Paranoia2/game_shared/jigglebones.cpp

506 lines
15 KiB
C++

//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//===========================================================================//
#include "jigglebones.h"
//-----------------------------------------------------------------------------
JiggleData * CJiggleBones::GetJiggleData( int bone, float currenttime, const Vector &initBasePos, const Vector &initTipPos )
{
FOR_EACH_LL( m_jiggleBoneState, it )
{
if ( m_jiggleBoneState[it].bone == bone )
{
return &m_jiggleBoneState[it];
}
}
JiggleData data;
data.Init( bone, currenttime, initBasePos, initTipPos );
int idx = m_jiggleBoneState.AddToHead( data );
if ( idx == m_jiggleBoneState.InvalidIndex() )
return NULL;
return &m_jiggleBoneState[idx];
}
//-----------------------------------------------------------------------------
/**
* Do spring physics calculations and update "jiggle bone" matrix
* (Michael Booth, Turtle Rock Studios)
*/
void CJiggleBones::BuildJiggleTransformations( int boneIndex, float currenttime, const mstudiojigglebone_t *jiggleInfo, const matrix3x4 &goalMX, matrix3x4 &boneMX )
{
Vector goalBasePosition = goalMX[3];
Vector goalForward = goalMX[2];
Vector goalUp = goalMX[1];
Vector goalLeft = goalMX[0];
// compute goal tip position
Vector goalTip = goalBasePosition + jiggleInfo->length * goalForward;
JiggleData *data = GetJiggleData( boneIndex, currenttime, goalBasePosition, goalTip );
if( !data ) return;
if( currenttime - data->lastUpdate > 0.5f )
{
data->Init( boneIndex, currenttime, goalBasePosition, goalTip );
}
// limit maximum deltaT to avoid simulation blowups
// if framerate gets very low, jiggle will run in slow motion
const float thirtyHZ = 0.0333f;
const float thousandHZ = 0.001f;
float deltaT = bound( thousandHZ, currenttime - data->lastUpdate, thirtyHZ );
data->lastUpdate = currenttime;
//
// Bone tip flex
//
if (jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID))
{
// apply gravity in global space
data->tipAccel.z -= jiggleInfo->tipMass;
if (jiggleInfo->flags & JIGGLE_IS_FLEXIBLE)
{
// decompose into local coordinates
Vector error = goalTip - data->tipPos;
Vector localError;
localError.x = DotProduct( goalLeft, error );
localError.y = DotProduct( goalUp, error );
localError.z = DotProduct( goalForward, error );
Vector localVel;
localVel.x = DotProduct( goalLeft, data->tipVel );
localVel.y = DotProduct( goalUp, data->tipVel );
// yaw spring
float yawAccel = jiggleInfo->yawStiffness * localError.x - jiggleInfo->yawDamping * localVel.x;
// pitch spring
float pitchAccel = jiggleInfo->pitchStiffness * localError.y - jiggleInfo->pitchDamping * localVel.y;
if (jiggleInfo->flags & JIGGLE_HAS_LENGTH_CONSTRAINT)
{
// drive tip towards goal tip position
data->tipAccel += yawAccel * goalLeft + pitchAccel * goalUp;
}
else
{
// allow flex along length of spring
localVel.z = DotProduct( goalForward, data->tipVel );
// along spring
float alongAccel = jiggleInfo->alongStiffness * localError.z - jiggleInfo->alongDamping * localVel.z;
// drive tip towards goal tip position
data->tipAccel += yawAccel * goalLeft + pitchAccel * goalUp + alongAccel * goalForward;
}
}
// simple euler integration
data->tipVel += data->tipAccel * deltaT;
data->tipPos += data->tipVel * deltaT;
// clear this timestep's accumulated accelerations
data->tipAccel = g_vecZero;
//
// Apply optional constraints
//
if (jiggleInfo->flags & (JIGGLE_HAS_YAW_CONSTRAINT | JIGGLE_HAS_PITCH_CONSTRAINT))
{
// find components of spring vector in local coordinate system
Vector along = data->tipPos - goalBasePosition;
Vector localAlong;
localAlong.x = DotProduct( goalLeft, along );
localAlong.y = DotProduct( goalUp, along );
localAlong.z = DotProduct( goalForward, along );
Vector localVel;
localVel.x = DotProduct( goalLeft, data->tipVel );
localVel.y = DotProduct( goalUp, data->tipVel );
localVel.z = DotProduct( goalForward, data->tipVel );
if (jiggleInfo->flags & JIGGLE_HAS_YAW_CONSTRAINT)
{
// enforce yaw constraints in local XZ plane
float yawError = atan2( localAlong.x, localAlong.z );
bool isAtLimit = false;
float yaw = 0.0f;
if (yawError < jiggleInfo->minYaw)
{
// at angular limit
isAtLimit = true;
yaw = jiggleInfo->minYaw;
}
else if (yawError > jiggleInfo->maxYaw)
{
// at angular limit
isAtLimit = true;
yaw = jiggleInfo->maxYaw;
}
if (isAtLimit)
{
float sy, cy;
SinCos( yaw, &sy, &cy );
// yaw matrix
matrix3x4 yawMatrix;
yawMatrix.SetForward( Vector( cy, 0, -sy ));
yawMatrix.SetRight( Vector( 0.0f, 1.0f, 0.0f ));
yawMatrix.SetUp( Vector( sy, 0.0f, cy ));
yawMatrix.SetOrigin( g_vecZero );
// global coordinates of limit
matrix3x4 limitMatrix = goalMX.ConcatTransforms( yawMatrix );
Vector limitLeft( limitMatrix[0] );
Vector limitUp( limitMatrix[1] );
Vector limitForward( limitMatrix[2] );
Vector limitAlong( DotProduct( limitLeft, along ), DotProduct( limitUp, along ), DotProduct( limitForward, along ));
// clip to limit plane
data->tipPos = goalBasePosition + limitAlong.y * limitUp + limitAlong.z * limitForward;
// yaw friction - rubbing along limit plane
Vector limitVel;
limitVel.y = DotProduct( limitUp, data->tipVel );
limitVel.z = DotProduct( limitForward, data->tipVel );
data->tipAccel -= jiggleInfo->yawFriction * (limitVel.y * limitUp + limitVel.z * limitForward);
// update velocity reaction to hitting constraint
data->tipVel = -jiggleInfo->yawBounce * limitVel.x * limitLeft + limitVel.y * limitUp + limitVel.z * limitForward;
// update along vectors for use by pitch constraint
along = data->tipPos - goalBasePosition;
localAlong.x = DotProduct( goalLeft, along );
localAlong.y = DotProduct( goalUp, along );
localAlong.z = DotProduct( goalForward, along );
localVel.x = DotProduct( goalLeft, data->tipVel );
localVel.y = DotProduct( goalUp, data->tipVel );
localVel.z = DotProduct( goalForward, data->tipVel );
}
}
if (jiggleInfo->flags & JIGGLE_HAS_PITCH_CONSTRAINT)
{
// enforce pitch constraints in local YZ plane
float pitchError = atan2( localAlong.y, localAlong.z );
bool isAtLimit = false;
float pitch = 0.0f;
if (pitchError < jiggleInfo->minPitch)
{
// at angular limit
isAtLimit = true;
pitch = jiggleInfo->minPitch;
}
else if (pitchError > jiggleInfo->maxPitch)
{
// at angular limit
isAtLimit = true;
pitch = jiggleInfo->maxPitch;
}
if (isAtLimit)
{
float sp, cp;
SinCos( pitch, &sp, &cp );
// pitch matrix
matrix3x4 pitchMatrix;
pitchMatrix.SetForward( Vector( 1.0f, 0.0, 0.0f ));
pitchMatrix.SetRight( Vector( 0, cp, -sp ));
pitchMatrix.SetUp( Vector( 0, sp, cp ));
pitchMatrix.SetOrigin( g_vecZero );
// global coordinates of limit
matrix3x4 limitMatrix = goalMX.ConcatTransforms( pitchMatrix );
Vector limitLeft( limitMatrix[0] );
Vector limitUp( limitMatrix[1] );
Vector limitForward( limitMatrix[2] );
Vector limitAlong( DotProduct( limitLeft, along ), DotProduct( limitUp, along ), DotProduct( limitForward, along ));
// clip to limit plane
data->tipPos = goalBasePosition + limitAlong.x * limitLeft + limitAlong.z * limitForward;
// pitch friction - rubbing along limit plane
Vector limitVel;
limitVel.y = DotProduct( limitUp, data->tipVel );
limitVel.z = DotProduct( limitForward, data->tipVel );
data->tipAccel -= jiggleInfo->pitchFriction * (limitVel.x * limitLeft + limitVel.z * limitForward);
// update velocity reaction to hitting constraint
data->tipVel = limitVel.x * limitLeft - jiggleInfo->pitchBounce * limitVel.y * limitUp + limitVel.z * limitForward;
}
}
}
// needed for matrix assembly below
Vector forward = (data->tipPos - goalBasePosition).Normalize();
if (jiggleInfo->flags & JIGGLE_HAS_ANGLE_CONSTRAINT)
{
// enforce max angular error
Vector error = goalTip - data->tipPos;
float dot = DotProduct( forward, goalForward );
float angleBetween = acos( dot );
if (dot < 0.0f)
{
angleBetween = 2.0f * M_PI - angleBetween;
}
if (angleBetween > jiggleInfo->angleLimit)
{
// at angular limit
float maxBetween = jiggleInfo->length * sin( jiggleInfo->angleLimit );
Vector delta = (goalTip - data->tipPos).Normalize();
data->tipPos = goalTip - maxBetween * delta;
forward = (data->tipPos - goalBasePosition).Normalize();
}
}
if (jiggleInfo->flags & JIGGLE_HAS_LENGTH_CONSTRAINT)
{
// enforce spring length
data->tipPos = goalBasePosition + jiggleInfo->length * forward;
// zero velocity along forward bone axis
data->tipVel -= DotProduct( data->tipVel, forward ) * forward;
}
//
// Build bone matrix to align along current tip direction
//
Vector left = CrossProduct( goalUp, forward ).Normalize();
Vector up = CrossProduct( forward, left );
boneMX.SetForward( left );
boneMX.SetRight( up );
boneMX.SetUp( forward );
boneMX.SetOrigin( goalBasePosition );
}
//
// Bone base flex
//
if (jiggleInfo->flags & JIGGLE_HAS_BASE_SPRING)
{
// gravity
data->baseAccel.z -= jiggleInfo->baseMass;
// simple spring
Vector error = goalBasePosition - data->basePos;
data->baseAccel += jiggleInfo->baseStiffness * error - jiggleInfo->baseDamping * data->baseVel;
data->baseVel += data->baseAccel * deltaT;
data->basePos += data->baseVel * deltaT;
// clear this timestep's accumulated accelerations
data->baseAccel = g_vecZero;
// constrain to limits
error = data->basePos - goalBasePosition;
Vector localError;
localError.x = DotProduct( goalLeft, error );
localError.y = DotProduct( goalUp, error );
localError.z = DotProduct( goalForward, error );
Vector localVel;
localVel.x = DotProduct( goalLeft, data->baseVel );
localVel.y = DotProduct( goalUp, data->baseVel );
localVel.z = DotProduct( goalForward, data->baseVel );
// horizontal constraint
if (localError.x < jiggleInfo->baseMinLeft)
{
localError.x = jiggleInfo->baseMinLeft;
// friction
data->baseAccel -= jiggleInfo->baseLeftFriction * (localVel.y * goalUp + localVel.z * goalForward);
}
else if (localError.x > jiggleInfo->baseMaxLeft)
{
localError.x = jiggleInfo->baseMaxLeft;
// friction
data->baseAccel -= jiggleInfo->baseLeftFriction * (localVel.y * goalUp + localVel.z * goalForward);
}
if (localError.y < jiggleInfo->baseMinUp)
{
localError.y = jiggleInfo->baseMinUp;
// friction
data->baseAccel -= jiggleInfo->baseUpFriction * (localVel.x * goalLeft + localVel.z * goalForward);
}
else if (localError.y > jiggleInfo->baseMaxUp)
{
localError.y = jiggleInfo->baseMaxUp;
// friction
data->baseAccel -= jiggleInfo->baseUpFriction * (localVel.x * goalLeft + localVel.z * goalForward);
}
if (localError.z < jiggleInfo->baseMinForward)
{
localError.z = jiggleInfo->baseMinForward;
// friction
data->baseAccel -= jiggleInfo->baseForwardFriction * (localVel.x * goalLeft + localVel.y * goalUp);
}
else if (localError.z > jiggleInfo->baseMaxForward)
{
localError.z = jiggleInfo->baseMaxForward;
// friction
data->baseAccel -= jiggleInfo->baseForwardFriction * (localVel.x * goalLeft + localVel.y * goalUp);
}
data->basePos = goalBasePosition + localError.x * goalLeft + localError.y * goalUp + localError.z * goalForward;
// fix up velocity
data->baseVel = (data->basePos - data->baseLastPos) / deltaT;
data->baseLastPos = data->basePos;
if (!(jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID)))
{
// no tip flex - use bone's goal orientation
boneMX = goalMX;
}
// update bone position
boneMX.SetOrigin( data->basePos );
}
else if ( jiggleInfo->flags & JIGGLE_IS_BOING )
{
// estimate velocity
Vector vel = goalBasePosition - data->lastBoingPos;
data->lastBoingPos = goalBasePosition;
float speed = vel.Length();
vel = vel.Normalize();
if( speed < 0.00001f )
{
vel = Vector( 0.0f, 0.0f, 1.0f );
speed = 0.0f;
}
else
{
speed /= deltaT;
}
data->boingTime += deltaT;
// if velocity changed a lot, we impacted and should *boing*
const float minSpeed = 5.0f; // 15.0f;
const float minReBoingTime = 0.5f;
if(( speed > minSpeed || data->boingSpeed > minSpeed ) && data->boingTime > minReBoingTime )
{
if( fabs( data->boingSpeed - speed ) > jiggleInfo->boingImpactSpeed || DotProduct( vel, data->boingVelDir ) < jiggleInfo->boingImpactAngle )
{
data->boingTime = 0.0f;
data->boingDir = -vel;
}
}
data->boingVelDir = vel;
data->boingSpeed = speed;
float damping = 1.0f - ( jiggleInfo->boingDampingRate * data->boingTime );
if ( damping < 0.01f )
{
// boing has entirely damped out
boneMX = goalMX;
}
else
{
damping *= damping;
damping *= damping;
float flex = jiggleInfo->boingAmplitude * cos( jiggleInfo->boingFrequency * data->boingTime ) * damping;
float squash = 1.0f + flex;
float stretch = 1.0f - flex;
boneMX.SetForward( goalLeft );
boneMX.SetRight( goalUp );
boneMX.SetUp( goalForward );
boneMX.SetOrigin( g_vecZero );
// build transform into "boing space", where Z is along primary boing axis
Vector boingSide;
if( fabs( data->boingDir.x ) < 0.9f )
{
boingSide = CrossProduct( data->boingDir, Vector( 1.0f, 0.0f, 0.0f )).Normalize();
}
else
{
boingSide = CrossProduct( data->boingDir, Vector( 0.0f, 0.0f, 1.0f )).Normalize();
}
Vector boingOtherSide = CrossProduct( data->boingDir, boingSide );
matrix3x4 xfrmToBoingCoordsMX, xfrmFromBoingCoordsMX;
xfrmToBoingCoordsMX.SetForward( boingSide );
xfrmToBoingCoordsMX.SetRight( boingOtherSide );
xfrmToBoingCoordsMX.SetUp( data->boingDir );
xfrmToBoingCoordsMX.SetOrigin( g_vecZero );
// transform back from boing space (inverse is transpose since orthogonal)
xfrmFromBoingCoordsMX = xfrmToBoingCoordsMX;
xfrmToBoingCoordsMX = xfrmToBoingCoordsMX.Transpose();
// build squash and stretch transform in "boing space"
matrix3x4 boingMX;
boingMX.SetForward( Vector( squash, 0.0f, 0.0f ));
boingMX.SetRight( Vector( 0.0f, squash, 0.0f ));
boingMX.SetUp( Vector( 0.0f, 0.0f, stretch ));
boingMX.SetOrigin( g_vecZero );
// put it all together
matrix3x4 xfrmMX;
xfrmMX = xfrmToBoingCoordsMX.ConcatTransforms( boingMX );
xfrmMX = xfrmMX.ConcatTransforms( xfrmFromBoingCoordsMX );
boneMX = boneMX.ConcatTransforms( xfrmMX );
boneMX.SetOrigin( goalBasePosition );
}
}
else if (!(jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID)))
{
// no flex at all - just use goal matrix
boneMX = goalMX;
}
}