nullptr);
currentAddressNumIpv4 = buffer->readUint32(nullptr);
currentPortNumIpv6 = buffer->readUint32(nullptr);
currentAddressNumIpv6 = buffer->readUint32(nullptr);
currentPortNumIpv4Download = buffer->readUint32(nullptr);
currentAddressNumIpv4Download = buffer->readUint32(nullptr);
currentPortNumIpv6Download = buffer->readUint32(nullptr);
currentAddressNumIpv6Download = buffer->readUint32(nullptr);
}
buffer->reuse();
} else {
currentPortNumIpv4 = 0;
currentAddressNumIpv4 = 0;
currentPortNumIpv6 = 0;
currentAddressNumIpv6 = 0;
currentPortNumIpv4Download = 0;
currentAddressNumIpv4Download = 0;
currentPortNumIpv6Download = 0;
currentAddressNumIpv6Download = 0;
}
}
TcpAddress *Datacenter::getCurrentAddress(uint32_t flags) {
uint32_t currentAddressNum;
std::vector<TcpAddress> *addresses;
if (flags == 0 && (authKeyPerm == nullptr || PFS_ENABLED && authKeyTemp == nullptr) && !addressesIpv4Temp.empty()) {
flags = TcpAddressFlagTemp;
}
if ((flags & TcpAddressFlagTemp) != 0) {
currentAddressNum = currentAddressNumIpv4Temp;
addresses = &addressesIpv4Temp;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNum = currentAddressNumIpv6Download;
addresses = &addressesIpv6Download;
} else {
currentAddressNum = currentAddressNumIpv4Download;
addresses = &addressesIpv4Download;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNum = currentAddressNumIpv6;
addresses = &addressesIpv6;
} else {
currentAddressNum = currentAddressNumIpv4;
addresses = &addressesIpv4;
}
}
if (addresses->empty()) {
return nullptr;
}
if ((flags & TcpAddressFlagStatic) != 0) {
for (std::vector<TcpAddress>::iterator iter = addresses->begin(); iter != addresses->end(); iter++) {
if ((iter->flags & TcpAddressFlagStatic) != 0) {
return &(*iter);
}
}
}
if (currentAddressNum >= addresses->size()) {
currentAddressNum = 0;
if ((flags & TcpAddressFlagTemp) != 0) {
currentAddressNumIpv4Temp = currentAddressNum;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNumIpv6Download = currentAddressNum;
} else {
currentAddressNumIpv4Download = currentAddressNum;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNumIpv6 = currentAddressNum;
} else {
currentAddressNumIpv4 = currentAddressNum;
}
}
}
return &(*addresses)[currentAddressNum];
}
int32_t Datacenter::getCurrentPort(uint32_t flags) {
uint32_t currentAddressNum;
uint32_t currentPortNum;
std::vector<TcpAddress> *addresses;
if (flags == 0 && (authKeyPerm == nullptr || PFS_ENABLED && authKeyTemp == nullptr) && !addressesIpv4Temp.empty()) {
flags = TcpAddressFlagTemp;
}
if ((flags & TcpAddressFlagTemp) != 0) {
currentAddressNum = currentAddressNumIpv4Temp;
currentPortNum = currentPortNumIpv4Temp;
addresses = &addressesIpv4Temp;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNum = currentAddressNumIpv6Download;
currentPortNum = currentPortNumIpv6Download;
addresses = &addressesIpv6Download;
} else {
currentAddressNum = currentAddressNumIpv4Download;
currentPortNum = currentPortNumIpv4Download;
addresses = &addressesIpv4Download;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNum = currentAddressNumIpv6;
currentPortNum = currentPortNumIpv6;
addresses = &addressesIpv6;
} else {
currentAddressNum = currentAddressNumIpv4;
currentPortNum = currentPortNumIpv4;
addresses = &addressesIpv4;
}
}
if (addresses->empty()) {
return 443;
}
if ((flags & TcpAddressFlagStatic) != 0) {
uint32_t num = 0;
for (std::vector<TcpAddress>::iterator iter = addresses->begin(); iter != addresses->end(); iter++) {
if ((iter->flags & TcpAddressFlagStatic) != 0) {
currentAddressNum = num;
break;
}
num++;
}
}
if (currentAddressNum >= addresses->size()) {
currentAddressNum = 0;
if ((flags & TcpAddressFlagTemp) != 0) {
currentAddressNumIpv4Temp = currentAddressNum;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNumIpv6Download = currentAddressNum;
} else {
currentAddressNumIpv4Download = currentAddressNum;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentAddressNumIpv6 = currentAddressNum;
} else {
currentAddressNumIpv4 = currentAddressNum;
}
}
}
if (currentPortNum >= 4) {
currentPortNum = 0;
if ((flags & TcpAddressFlagTemp) != 0) {
currentPortNumIpv4Temp = currentAddressNum;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNumIpv6Download = currentPortNum;
} else {
currentPortNumIpv4Download = currentPortNum;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNumIpv6 = currentPortNum;
} else {
currentPortNumIpv4 = currentPortNum;
}
}
}
TcpAddress *address = &((*addresses) [currentAddressNum]);
int32_t port;
if (!address->secret.empty()) {
port = -1;
} else {
port = defaultPorts[currentPortNum];
}
if (port == -1) {
return address->port;
}
return port;
}
void Datacenter::addAddressAndPort(std::string address, uint32_t port, uint32_t flags, std::string secret) {
std::vector<TcpAddress> *addresses;
if ((flags & TcpAddressFlagTemp) != 0) {
addresses = &addressesIpv4Temp;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
addresses = &addressesIpv6Download;
} else {
addresses = &addressesIpv4Download;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
addresses = &addressesIpv6;
} else {
addresses = &addressesIpv4;
}
}
for (std::vector<TcpAddress>::iterator iter = addresses->begin(); iter != addresses->end(); iter++) {
if (iter->address == address && iter->port == port) {
return;
}
}
addresses->push_back(TcpAddress(address, port, flags, secret));
}
void Datacenter::nextAddressOrPort(uint32_t flags) {
uint32_t currentPortNum;
uint32_t currentAddressNum;
std::vector<TcpAddress> *addresses;
if (flags == 0 && (authKeyPerm == nullptr || PFS_ENABLED && authKeyTemp == nullptr) && !addressesIpv4Temp.empty()) {
flags = TcpAddressFlagTemp;
}
if ((flags & TcpAddressFlagTemp) != 0) {
currentPortNum = currentPortNumIpv4Temp;
currentAddressNum = currentAddressNumIpv4Temp;
addresses = &addressesIpv4Temp;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNum = currentPortNumIpv6Download;
currentAddressNum = currentAddressNumIpv6Download;
addresses = &addressesIpv6Download;
} else {
currentPortNum = currentPortNumIpv4Download;
currentAddressNum = currentAddressNumIpv4Download;
addresses = &addressesIpv4Download;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNum = currentPortNumIpv6;
currentAddressNum = currentAddressNumIpv6;
addresses = &addressesIpv6;
} else {
currentPortNum = currentPortNumIpv4;
currentAddressNum = currentAddressNumIpv4;
addresses = &addressesIpv4;
}
}
bool tryNextPort = true;
if ((flags & TcpAddressFlagStatic) == 0 && currentAddressNum < addresses->size()) {
TcpAddress *currentAddress = &((*addresses)[currentAddressNum]);
tryNextPort = (currentAddress->flags & TcpAddressFlagStatic) == 0;
}
if (tryNextPort && currentPortNum + 1 < 4) {
currentPortNum++;
} else {
if (currentAddressNum + 1 < addresses->size()) {
currentAddressNum++;
} else {
currentAddressNum = 0;
}
currentPortNum = 0;
}
if ((flags & TcpAddressFlagTemp) != 0) {
currentPortNumIpv4Temp = currentPortNum;
currentAddressNumIpv4Temp = currentAddressNum;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNumIpv6Download = currentPortNum;
currentAddressNumIpv6Download = currentAddressNum;
} else {
currentPortNumIpv4Download = currentPortNum;
currentAddressNumIpv4Download = currentAddressNum;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNumIpv6 = currentPortNum;
currentAddressNumIpv6 = currentAddressNum;
} else {
currentPortNumIpv4 = currentPortNum;
currentAddressNumIpv4 = currentAddressNum;
}
}
}
bool Datacenter::isCustomPort(uint32_t flags) {
uint32_t currentPortNum;
if (flags == 0 && (authKeyPerm == nullptr || PFS_ENABLED && authKeyTemp == nullptr) && !addressesIpv4Temp.empty()) {
flags = TcpAddressFlagTemp;
}
if ((flags & TcpAddressFlagTemp) != 0) {
currentPortNum = currentPortNumIpv4Temp;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNum = currentPortNumIpv6Download;
} else {
currentPortNum = currentPortNumIpv4Download;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNum = currentPortNumIpv6;
} else {
currentPortNum = currentPortNumIpv4;
}
}
return defaultPorts[currentPortNum] != -1;
}
void Datacenter::storeCurrentAddressAndPortNum() {
if (config == nullptr) {
config = new Config(instanceNum, "dc" + to_string_int32(datacenterId) + "conf.dat");
}
NativeByteBuffer *buffer = BuffersStorage::getInstance().getFreeBuffer(128);
buffer->writeInt32(paramsConfigVersion);
buffer->writeInt32(currentPortNumIpv4);
buffer->writeInt32(currentAddressNumIpv4);
buffer->writeInt32(currentPortNumIpv6);
buffer->writeInt32(currentAddressNumIpv6);
buffer->writeInt32(currentPortNumIpv4Download);
buffer->writeInt32(currentAddressNumIpv4Download);
buffer->writeInt32(currentPortNumIpv6Download);
buffer->writeInt32(currentAddressNumIpv6Download);
config->writeConfig(buffer);
buffer->reuse();
}
void Datacenter::resetAddressAndPortNum() {
currentPortNumIpv4 = 0;
currentAddressNumIpv4 = 0;
currentPortNumIpv6 = 0;
currentAddressNumIpv6 = 0;
currentPortNumIpv4Download = 0;
currentAddressNumIpv4Download = 0;
currentPortNumIpv6Download = 0;
currentAddressNumIpv6Download = 0;
storeCurrentAddressAndPortNum();
}
void Datacenter::replaceAddresses(std::vector<TcpAddress> &newAddresses, uint32_t flags) {
isCdnDatacenter = (flags & 8) != 0;
TcpAddress *currentTcpAddress = getCurrentAddress(flags);
std::string currentAddress = currentTcpAddress != nullptr ? currentTcpAddress->address : "";
if ((flags & TcpAddressFlagTemp) != 0) {
addressesIpv4Temp = newAddresses;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
addressesIpv6Download = newAddresses;
} else {
addressesIpv4Download = newAddresses;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
addressesIpv6 = newAddresses;
} else {
addressesIpv4 = newAddresses;
}
}
TcpAddress *newTcpAddress = getCurrentAddress(flags);
std::string newAddress = newTcpAddress != nullptr ? newTcpAddress->address : "";
if (currentAddress.compare(newAddress)) {
if ((flags & TcpAddressFlagTemp) != 0) {
currentPortNumIpv4Temp = 0;
} else if ((flags & TcpAddressFlagDownload) != 0) {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNumIpv6Download = 0;
} else {
currentPortNumIpv4Download = 0;
}
} else {
if ((flags & TcpAddressFlagIpv6) != 0) {
currentPortNumIpv6 = 0;
} else {
currentPortNumIpv4 = 0;
}
}
}
}
void Datacenter::serializeToStream(NativeByteBuffer *stream) {
stream->writeInt32(configVersion);
stream->writeInt32(datacenterId);
stream->writeInt32(lastInitVersion);
stream->writeInt32(lastInitMediaVersion);
size_t size;
for (int b = 0; b < 4; b++) {
std::vector<TcpAddress> *array;
switch (b) {
case 0:
array = &addressesIpv4;
break;
case 1:
array = &addressesIpv6;
break;
case 2:
array = &addressesIpv4Download;
break;
case 3:
array = &addressesIpv6Download;
break;
default:
array = nullptr;
break;
}
if (array == nullptr) {
continue;
}
stream->writeInt32((int32_t) (size = array->size()));
for (uint32_t a = 0; a < size; a++) {
stream->writeString((*array)[a].address);
stream->writeInt32((*array)[a].port);
stream->writeInt32((*array)[a].flags);
stream->writeString((*array)[a].secret);
}
}
stream->writeBool(isCdnDatacenter);
if (authKeyPerm != nullptr) {
stream->writeInt32(authKeyPerm->length);
stream->writeBytes(authKeyPerm);
} else {
stream->writeInt32(0);
}
stream->writeInt64(authKeyPermId);
if (authKeyTemp != nullptr) {
stream->writeInt32(authKeyTemp->length);
stream->writeBytes(authKeyTemp);
} else {
stream->writeInt32(0);
}
stream->writeInt64(authKeyTempId);
if (authKeyMediaTemp != nullptr) {
stream->writeInt32(authKeyMediaTemp->length);
stream->writeBytes(authKeyMediaTemp);
} else {
stream->writeInt32(0);
}
stream->writeInt64(authKeyMediaTempId);
stream->writeInt32(authorized ? 1 : 0);
stream->writeInt32((int32_t) (size = serverSalts.size()));
for (uint32_t a = 0; a < size; a++) {
stream->writeInt32(serverSalts[a]->valid_since);
stream->writeInt32(serverSalts[a]->valid_until);
stream->writeInt64(serverSalts[a]->salt);
}
stream->writeInt32((int32_t) (size = mediaServerSalts.size()));
for (uint32_t a = 0; a < size; a++) {
stream->writeInt32(mediaServerSalts[a]->valid_since);
stream->writeInt32(mediaServerSalts[a]->valid_until);
stream->writeInt64(mediaServerSalts[a]->salt);
}
}
void Datacenter::clearAuthKey(HandshakeType type) {
if (type == HandshakeTypeAll || isCdnDatacenter) {
if (authKeyPerm != nullptr) {
delete authKeyPerm;
authKeyPerm = nullptr;
}
authKeyPermId = 0;
serverSalts.clear();
}
if (type == HandshakeTypeMediaTemp || type == HandshakeTypeAll) {
if (authKeyMediaTemp != nullptr) {
delete authKeyMediaTemp;
authKeyMediaTemp = nullptr;
}
authKeyMediaTempId = 0;
lastInitMediaVersion = 0;
mediaServerSalts.clear();
}
if (type == HandshakeTypeTemp || type == HandshakeTypeAll) {
if (authKeyTemp != nullptr) {
delete authKeyTemp;
authKeyTemp = nullptr;
}
authKeyTempId = 0;
lastInitVersion = 0;
}
handshakes.clear();
}
void Datacenter::clearServerSalts(bool media) {
std::vector<std::unique_ptr<TL_future_salt>> &salts = media ? mediaServerSalts : serverSalts;
salts.clear();
}
int64_t Datacenter::getServerSalt(bool media) {
int32_t date = ConnectionsManager::getInstance(instanceNum).getCurrentTime();
bool cleanupNeeded = false;
int64_t result = 0;
int32_t maxRemainingInterval = 0;
std::vector<std::unique_ptr<TL_future_salt>> &salts = media ? mediaServerSalts : serverSalts;
size_t size = salts.size();
for (uint32_t a = 0; a < size; a++) {
TL_future_salt *salt = salts[a].get();
if (salt->valid_until < date) {
cleanupNeeded = true;
} else if (salt->valid_since <= date && salt->valid_until > date) {
if (maxRemainingInterval == 0 || abs(salt->valid_until - date) > maxRemainingInterval) {
maxRemainingInterval = abs(salt->valid_until - date);
result = salt->salt;
}
}
}
if (cleanupNeeded) {
size = salts.size();
for (uint32_t i = 0; i < size; i++) {
if (salts[i]->valid_until < date) {
salts.erase(salts.begin() + i);
size--;
i--;
}
}
}
if (result == 0) {
if (LOGS_ENABLED) DEBUG_D("dc%u valid salt not found", datacenterId);
}
return result;
}
void Datacenter::mergeServerSalts(TL_future_salts *futureSalts, bool media) {
if (futureSalts->salts.empty()) {
return;
}
std::vector<std::unique_ptr<TL_future_salt>> &salts = media ? mediaServerSalts : serverSalts;
int32_t date = ConnectionsManager::getInstance(instanceNum).getCurrentTime();
std::vector<int64_t> existingSalts;
existingSalts.reserve(salts.size());
size_t size = salts.size();
for (uint32_t a = 0; a < size; a++) {
existingSalts.push_back(salts[a]->salt);
}
bool added = false;
size = futureSalts->salts.size();
for (uint32_t a = 0; a < size; a++) {
int64_t value = futureSalts->salts[a]->salt;
if (std::find(existingSalts.begin(), existingSalts.end(), value) == existingSalts.end() && futureSalts->salts[a]->valid_until > date) {
salts.push_back(std::unique_ptr<TL_future_salt>(std::move(futureSalts->salts[a])));
added = true;
}
}
if (added) {
std::sort(salts.begin(), salts.end(), [](const std::unique_ptr<TL_future_salt> &x, const std::unique_ptr<TL_future_salt> &y) { return x->valid_since < y->valid_since; });
}
}
void Datacenter::addServerSalt(std::unique_ptr<TL_future_salt> &serverSalt, bool media) {
std::vector<std::unique_ptr<TL_future_salt>> &salts = media ? mediaServerSalts : serverSalts;
size_t size = salts.size();
for (uint32_t a = 0; a < size; a++) {
if (salts[a]->salt == serverSalt->salt) {
return;
}
}
salts.push_back(std::move(serverSalt));
std::sort(salts.begin(), salts.end(), [](const std::unique_ptr<TL_future_salt> &x, const std::unique_ptr<TL_future_salt> &y) { return x->valid_since < y->valid_since; });
}
bool Datacenter::containsServerSalt(int64_t value, bool media) {
std::vector<std::unique_ptr<TL_future_salt>> &salts = media ? mediaServerSalts : serverSalts;
size_t size = salts.size();
for (uint32_t a = 0; a < size; a++) {
if (salts[a]->salt == value) {
return true;
}
}
return false;
}
void Datacenter::suspendConnections(bool suspendPush) {
if (genericConnection != nullptr) {
genericConnection->suspendConnection();
}
if (suspendPush && pushConnection != nullptr) {
pushConnection->suspendConnection();
}
if (genericMediaConnection != nullptr) {
genericMediaConnection->suspendConnection();
}
if (tempConnection != nullptr) {
tempConnection->suspendConnection();
}
for (uint32_t a = 0; a < UPLOAD_CONNECTIONS_COUNT; a++) {
if (uploadConnection[a] != nullptr) {
uploadConnection[a]->suspendConnection();
}
}
for (uint32_t a = 0; a < DOWNLOAD_CONNECTIONS_COUNT; a++) {
if (downloadConnection[a] != nullptr) {
downloadConnection[a]->suspendConnection();
}
}
}
void Datacenter::getSessions(std::vector<int64_t> &sessions) {
if (genericConnection != nullptr) {
sessions.push_back(genericConnection->getSessionId());
}
if (genericMediaConnection != nullptr) {
sessions.push_back(genericMediaConnection->getSessionId());
}
if (tempConnection != nullptr) {
sessions.push_back(tempConnection->getSessionId());
}
for (uint32_t a = 0; a < UPLOAD_CONNECTIONS_COUNT; a++) {
if (uploadConnection[a] != nullptr) {
sessions.push_back(uploadConnection[a]->getSessionId());
}
}
for (uint32_t a = 0; a < DOWNLOAD_CONNECTIONS_COUNT; a++) {
if (downloadConnection[a] != nullptr) {
sessions.push_back(downloadConnection[a]->getSessionId());
}
}
for (uint32_t a = 0; a < PROXY_CONNECTIONS_COUNT; a++) {
if (proxyConnection[a] != nullptr) {
sessions.push_back(proxyConnection[a]->getSessionId());
}
}
}
void Datacenter::recreateSessions(HandshakeType type) {
if (type == HandshakeTypeAll || type == HandshakeTypeTemp || type == HandshakeTypePerm) {
if (genericConnection != nullptr) {
genericConnection->recreateSession();
}
if (tempConnection != nullptr) {
tempConnection->recreateSession();
}
for (uint32_t a = 0; a < UPLOAD_CONNECTIONS_COUNT; a++) {
if (uploadConnection[a] != nullptr) {
uploadConnection[a]->recreateSession();
}
}
for (uint32_t a = 0; a < PROXY_CONNECTIONS_COUNT; a++) {
if (proxyConnection[a] != nullptr) {
proxyConnection[a]->recreateSession();
}
}
}
if (type == HandshakeTypeAll || type == HandshakeTypeMediaTemp || type == HandshakeTypePerm) {
for (uint32_t a = 0; a < DOWNLOAD_CONNECTIONS_COUNT; a++) {
if (downloadConnection[a] != nullptr) {
downloadConnection[a]->recreateSession();
}
}
if (genericMediaConnection != nullptr) {
genericMediaConnection->recreateSession();
}
}
}
Connection *Datacenter::createProxyConnection(uint8_t num) {
if (proxyConnection[num] == nullptr) {
proxyConnection[num] = new Connection(this, ConnectionTypeProxy, num);
}
return proxyConnection[num];
}
Connection *Datacenter::createDownloadConnection(uint8_t num) {
if (downloadConnection[num] == nullptr) {
downloadConnection[num] = new Connection(this, ConnectionTypeDownload, num);
}
return downloadConnection[num];
}
Connection *Datacenter::createUploadConnection(uint8_t num) {
if (uploadConnection[num] == nullptr) {
uploadConnection[num] = new Connection(this, ConnectionTypeUpload, num);
}
return uploadConnection[num];
}
Connection *Datacenter::createGenericConnection() {
if (genericConnection == nullptr) {
genericConnection = new Connection(this, ConnectionTypeGeneric, 0);
}
return genericConnection;
}
Connection *Datacenter::createGenericMediaConnection() {
if (genericMediaConnection == nullptr) {
genericMediaConnection = new Connection(this, ConnectionTypeGenericMedia, 0);
}
return genericMediaConnection;
}
Connection *Datacenter::createPushConnection() {
if (pushConnection == nullptr) {
pushConnection = new Connection(this, ConnectionTypePush, 0);
}
return pushConnection;
}
Connection *Datacenter::createTempConnection() {
if (tempConnection == nullptr) {
tempConnection = new Connection(this, ConnectionTypeTemp, 0);
}
return tempConnection;
}
uint32_t Datacenter::getDatacenterId() {
return datacenterId;
}
bool Datacenter::isHandshakingAny() {
return !handshakes.empty();
}
bool Datacenter::isHandshaking(bool media) {
if (handshakes.empty()) {
return false;
}
if (media && (isCdnDatacenter || !PFS_ENABLED)) {
media = false;
}
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (handshake->getType() == HandshakeTypePerm || media && handshake->getType() == HandshakeTypeMediaTemp || !media && handshake->getType() != HandshakeTypeMediaTemp) {
return true;
}
}
return false;
}
bool Datacenter::isHandshaking(HandshakeType type) {
if (handshakes.empty()) {
return false;
}
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (handshake->getType() == type) {
return true;
}
}
return false;
}
void Datacenter::beginHandshake(HandshakeType handshakeType, bool reconnect) {
if (handshakeType == HandshakeTypeCurrent) {
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
handshake->beginHandshake(reconnect);
}
} else {
if (authKeyPerm == nullptr) {
if (!isHandshaking(HandshakeTypePerm)) {
Handshake *handshake = new Handshake(this, HandshakeTypePerm, this);
handshakes.push_back(std::unique_ptr<Handshake>(handshake));
handshake->beginHandshake(reconnect);
}
} else if (PFS_ENABLED) {
if (handshakeType == HandshakeTypeAll || handshakeType == HandshakeTypeTemp) {
if (!isHandshaking(HandshakeTypeTemp)) {
Handshake *handshake = new Handshake(this, HandshakeTypeTemp, this);
handshakes.push_back(std::unique_ptr<Handshake>(handshake));
handshake->beginHandshake(reconnect);
}
}
if ((handshakeType == HandshakeTypeAll || handshakeType == HandshakeTypeMediaTemp) && hasMediaAddress()) {
if (!isHandshaking(HandshakeTypeMediaTemp)) {
Handshake *handshake = new Handshake(this, HandshakeTypeMediaTemp, this);
handshakes.push_back(std::unique_ptr<Handshake>(handshake));
handshake->beginHandshake(reconnect);
}
}
}
}
}
void Datacenter::onHandshakeConnectionClosed(Connection *connection) {
if (handshakes.empty()) {
return;
}
bool media = connection->getConnectionType() == ConnectionTypeGenericMedia;
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (media && handshake->getType() == HandshakeTypeMediaTemp || !media && handshake->getType() != HandshakeTypeMediaTemp) {
handshake->onHandshakeConnectionClosed();
}
}
}
void Datacenter::onHandshakeConnectionConnected(Connection *connection) {
if (handshakes.empty()) {
return;
}
bool media = connection->getConnectionType() == ConnectionTypeGenericMedia;
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (media && handshake->getType() == HandshakeTypeMediaTemp || !media && handshake->getType() != HandshakeTypeMediaTemp) {
handshake->onHandshakeConnectionConnected();
}
}
}
void Datacenter::aesIgeEncryption(uint8_t *buffer, uint8_t *key, uint8_t *iv, bool encrypt, bool changeIv, uint32_t length) {
uint8_t *ivBytes = iv;
if (!changeIv) {
ivBytes = new uint8_t[32];
memcpy(ivBytes, iv, 32);
}
AES_KEY akey;
if (!encrypt) {
AES_set_decrypt_key(key, 32 * 8, &akey);
AES_ige_encrypt(buffer, buffer, length, &akey, ivBytes, AES_DECRYPT);
} else {
AES_set_encrypt_key(key, 32 * 8, &akey);
AES_ige_encrypt(buffer, buffer, length, &akey, ivBytes, AES_ENCRYPT);
}
if (!changeIv) {
delete [] ivBytes;
}
}
void Datacenter::processHandshakeResponse(bool media, TLObject *message, int64_t messageId) {
if (handshakes.empty()) {
return;
}
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (media && handshake->getType() == HandshakeTypeMediaTemp || !media && handshake->getType() != HandshakeTypeMediaTemp) {
handshake->processHandshakeResponse(message, messageId);
}
}
}
TLObject *Datacenter::getCurrentHandshakeRequest(bool media) {
if (handshakes.empty()) {
return nullptr;
}
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (media && handshake->getType() == HandshakeTypeMediaTemp || !media && handshake->getType() != HandshakeTypeMediaTemp) {
return handshake->getCurrentHandshakeRequest();
}
}
return nullptr;
}
inline void generateMessageKey(int32_t instanceNum, uint8_t *authKey, uint8_t *messageKey, uint8_t *result, bool incoming, int mtProtoVersion) {
uint32_t x = incoming ? 8 : 0;
thread_local static uint8_t sha[68];
switch (mtProtoVersion) {
case 2:
SHA256_Init(&sha256Ctx);
SHA256_Update(&sha256Ctx, messageKey, 16);
SHA256_Update(&sha256Ctx, authKey + x, 36);
SHA256_Final(sha, &sha256Ctx);
SHA256_Init(&sha256Ctx);
SHA256_Update(&sha256Ctx, authKey + 40 + x, 36);
SHA256_Update(&sha256Ctx, messageKey, 16);
SHA256_Final(sha + 32, &sha256Ctx);
memcpy(result, sha, 8);
memcpy(result + 8, sha + 32 + 8, 16);
memcpy(result + 8 + 16, sha + 24, 8);
memcpy(result + 32, sha + 32, 8);
memcpy(result + 32 + 8, sha + 8, 16);
memcpy(result + 32 + 8 + 16, sha + 32 + 24, 8);
break;
default:
memcpy(sha + 20, messageKey, 16);
memcpy(sha + 20 + 16, authKey + x, 32);
SHA1(sha + 20, 48, sha);
memcpy(result, sha, 8);
memcpy(result + 32, sha + 8, 12);
memcpy(sha + 20, authKey + 32 + x, 16);
memcpy(sha + 20 + 16, messageKey, 16);
memcpy(sha + 20 + 16 + 16, authKey + 48 + x, 16);
SHA1(sha + 20, 48, sha);
memcpy(result + 8, sha + 8, 12);
memcpy(result + 32 + 12, sha, 8);
memcpy(sha + 20, authKey + 64 + x, 32);
memcpy(sha + 20 + 32, messageKey, 16);
SHA1(sha + 20, 48, sha);
memcpy(result + 8 + 12, sha + 4, 12);
memcpy(result + 32 + 12 + 8, sha + 16, 4);
memcpy(sha + 20, messageKey, 16);
memcpy(sha + 20 + 16, authKey + 96 + x, 32);
SHA1(sha + 20, 48, sha);
memcpy(result + 32 + 12 + 8 + 4, sha, 8);
break;
}
}
ByteArray *Datacenter::getAuthKey(ConnectionType connectionType, bool perm, int64_t *authKeyId, int32_t allowPendingKey) {
bool usePermKey = isCdnDatacenter || perm || !PFS_ENABLED;
if (usePermKey) {
if (authKeyId != nullptr) {
*authKeyId = authKeyPermId;
}
return authKeyPerm;
} else {
bool media = Connection::isMediaConnectionType(connectionType) && hasMediaAddress();
ByteArray *authKeyPending = nullptr;
int64_t authKeyPendingId = 0;
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
Handshake *handshake = iter->get();
if (media && handshake->getType() == HandshakeTypeMediaTemp || !media && handshake->getType() == HandshakeTypeTemp) {
authKeyPending = handshake->getPendingAuthKey();
authKeyPendingId = handshake->getPendingAuthKeyId();
break;
}
}
if ((allowPendingKey & 1) != 0 && authKeyPending != nullptr) {
if (authKeyId != nullptr) {
*authKeyId = authKeyPendingId;
}
return authKeyPending;
} else if (media) {
if (authKeyId != nullptr) {
*authKeyId = authKeyMediaTempId;
}
return authKeyMediaTemp;
} else {
if (authKeyId != nullptr) {
*authKeyId = authKeyTempId;
}
return authKeyTemp;
}
}
}
NativeByteBuffer *Datacenter::createRequestsData(std::vector<std::unique_ptr<NetworkMessage>> &requests, int32_t *quickAckId, Connection *connection, bool pfsInit) {
int64_t authKeyId;
ByteArray *authKey = getAuthKey(connection->getConnectionType(), pfsInit, &authKeyId, 1);
if (authKey == nullptr) {
return nullptr;
}
int64_t messageId;
TLObject *messageBody;
bool freeMessageBody = false;
int32_t messageSeqNo;
if (requests.size() == 1) {
NetworkMessage *networkMessage = requests[0].get();
if (networkMessage->message->outgoingBody != nullptr) {
messageBody = networkMessage->message->outgoingBody;
} else {
messageBody = networkMessage->message->body.get();
}
if (LOGS_ENABLED) DEBUG_D("connection(%p, account%u, dc%u, type %d) send message (session: 0x%" PRIx64 ", seqno: %d, messageid: 0x%" PRIx64 "): %s(%p)", connection, instanceNum, datacenterId, connection->getConnectionType(), (uint64_t) connection->getSessionId(), networkMessage->message->seqno, (uint64_t) networkMessage->message->msg_id, typeid(*messageBody).name(), messageBody);
int64_t messageTime = (int64_t) (networkMessage->message->msg_id / 4294967296.0 * 1000);
int64_t currentTime = ConnectionsManager::getInstance(instanceNum).getCurrentTimeMillis() + (int64_t) ConnectionsManager::getInstance(instanceNum).getTimeDifference() * 1000;
if (!pfsInit && (messageTime < currentTime - 30000 || messageTime > currentTime + 25000)) {
if (LOGS_ENABLED) DEBUG_D("wrap message in container");
TL_msg_container *messageContainer = new TL_msg_container();
messageContainer->messages.push_back(std::move(networkMessage->message));
messageId = ConnectionsManager::getInstance(instanceNum).generateMessageId();
messageBody = messageContainer;
messageSeqNo = connection->generateMessageSeqNo(false);
freeMessageBody = true;
} else {
messageId = networkMessage->message->msg_id;
messageSeqNo = networkMessage->message->seqno;
}
} else {
if (LOGS_ENABLED) DEBUG_D("start write messages to container");
TL_msg_container *messageContainer = new TL_msg_container();
size_t count = requests.size();
for (uint32_t a = 0; a < count; a++) {
NetworkMessage *networkMessage = requests[a].get();
if (networkMessage->message->outgoingBody != nullptr) {
messageBody = networkMessage->message->outgoingBody;
} else {
messageBody = networkMessage->message->body.get();
}
if (LOGS_ENABLED) DEBUG_D("connection(%p, account%u, dc%u, type %d) send message (session: 0x%" PRIx64 ", seqno: %d, messageid: 0x%" PRIx64 "): %s(%p)", connection, instanceNum, datacenterId, connection->getConnectionType(), (uint64_t) connection->getSessionId(), networkMessage->message->seqno, (uint64_t) networkMessage->message->msg_id, typeid(*messageBody).name(), messageBody);
messageContainer->messages.push_back(std::unique_ptr<TL_message>(std::move(networkMessage->message)));
}
messageId = ConnectionsManager::getInstance(instanceNum).generateMessageId();
messageBody = messageContainer;
freeMessageBody = true;
messageSeqNo = connection->generateMessageSeqNo(false);
}
int32_t mtProtoVersion;
if (pfsInit) {
mtProtoVersion = 1;
} else {
mtProtoVersion = ConnectionsManager::getInstance(instanceNum).getMtProtoVersion();
}
uint32_t messageSize = messageBody->getObjectSize();
uint32_t additionalSize = (32 + messageSize) % 16;
if (additionalSize != 0) {
additionalSize = 16 - additionalSize;
}
if (mtProtoVersion == 2) {
uint8_t index;
RAND_bytes(&index, 1);
additionalSize += (2 + (index % 14)) * 16;
}
NativeByteBuffer *buffer = BuffersStorage::getInstance().getFreeBuffer(24 + 32 + messageSize + additionalSize);
buffer->writeInt64(authKeyId);
buffer->position(24);
if (pfsInit) {
int64_t value;
RAND_bytes((uint8_t *) &value, 8);
buffer->writeInt64(value);
RAND_bytes((uint8_t *) &value, 8);
buffer->writeInt64(value);
} else {
buffer->writeInt64(getServerSalt(Connection::isMediaConnectionType(connection->getConnectionType())));
buffer->writeInt64(connection->getSessionId());
}
buffer->writeInt64(messageId);
buffer->writeInt32(messageSeqNo);
buffer->writeInt32(messageSize);
messageBody->serializeToStream(buffer);
if (freeMessageBody) {
delete messageBody;
}
if (additionalSize != 0) {
RAND_bytes(buffer->bytes() + 24 + 32 + messageSize, additionalSize);
}
thread_local static uint8_t messageKey[96];
switch (mtProtoVersion) {
case 2: {
SHA256_Init(&sha256Ctx);
SHA256_Update(&sha256Ctx, authKey->bytes + 88, 32);
SHA256_Update(&sha256Ctx, buffer->bytes() + 24, 32 + messageSize + additionalSize);
SHA256_Final(messageKey, &sha256Ctx);
if (quickAckId != nullptr) {
*quickAckId = (((messageKey[0] & 0xff)) |
((messageKey[1] & 0xff) << 8) |
((messageKey[2] & 0xff) << 16) |
((messageKey[3] & 0xff) << 24)) & 0x7fffffff;
}
break;
}
default: {
SHA1(buffer->bytes() + 24, 32 + messageSize, messageKey + 4);
if (quickAckId != nullptr) {
*quickAckId = (((messageKey[4] & 0xff)) |
((messageKey[5] & 0xff) << 8) |
((messageKey[6] & 0xff) << 16) |
((messageKey[7] & 0xff) << 24)) & 0x7fffffff;
}
break;
}
}
memcpy(buffer->bytes() + 8, messageKey + 8, 16);
generateMessageKey(instanceNum, authKey->bytes, messageKey + 8, messageKey + 32, false, mtProtoVersion);
aesIgeEncryption(buffer->bytes() + 24, messageKey + 32, messageKey + 64, true, false, buffer->limit() - 24);
return buffer;
}
bool Datacenter::decryptServerResponse(int64_t keyId, uint8_t *key, uint8_t *data, uint32_t length, Connection *connection) {
int64_t authKeyId;
ByteArray *authKey = getAuthKey(connection->getConnectionType(), false, &authKeyId, 1);
if (authKey == nullptr) {
return false;
}
bool error = false;
if (authKeyId != keyId) {
error = true;
}
thread_local static uint8_t messageKey[96];
int mtProtoVersion = ConnectionsManager::getInstance(instanceNum).getMtProtoVersion();
generateMessageKey(instanceNum, authKey->bytes, key, messageKey + 32, true, mtProtoVersion);
aesIgeEncryption(data, messageKey + 32, messageKey + 64, false, false, length);
uint32_t messageLength;
memcpy(&messageLength, data + 28, sizeof(uint32_t));
uint32_t paddingLength = (int32_t) length - (messageLength + 32);
if (messageLength > length - 32) {
error = true;
} else if (paddingLength < 12 || paddingLength > 1024) {
error = true;
}
messageLength += 32;
if (messageLength > length) {
messageLength = length;
}
switch (mtProtoVersion) {
case 2: {
SHA256_Init(&sha256Ctx);
SHA256_Update(&sha256Ctx, authKey->bytes + 88 + 8, 32);
SHA256_Update(&sha256Ctx, data, length);
SHA256_Final(messageKey, &sha256Ctx);
break;
}
default: {
SHA1(data, messageLength, messageKey + 4);
break;
}
}
return memcmp(messageKey + 8, key, 16) == 0 && !error;
}
bool Datacenter::hasPermanentAuthKey() {
return authKeyPerm != nullptr;
}
int64_t Datacenter::getPermanentAuthKeyId() {
return authKeyPermId;
}
bool Datacenter::hasAuthKey(ConnectionType connectionType, int32_t allowPendingKey) {
return getAuthKey(connectionType, false, nullptr, allowPendingKey) != nullptr;
}
Connection *Datacenter::createConnectionByType(uint32_t connectionType) {
uint8_t connectionNum = (uint8_t) (connectionType >> 16);
connectionType = connectionType & 0x0000ffff;
switch (connectionType) {
case ConnectionTypeGeneric:
return createGenericConnection();
case ConnectionTypeGenericMedia:
return createGenericMediaConnection();
case ConnectionTypeDownload:
return createDownloadConnection(connectionNum);
case ConnectionTypeUpload:
return createUploadConnection(connectionNum);
case ConnectionTypePush:
return createPushConnection();
case ConnectionTypeTemp:
return createTempConnection();
case ConnectionTypeProxy:
return createProxyConnection(connectionNum);
default:
return nullptr;
}
}
Connection *Datacenter::getProxyConnection(uint8_t num, bool create, bool connect) {
ByteArray *authKey = getAuthKey(ConnectionTypeProxy, false, nullptr, 1);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
Connection *connection = createProxyConnection(num);
if (connect) {
connection->connect();
}
}
return proxyConnection[num];
}
Connection *Datacenter::getDownloadConnection(uint8_t num, bool create) {
ByteArray *authKey = getAuthKey(ConnectionTypeDownload, false, nullptr, 0);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
createDownloadConnection(num)->connect();
}
return downloadConnection[num];
}
Connection *Datacenter::getUploadConnection(uint8_t num, bool create) {
ByteArray *authKey = getAuthKey(ConnectionTypeUpload, false, nullptr, 0);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
createUploadConnection(num)->connect();
}
return uploadConnection[num];
}
Connection *Datacenter::getGenericConnection(bool create, int32_t allowPendingKey) {
ByteArray *authKey = getAuthKey(ConnectionTypeGeneric, false, nullptr, allowPendingKey);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
createGenericConnection()->connect();
}
return genericConnection;
}
Connection *Datacenter::getGenericMediaConnection(bool create, int32_t allowPendingKey) {
ByteArray *authKey = getAuthKey(ConnectionTypeGenericMedia, false, nullptr, allowPendingKey);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
createGenericMediaConnection()->connect();
}
return genericMediaConnection;
}
Connection *Datacenter::getPushConnection(bool create) {
ByteArray *authKey = getAuthKey(ConnectionTypePush, false, nullptr, 0);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
createPushConnection()->connect();
}
return pushConnection;
}
Connection *Datacenter::getTempConnection(bool create) {
ByteArray *authKey = getAuthKey(ConnectionTypeTemp, false, nullptr, 1);
if (authKey == nullptr) {
return nullptr;
}
if (create) {
createTempConnection()->connect();
}
return tempConnection;
}
Connection *Datacenter::getConnectionByType(uint32_t connectionType, bool create, int32_t allowPendingKey) {
uint8_t connectionNum = (uint8_t) (connectionType >> 16);
connectionType = connectionType & 0x0000ffff;
switch (connectionType) {
case ConnectionTypeGeneric:
return getGenericConnection(create, allowPendingKey);
case ConnectionTypeGenericMedia:
return getGenericMediaConnection(create, allowPendingKey);
case ConnectionTypeDownload:
return getDownloadConnection(connectionNum, create);
case ConnectionTypeUpload:
return getUploadConnection(connectionNum, create);
case ConnectionTypePush:
return getPushConnection(create);
case ConnectionTypeTemp:
return getTempConnection(create);
case ConnectionTypeProxy:
return getProxyConnection(connectionNum, create, create);
default:
return nullptr;
}
}
void Datacenter::onHandshakeComplete(Handshake *handshake, int64_t keyId, ByteArray *authKey, int32_t timeDifference) {
HandshakeType type = handshake->getType();
for (std::vector<std::unique_ptr<Handshake>>::iterator iter = handshakes.begin(); iter != handshakes.end(); iter++) {
if (iter->get() == handshake) {
handshakes.erase(iter);
if (type == HandshakeTypePerm) {
authKeyPermId = keyId;
authKeyPerm = authKey;
if (!isCdnDatacenter && PFS_ENABLED) {
beginHandshake(HandshakeTypeAll, false);
}
} else {
if (type == HandshakeTypeTemp) {
authKeyTempId = keyId;
authKeyTemp = authKey;
lastInitVersion = 0;
} else if (type == HandshakeTypeMediaTemp) {
authKeyMediaTempId = keyId;
authKeyMediaTemp = authKey;
lastInitMediaVersion = 0;
}
}
ConnectionsManager::getInstance(instanceNum).onDatacenterHandshakeComplete(this, type, timeDifference);
break;
}
}
}
void Datacenter::exportAuthorization() {
if (exportingAuthorization || isCdnDatacenter) {
return;
}
exportingAuthorization = true;
TL_auth_exportAuthorization *request = new TL_auth_exportAuthorization();
request->dc_id = datacenterId;
if (LOGS_ENABLED) DEBUG_D("dc%u begin export authorization", datacenterId);
ConnectionsManager::getInstance(instanceNum).sendRequest(request, [&](TLObject *response, TL_error *error, int32_t networkType) {
if (error == nullptr) {
TL_auth_exportedAuthorization *res = (TL_auth_exportedAuthorization *) response;
TL_auth_importAuthorization *request2 = new TL_auth_importAuthorization();
request2->bytes = std::move(res->bytes);
request2->id = res->id;
if (LOGS_ENABLED) DEBUG_D("dc%u begin import authorization", datacenterId);
ConnectionsManager::getInstance(instanceNum).sendRequest(request2, [&](TLObject *response2, TL_error *error2, int32_t networkType) {
if (error2 == nullptr) {
authorized = true;
ConnectionsManager::getInstance(instanceNum).onDatacenterExportAuthorizationComplete(this);
} else {
if (LOGS_ENABLED) DEBUG_D("dc%u failed import authorization", datacenterId);
}
exportingAuthorization = false;
}, nullptr, RequestFlagEnableUnauthorized | RequestFlagWithoutLogin, datacenterId, ConnectionTypeGeneric, true);
} else {
if (LOGS_ENABLED) DEBUG_D("dc%u failed export authorization", datacenterId);
exportingAuthorization = false;
}
}, nullptr, 0, DEFAULT_DATACENTER_ID, ConnectionTypeGeneric, true);
}
bool Datacenter::isExportingAuthorization() {
return exportingAuthorization;
}
bool Datacenter::hasMediaAddress() {
std::vector<TcpAddress> *addresses;
if (ConnectionsManager::getInstance(instanceNum).isIpv6Enabled()) {
addresses = &addressesIpv6Download;
} else {
addresses = &addressesIpv4Download;
}
return !addresses->empty();
}
void Datacenter::resetInitVersion() {
lastInitVersion = 0;
lastInitMediaVersion = 0;
}
TL_help_configSimple *Datacenter::decodeSimpleConfig(NativeByteBuffer *buffer) {
TL_help_configSimple *result = nullptr;
if (buffer->limit() < 256) {
return result;
}
static std::string public_key =
"-----BEGIN RSA PUBLIC KEY-----\n"
"MIIBCgKCAQEAyr+18Rex2ohtVy8sroGPBwXD3DOoKCSpjDqYoXgCqB7ioln4eDCF\n"
"fOBUlfXUEvM/fnKCpF46VkAftlb4VuPDeQSS/ZxZYEGqHaywlroVnXHIjgqoxiAd\n"
"192xRGreuXIaUKmkwlM9JID9WS2jUsTpzQ91L8MEPLJ/4zrBwZua8W5fECwCCh2c\n"
"9G5IzzBm+otMS/YKwmR1olzRCyEkyAEjXWqBI9Ftv5eG8m0VkBzOG655WIYdyV0H\n"
"fDK/NWcvGqa0w/nriMD6mDjKOryamw0OP9QuYgMN0C9xMW9y8SmP4h92OAWodTYg\n"
"Y1hZCxdv6cs5UnW9+PWvS+WIbkh+GaWYxwIDAQAB\n"
"-----END RSA PUBLIC KEY-----";
BIO *keyBio = BIO_new(BIO_s_mem());
BIO_write(keyBio, public_key.c_str(), (int) public_key.length());
RSA *rsaKey = PEM_read_bio_RSAPublicKey(keyBio, NULL, NULL, NULL);
if (rsaKey == nullptr) {
if (rsaKey == nullptr) {
if (LOGS_ENABLED) DEBUG_E("Invalid rsa public key");
return nullptr;
}
}
BIGNUM x, y;
uint8_t *bytes = buffer->bytes();
BN_CTX *bnContext = BN_CTX_new();
BN_init(&x);
BN_init(&y);
BN_bin2bn(bytes, 256, &x);
if (BN_mod_exp(&y, &x, rsaKey->e, rsaKey->n, bnContext) == 1) {
unsigned l = 256 - BN_num_bytes(&y);
memset(bytes, 0, l);
if (BN_bn2bin(&y, bytes + l) == 256 - l) {
AES_KEY aeskey;
unsigned char iv[16];
memcpy(iv, bytes + 16, 16);
AES_set_decrypt_key(bytes, 256, &aeskey);
AES_cbc_encrypt(bytes + 32, bytes + 32, 256 - 32, &aeskey, iv, AES_DECRYPT);
EVP_MD_CTX ctx;
unsigned char sha256_out[32];
unsigned olen = 0;
EVP_MD_CTX_init(&ctx);
EVP_DigestInit_ex(&ctx, EVP_sha256(), NULL);
EVP_DigestUpdate(&ctx, bytes + 32, 256 - 32 - 16);
EVP_DigestFinal_ex(&ctx, sha256_out, &olen);
EVP_MD_CTX_cleanup(&ctx);
if (olen == 32) {
if (memcmp(bytes + 256 - 16, sha256_out, 16) == 0) {
unsigned data_len = *(unsigned *) (bytes + 32);
if (data_len && data_len <= 256 - 32 - 16 && !(data_len & 3)) {
buffer->position(32 + 4);
bool error = false;
result = TL_help_configSimple::TLdeserialize(buffer, buffer->readUint32(&error), 0, error);
if (error) {
if (result != nullptr) {
delete result;
result = nullptr;
}
}
} else {
if (LOGS_ENABLED) DEBUG_E("TL data length field invalid - %d", data_len);
}
} else {
if (LOGS_ENABLED) DEBUG_E("RSA signature check FAILED (SHA256 mismatch)");
}
}
}
}
BN_CTX_free(bnContext);
BN_free(&x);
BN_free(&y);
RSA_free(rsaKey);
BIO_free(keyBio);
return result;
}