NekoX/TMessagesProj/jni/voip/tgcalls/group/AudioStreamingPartInternal.cpp

368 lines
10 KiB
C++

#include "AudioStreamingPartInternal.h"
#include "rtc_base/logging.h"
#include "rtc_base/third_party/base64/base64.h"
extern "C" {
#include <libavutil/timestamp.h>
#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
}
#include <string>
#include <bitset>
#include <set>
#include <map>
namespace tgcalls {
namespace {
int16_t sampleFloatToInt16(float sample) {
return av_clip_int16 (static_cast<int32_t>(lrint(sample*32767)));
}
uint32_t stringToUInt32(std::string const &string) {
std::stringstream stringStream(string);
uint32_t value = 0;
stringStream >> value;
return value;
}
template <typename Out>
void splitString(const std::string &s, char delim, Out result) {
std::istringstream iss(s);
std::string item;
while (std::getline(iss, item, delim)) {
*result++ = item;
}
}
std::vector<std::string> splitString(const std::string &s, char delim) {
std::vector<std::string> elems;
splitString(s, delim, std::back_inserter(elems));
return elems;
}
static absl::optional<uint32_t> readInt32(std::string const &data, int &offset) {
if (offset + 4 > data.length()) {
return absl::nullopt;
}
int32_t value = 0;
memcpy(&value, data.data() + offset, 4);
offset += 4;
return value;
}
std::vector<AudioStreamingPartInternal::ChannelUpdate> parseChannelUpdates(std::string const &data, int &offset) {
std::vector<AudioStreamingPartInternal::ChannelUpdate> result;
auto channels = readInt32(data, offset);
if (!channels) {
return {};
}
auto count = readInt32(data, offset);
if (!count) {
return {};
}
for (int i = 0; i < count.value(); i++) {
auto frameIndex = readInt32(data, offset);
if (!frameIndex) {
return {};
}
auto channelId = readInt32(data, offset);
if (!channelId) {
return {};
}
auto ssrc = readInt32(data, offset);
if (!ssrc) {
return {};
}
AudioStreamingPartInternal::ChannelUpdate update;
update.frameIndex = frameIndex.value();
update.id = channelId.value();
update.ssrc = ssrc.value();
result.push_back(update);
}
return result;
}
}
AudioStreamingPartInternal::AudioStreamingPartInternal(std::vector<uint8_t> &&fileData, std::string const &container) :
_avIoContext(std::move(fileData)) {
int ret = 0;
_frame = av_frame_alloc();
AVInputFormat *inputFormat = av_find_input_format(container.c_str());
if (!inputFormat) {
_didReadToEnd = true;
return;
}
_inputFormatContext = avformat_alloc_context();
if (!_inputFormatContext) {
_didReadToEnd = true;
return;
}
_inputFormatContext->pb = _avIoContext.getContext();
if ((ret = avformat_open_input(&_inputFormatContext, "", inputFormat, nullptr)) < 0) {
_didReadToEnd = true;
return;
}
if ((ret = avformat_find_stream_info(_inputFormatContext, nullptr)) < 0) {
_didReadToEnd = true;
avformat_close_input(&_inputFormatContext);
_inputFormatContext = nullptr;
return;
}
for (int i = 0; i < _inputFormatContext->nb_streams; i++) {
AVStream *inStream = _inputFormatContext->streams[i];
AVCodecParameters *inCodecpar = inStream->codecpar;
if (inCodecpar->codec_type != AVMEDIA_TYPE_AUDIO) {
continue;
}
_audioCodecParameters = avcodec_parameters_alloc();
avcodec_parameters_copy(_audioCodecParameters, inCodecpar);
_streamId = i;
_durationInMilliseconds = (int)((inStream->duration + inStream->first_dts) * 1000 / 48000);
if (inStream->metadata) {
AVDictionaryEntry *entry = av_dict_get(inStream->metadata, "TG_META", nullptr, 0);
if (entry && entry->value) {
std::string result;
size_t data_used = 0;
std::string sourceBase64 = (const char *)entry->value;
rtc::Base64::Decode(sourceBase64, rtc::Base64::DO_LAX, &result, &data_used);
if (result.size() != 0) {
int offset = 0;
_channelUpdates = parseChannelUpdates(result, offset);
}
}
uint32_t videoChannelMask = 0;
entry = av_dict_get(inStream->metadata, "ACTIVE_MASK", nullptr, 0);
if (entry && entry->value) {
std::string sourceString = (const char *)entry->value;
videoChannelMask = stringToUInt32(sourceString);
}
std::vector<std::string> endpointList;
entry = av_dict_get(inStream->metadata, "ENDPOINTS", nullptr, 0);
if (entry && entry->value) {
std::string sourceString = (const char *)entry->value;
endpointList = splitString(sourceString, ' ');
}
std::bitset<32> videoChannels(videoChannelMask);
size_t endpointIndex = 0;
if (videoChannels.count() == endpointList.size()) {
for (size_t i = 0; i < videoChannels.size(); i++) {
if (videoChannels[i]) {
_endpointMapping.insert(std::make_pair(endpointList[endpointIndex], i));
endpointIndex++;
}
}
}
}
break;
}
if (_streamId == -1) {
_didReadToEnd = true;
}
}
AudioStreamingPartInternal::~AudioStreamingPartInternal() {
if (_frame) {
av_frame_unref(_frame);
}
if (_inputFormatContext) {
avformat_close_input(&_inputFormatContext);
}
if (_audioCodecParameters) {
avcodec_parameters_free(&_audioCodecParameters);
}
}
AudioStreamingPartInternal::ReadPcmResult AudioStreamingPartInternal::readPcm(AudioStreamingPartPersistentDecoder &persistentDecoder, std::vector<int16_t> &outPcm) {
if (_didReadToEnd) {
return AudioStreamingPartInternal::ReadPcmResult();
}
int outPcmSampleOffset = 0;
ReadPcmResult result;
if (_pcmBufferSampleOffset >= _pcmBufferSampleSize) {
fillPcmBuffer(persistentDecoder);
}
if (outPcm.size() != 480 * _channelCount) {
outPcm.resize(480 * _channelCount);
}
int readSamples = 0;
if (_channelCount != 0) {
readSamples = (int)outPcm.size() / _channelCount;
}
while (outPcmSampleOffset < readSamples) {
if (_pcmBufferSampleOffset >= _pcmBufferSampleSize) {
fillPcmBuffer(persistentDecoder);
if (_pcmBufferSampleOffset >= _pcmBufferSampleSize) {
break;
}
}
int readFromPcmBufferSamples = std::min(_pcmBufferSampleSize - _pcmBufferSampleOffset, readSamples - outPcmSampleOffset);
if (readFromPcmBufferSamples != 0) {
std::copy(_pcmBuffer.begin() + _pcmBufferSampleOffset * _channelCount, _pcmBuffer.begin() + _pcmBufferSampleOffset * _channelCount + readFromPcmBufferSamples * _channelCount, outPcm.begin() + outPcmSampleOffset * _channelCount);
_pcmBufferSampleOffset += readFromPcmBufferSamples;
outPcmSampleOffset += readFromPcmBufferSamples;
result.numSamples += readFromPcmBufferSamples;
_readSampleCount += readFromPcmBufferSamples;
}
}
result.numChannels = _channelCount;
// Uncomment for debugging incomplete frames
/*if (result.numSamples != 480 && result.numSamples != 0) {
RTC_LOG(LS_INFO) << "result.numSamples = " << result.numSamples << ", _readSampleCount = " << _readSampleCount << ", duration = " << _inputFormatContext->streams[_streamId]->duration;
}*/
return result;
}
int AudioStreamingPartInternal::getDurationInMilliseconds() const {
return _durationInMilliseconds;
}
std::vector<AudioStreamingPartInternal::ChannelUpdate> const &AudioStreamingPartInternal::getChannelUpdates() const {
return _channelUpdates;
}
std::map<std::string, int32_t> AudioStreamingPartInternal::getEndpointMapping() const {
return _endpointMapping;
}
void AudioStreamingPartInternal::fillPcmBuffer(AudioStreamingPartPersistentDecoder &persistentDecoder) {
_pcmBufferSampleSize = 0;
_pcmBufferSampleOffset = 0;
if (_didReadToEnd) {
return;
}
if (!_inputFormatContext) {
_didReadToEnd = true;
return;
}
int ret = 0;
while (true) {
ret = av_read_frame(_inputFormatContext, &_packet);
if (ret < 0) {
_didReadToEnd = true;
return;
}
if (_packet.stream_index != _streamId) {
continue;
}
ret = persistentDecoder.decode(_audioCodecParameters, _inputFormatContext->streams[_streamId]->time_base, _packet, _frame);
if (ret == AVERROR(EAGAIN)) {
continue;
}
break;
}
if (ret != 0) {
_didReadToEnd = true;
return;
}
if (_channelCount == 0) {
_channelCount = _frame->channels;
}
if (_channelCount == 0) {
_didReadToEnd = true;
return;
}
if (_frame->channels != _channelCount || _frame->channels > 8) {
_didReadToEnd = true;
return;
}
if (_pcmBuffer.size() < _frame->nb_samples * _frame->channels) {
_pcmBuffer.resize(_frame->nb_samples * _frame->channels);
}
switch (_frame->format) {
case AV_SAMPLE_FMT_S16: {
memcpy(_pcmBuffer.data(), _frame->data[0], _frame->nb_samples * 2 * _frame->channels);
} break;
case AV_SAMPLE_FMT_S16P: {
int16_t *to = _pcmBuffer.data();
for (int sample = 0; sample < _frame->nb_samples; ++sample) {
for (int channel = 0; channel < _frame->channels; ++channel) {
int16_t *shortChannel = (int16_t*)_frame->data[channel];
*to++ = shortChannel[sample];
}
}
} break;
case AV_SAMPLE_FMT_FLT: {
float *floatData = (float *)&_frame->data[0];
for (int i = 0; i < _frame->nb_samples * _frame->channels; i++) {
_pcmBuffer[i] = sampleFloatToInt16(floatData[i]);
}
} break;
case AV_SAMPLE_FMT_FLTP: {
int16_t *to = _pcmBuffer.data();
for (int sample = 0; sample < _frame->nb_samples; ++sample) {
for (int channel = 0; channel < _frame->channels; ++channel) {
float *floatChannel = (float*)_frame->data[channel];
*to++ = sampleFloatToInt16(floatChannel[sample]);
}
}
} break;
default: {
RTC_FATAL() << "Unexpected sample_fmt";
} break;
}
_pcmBufferSampleSize = _frame->nb_samples;
_pcmBufferSampleOffset = 0;
}
}