/* ----------------------------------------------------------------------------- Copyright (c) 2006 Simon Brown si@sjbrown.co.uk Copyright (c) 2007 Ignacio Castano icastano@nvidia.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -------------------------------------------------------------------------- */ #include "clusterfit.h" #include "colourset.h" #include "colourblock.h" #include namespace squish { ClusterFit::ClusterFit( ColourSet const* colours, int flags, float* metric ) : ColourFit( colours, flags ) { // set the iteration count m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1; // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f) if( metric ) m_metric = Vec4( metric[0], metric[1], metric[2], 1.0f ); else m_metric = VEC4_CONST( 1.0f ); // initialise the best error m_besterror = VEC4_CONST( FLT_MAX ); // cache some values int const count = m_colours->GetCount(); Vec3 const* values = m_colours->GetPoints(); // get the covariance matrix Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights(), m_metric.GetVec3() ); // compute the principle component m_principle = ComputePrincipleComponent( covariance ); } bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration ) { // cache some values int const count = m_colours->GetCount(); Vec3 const* values = m_colours->GetPoints(); int i; // build the list of dot products float dps[16]; u8* order = ( u8* )m_order + 16*iteration; for( i = 0; i < count; ++i ) { dps[i] = Dot( values[i], axis ); order[i] = ( u8 )i; } // stable sort using them for( i = 0; i < count; ++i ) { for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j ) { std::swap( dps[j], dps[j - 1] ); std::swap( order[j], order[j - 1] ); } } // check this ordering is unique for( int it = 0; it < iteration; ++it ) { u8 const* prev = ( u8* )m_order + 16*it; bool same = true; for( int i = 0; i < count; ++i ) { if( order[i] != prev[i] ) { same = false; break; } } if( same ) return false; } // copy the ordering and weight all the points Vec3 const* unweighted = m_colours->GetPoints(); float const* weights = m_colours->GetWeights(); m_xsum_wsum = VEC4_CONST( 0.0f ); for( i = 0; i < count; ++i ) { int j = order[i]; Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f ); Vec4 w( weights[j] ); Vec4 x = p*w; m_points_weights[i] = x; m_xsum_wsum += x; } return true; } void ClusterFit::Compress3( void* block ) { // declare variables int const count = m_colours->GetCount(); Vec4 const two = VEC4_CONST( 2.0 ); Vec4 const one = VEC4_CONST( 1.0f ); Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f ); Vec4 const zero = VEC4_CONST( 0.0f ); Vec4 const half = VEC4_CONST( 0.5f ); Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); // prepare an ordering using the principle axis ConstructOrdering( m_principle, 0 ); // check all possible clusters and iterate on the total order Vec4 beststart = VEC4_CONST( 0.0f ); Vec4 bestend = VEC4_CONST( 0.0f ); Vec4 besterror = m_besterror; u8 bestindices[16]; int bestiteration = 0; int besti = 0, bestj = 0; // loop over iterations (we avoid the case that all points in first or last cluster) for( int iterationIndex = 0;; ) { // first cluster [0,i) is at the start Vec4 part0 = VEC4_CONST( 0.0f ); for( int i = 0; i < count; ++i ) { // second cluster [i,j) is half along Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); int jmin = ( i == 0 ) ? 1 : i; for( int j = jmin;; ) { // last cluster [j,count) is at the end Vec4 part2 = m_xsum_wsum - part1 - part0; // compute least squares terms directly Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 ); Vec4 alpha2_sum = alphax_sum.SplatW(); Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 ); Vec4 beta2_sum = betax_sum.SplatW(); Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW(); // compute the least-squares optimal points Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; // clamp to the grid a = Min( one, Max( zero, a ) ); b = Min( one, Max( zero, b ) ); a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; // compute the error (we skip the constant xxsum) Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); Vec4 e4 = MultiplyAdd( two, e3, e1 ); // apply the metric to the error term Vec4 e5 = e4*m_metric; Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); // keep the solution if it wins if( CompareAnyLessThan( error, besterror ) ) { beststart = a; bestend = b; besti = i; bestj = j; besterror = error; bestiteration = iterationIndex; } // advance if( j == count ) break; part1 += m_points_weights[j]; ++j; } // advance part0 += m_points_weights[i]; } // stop if we didn't improve in this iteration if( bestiteration != iterationIndex ) break; // advance if possible ++iterationIndex; if( iterationIndex == m_iterationCount ) break; // stop if a new iteration is an ordering that has already been tried Vec3 axis = ( bestend - beststart ).GetVec3(); if( !ConstructOrdering( axis, iterationIndex ) ) break; } // save the block if necessary if( CompareAnyLessThan( besterror, m_besterror ) ) { // remap the indices u8 const* order = ( u8* )m_order + 16*bestiteration; int m; u8 unordered[16]; for( m = 0; m < besti; ++m ) unordered[order[m]] = 0; for( m = besti; m < bestj; ++m ) unordered[order[m]] = 2; for( m = bestj; m < count; ++m ) unordered[order[m]] = 1; m_colours->RemapIndices( unordered, bestindices ); // save the block WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); // save the error m_besterror = besterror; } } void ClusterFit::Compress4( void* block ) { // declare variables int const count = m_colours->GetCount(); Vec4 const two = VEC4_CONST( 2.0f ); Vec4 const one = VEC4_CONST( 1.0f ); Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f ); Vec4 const zero = VEC4_CONST( 0.0f ); Vec4 const half = VEC4_CONST( 0.5f ); Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); // prepare an ordering using the principle axis ConstructOrdering( m_principle, 0 ); // check all possible clusters and iterate on the total order Vec4 beststart = VEC4_CONST( 0.0f ); Vec4 bestend = VEC4_CONST( 0.0f ); Vec4 besterror = m_besterror; u8 bestindices[16]; int bestiteration = 0; int besti = 0, bestj = 0, bestk = 0; // loop over iterations (we avoid the case that all points in first or last cluster) for( int iterationIndex = 0;; ) { // first cluster [0,i) is at the start Vec4 part0 = VEC4_CONST( 0.0f ); for( int i = 0; i < count; ++i ) { // second cluster [i,j) is one third along Vec4 part1 = VEC4_CONST( 0.0f ); for( int j = i;; ) { // third cluster [j,k) is two thirds along Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); int kmin = ( j == 0 ) ? 1 : j; for( int k = kmin;; ) { // last cluster [k,count) is at the end Vec4 part3 = m_xsum_wsum - part2 - part1 - part0; // compute least squares terms directly Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) ); Vec4 const alpha2_sum = alphax_sum.SplatW(); Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) ); Vec4 const beta2_sum = betax_sum.SplatW(); Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW(); // compute the least-squares optimal points Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; // clamp to the grid a = Min( one, Max( zero, a ) ); b = Min( one, Max( zero, b ) ); a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; // compute the error (we skip the constant xxsum) Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); Vec4 e4 = MultiplyAdd( two, e3, e1 ); // apply the metric to the error term Vec4 e5 = e4*m_metric; Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); // keep the solution if it wins if( CompareAnyLessThan( error, besterror ) ) { beststart = a; bestend = b; besterror = error; besti = i; bestj = j; bestk = k; bestiteration = iterationIndex; } // advance if( k == count ) break; part2 += m_points_weights[k]; ++k; } // advance if( j == count ) break; part1 += m_points_weights[j]; ++j; } // advance part0 += m_points_weights[i]; } // stop if we didn't improve in this iteration if( bestiteration != iterationIndex ) break; // advance if possible ++iterationIndex; if( iterationIndex == m_iterationCount ) break; // stop if a new iteration is an ordering that has already been tried Vec3 axis = ( bestend - beststart ).GetVec3(); if( !ConstructOrdering( axis, iterationIndex ) ) break; } // save the block if necessary if( CompareAnyLessThan( besterror, m_besterror ) ) { // remap the indices u8 const* order = ( u8* )m_order + 16*bestiteration; int m; u8 unordered[16]; for( m = 0; m < besti; ++m ) unordered[order[m]] = 0; for( m = besti; m < bestj; ++m ) unordered[order[m]] = 2; for( m = bestj; m < bestk; ++m ) unordered[order[m]] = 3; for( m = bestk; m < count; ++m ) unordered[order[m]] = 1; m_colours->RemapIndices( unordered, bestindices ); // save the block WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); // save the error m_besterror = besterror; } } } // namespace squish