Paranoia2/utils/spritegen/imagelib.cpp
2020-08-31 19:50:41 +03:00

1009 lines
24 KiB
C++

/*
imagelib.cpp - simple loader\serializer for TGA & BMP
Copyright (C) 2015 Uncle Mike
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include <windows.h>
#include "cmdlib.h"
#include "mathlib.h"
#include "stringlib.h"
#include "scriplib.h"
#include "filesystem.h"
#include "imagelib.h"
/*
=================
Image_ValidSize
check image for valid dimensions
=================
*/
bool Image_ValidSize( const char *name, int width, int height )
{
if( width > IMAGE_MAXWIDTH || height > IMAGE_MAXHEIGHT || width < IMAGE_MINWIDTH || height < IMAGE_MINHEIGHT )
{
MsgDev( D_ERROR, "Image: %s has invalid sizes %i x %i\n", name, width, height );
return false;
}
return true;
}
/*
=================
Image_Alloc
allocate image struct and partially fill it
=================
*/
rgbdata_t *Image_Alloc( int width, int height, bool paletted )
{
size_t pic_size = sizeof( rgbdata_t ) + (width * height * (paletted ? 1 : 4)) + (paletted ? 768 : 0);
rgbdata_t *pic = (rgbdata_t *)Mem_Alloc( pic_size );
if( paletted )
{
pic->buffer = ((byte *)pic) + sizeof( rgbdata_t );
pic->palette = ((byte *)pic) + sizeof( rgbdata_t ) + width * height;
pic->flags |= IMAGE_QUANTIZED;
}
else
{
pic->buffer = ((byte *)pic) + sizeof( rgbdata_t );
pic->palette = NULL; // not present
}
pic->size = (width * height * (paletted ? 1 : 4));
pic->width = width;
pic->height = height;
return pic;
}
/*
=================
Image_Copy
make an copy of image
=================
*/
rgbdata_t *Image_Copy( rgbdata_t *src )
{
size_t pic_size = sizeof( rgbdata_t ) + src->size + (FBitSet( src->flags, IMAGE_QUANTIZED ) ? 768 : 0 );
rgbdata_t *dst = (rgbdata_t *)Mem_Alloc( pic_size );
dst->buffer = ((byte *)dst) + sizeof( rgbdata_t );
if( FBitSet( src->flags, IMAGE_QUANTIZED ))
{
dst->palette = dst->buffer + src->size;
memcpy( dst->palette, src->palette, 768 );
}
memcpy( dst->buffer, src->buffer, src->size );
dst->size = src->size;
dst->width = src->width;
dst->height = src->height;
dst->flags = src->flags;
return dst;
}
/*
=============================================================================
IMAGE LOADING
=============================================================================
*/
/*
=============
Image_LoadTGA
expand any image to RGBA32 but keep 8-bit unchanged
=============
*/
rgbdata_t *Image_LoadTGA( const char *name, const byte *buffer, size_t filesize )
{
int i, columns, rows, row_inc, row, col;
byte *buf_p, *pixbuf, *targa_rgba;
byte palette[256][3], red = 0, green = 0, blue = 0, alpha = 0;
int readpixelcount, pixelcount, palIndex;
tga_t targa_header;
bool compressed;
bool paletted;
rgbdata_t *pic;
if( filesize < sizeof( tga_t ))
return NULL;
buf_p = (byte *)buffer;
targa_header.id_length = *buf_p++;
targa_header.colormap_type = *buf_p++;
targa_header.image_type = *buf_p++;
targa_header.colormap_index = *(short *)buf_p; buf_p += 2;
targa_header.colormap_length = *(short *)buf_p; buf_p += 2;
targa_header.colormap_size = *buf_p; buf_p += 1;
targa_header.x_origin = *(short *)buf_p; buf_p += 2;
targa_header.y_origin = *(short *)buf_p; buf_p += 2;
targa_header.width = *(short *)buf_p; buf_p += 2;
targa_header.height = *(short *)buf_p; buf_p += 2;
targa_header.pixel_size = *buf_p++;
targa_header.attributes = *buf_p++;
if( targa_header.id_length != 0 )
buf_p += targa_header.id_length; // skip TARGA image comment
// check for tga file
if( !Image_ValidSize( name, targa_header.width, targa_header.height ))
return NULL;
if( targa_header.image_type == 1 || targa_header.image_type == 9 )
{
// uncompressed colormapped image
if( targa_header.pixel_size != 8 )
{
MsgDev( D_WARN, "Image_LoadTGA: (%s) Only 8 bit images supported for type 1 and 9\n", name );
return NULL;
}
if( targa_header.colormap_length != 256 )
{
MsgDev( D_WARN, "Image_LoadTGA: (%s) Only 8 bit colormaps are supported for type 1 and 9\n", name );
return NULL;
}
if( targa_header.colormap_index )
{
MsgDev( D_WARN, "Image_LoadTGA: (%s) colormap_index is not supported for type 1 and 9\n", name );
return NULL;
}
if( targa_header.colormap_size == 24 )
{
for( i = 0; i < targa_header.colormap_length; i++ )
{
palette[i][2] = *buf_p++;
palette[i][1] = *buf_p++;
palette[i][0] = *buf_p++;
}
}
else if( targa_header.colormap_size == 32 )
{
for( i = 0; i < targa_header.colormap_length; i++ )
{
palette[i][2] = *buf_p++;
palette[i][1] = *buf_p++;
palette[i][0] = *buf_p++;
*buf_p++; // skip the alpha
}
}
else
{
MsgDev( D_WARN, "Image_LoadTGA: (%s) only 24 and 32 bit colormaps are supported for type 1 and 9\n", name );
return NULL;
}
}
else if( targa_header.image_type == 2 || targa_header.image_type == 10 )
{
// uncompressed or RLE compressed RGB
if( targa_header.pixel_size != 32 && targa_header.pixel_size != 24 )
{
MsgDev( D_WARN, "Image_LoadTGA: (%s) Only 32 or 24 bit images supported for type 2 and 10\n", name );
return NULL;
}
}
else if( targa_header.image_type == 3 || targa_header.image_type == 11 )
{
// uncompressed greyscale
if( targa_header.pixel_size != 8 )
{
MsgDev( D_WARN, "Image_LoadTGA: (%s) Only 8 bit images supported for type 3 and 11\n", name );
return NULL;
}
}
paletted = ( targa_header.image_type == 1 || targa_header.image_type == 9 );
pic = Image_Alloc( targa_header.width, targa_header.height, paletted );
if( paletted ) memcpy( pic->palette, palette, sizeof( palette ));
columns = targa_header.width;
rows = targa_header.height;
targa_rgba = pic->buffer;
// if bit 5 of attributes isn't set, the image has been stored from bottom to top
if( targa_header.attributes & 0x20 )
{
pixbuf = targa_rgba;
row_inc = 0;
}
else
{
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
{
pixbuf = targa_rgba + ( rows - 1 ) * columns;
row_inc = -columns * 2;
}
else
{
pixbuf = targa_rgba + ( rows - 1 ) * columns * 4;
row_inc = -columns * 4 * 2;
}
}
compressed = ( targa_header.image_type == 9 || targa_header.image_type == 10 || targa_header.image_type == 11 );
for( row = col = 0; row < rows; )
{
pixelcount = 0x10000;
readpixelcount = 0x10000;
if( compressed )
{
pixelcount = *buf_p++;
if( pixelcount & 0x80 ) // run-length packet
readpixelcount = 1;
pixelcount = 1 + ( pixelcount & 0x7f );
}
while( pixelcount-- && ( row < rows ) )
{
if( readpixelcount-- > 0 )
{
switch( targa_header.image_type )
{
case 1:
case 9:
// colormapped image
palIndex = *buf_p++;
red = palette[palIndex][0];
green = palette[palIndex][1];
blue = palette[palIndex][2];
alpha = 255;
break;
case 2:
case 10:
// 24 or 32 bit image
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alpha = 255;
if( targa_header.pixel_size == 32 )
alpha = *buf_p++;
break;
case 3:
case 11:
// greyscale image
blue = green = red = *buf_p++;
alpha = 255;
break;
}
}
if( red != green || green != blue )
pic->flags |= IMAGE_HAS_COLOR;
if( alpha != 255 )
{
if( alpha != 0 )
{
SetBits( pic->flags, IMAGE_HAS_8BIT_ALPHA );
ClearBits( pic->flags, IMAGE_HAS_1BIT_ALPHA );
}
else if( !FBitSet( pic->flags, IMAGE_HAS_8BIT_ALPHA ))
SetBits( pic->flags, IMAGE_HAS_1BIT_ALPHA );
}
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
{
*pixbuf++ = palIndex;
}
else
{
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
}
if( ++col == columns )
{
// run spans across rows
row++;
col = 0;
pixbuf += row_inc;
}
}
}
return pic;
}
/*
=============
Image_LoadBMP
expand any image to RGBA32 but keep 8-bit unchanged
=============
*/
rgbdata_t *Image_LoadBMP( const char *name, const byte *buffer, size_t filesize )
{
byte *buf_p, *pixbuf;
byte palette[256][4];
int i, columns, column, rows, row, bpp = 1;
int cbPalBytes = 0, padSize = 0, bps = 0;
rgbdata_t *pic;
bmp_t bhdr;
if( filesize < sizeof( bhdr ))
return NULL;
buf_p = (byte *)buffer;
bhdr.id[0] = *buf_p++;
bhdr.id[1] = *buf_p++; // move pointer
bhdr.fileSize = *(long *)buf_p; buf_p += 4;
bhdr.reserved0 = *(long *)buf_p; buf_p += 4;
bhdr.bitmapDataOffset = *(long *)buf_p; buf_p += 4;
bhdr.bitmapHeaderSize = *(long *)buf_p; buf_p += 4;
bhdr.width = *(long *)buf_p; buf_p += 4;
bhdr.height = *(long *)buf_p; buf_p += 4;
bhdr.planes = *(short *)buf_p; buf_p += 2;
bhdr.bitsPerPixel = *(short *)buf_p; buf_p += 2;
bhdr.compression = *(long *)buf_p; buf_p += 4;
bhdr.bitmapDataSize = *(long *)buf_p; buf_p += 4;
bhdr.hRes = *(long *)buf_p; buf_p += 4;
bhdr.vRes = *(long *)buf_p; buf_p += 4;
bhdr.colors = *(long *)buf_p; buf_p += 4;
bhdr.importantColors = *(long *)buf_p; buf_p += 4;
// bogus file header check
if( bhdr.reserved0 != 0 ) return NULL;
if( bhdr.planes != 1 ) return NULL;
if( memcmp( bhdr.id, "BM", 2 ))
{
MsgDev( D_ERROR, "Image_LoadBMP: only Windows-style BMP files supported (%s)\n", name );
return NULL;
}
if( bhdr.bitmapHeaderSize != 0x28 )
{
MsgDev( D_ERROR, "Image_LoadBMP: invalid header size %i\n", bhdr.bitmapHeaderSize );
return NULL;
}
// bogus info header check
if( bhdr.fileSize != filesize )
{
// Sweet Half-Life issues. splash.bmp have bogus filesize
MsgDev( D_WARN, "Image_LoadBMP: %s have incorrect file size %i should be %i\n", name, filesize, bhdr.fileSize );
}
// bogus compression? Only non-compressed supported.
if( bhdr.compression != BI_RGB )
{
MsgDev( D_ERROR, "Image_LoadBMP: only uncompressed BMP files supported (%s)\n", name );
return false;
}
columns = bhdr.width;
rows = abs( bhdr.height );
if( !Image_ValidSize( name, columns, rows ))
return false;
pic = Image_Alloc( columns, rows, ( bhdr.bitsPerPixel == 4 || bhdr.bitsPerPixel == 8 ));
if( bhdr.bitsPerPixel <= 8 )
{
// figure out how many entries are actually in the table
if( bhdr.colors == 0 )
{
bhdr.colors = 256;
cbPalBytes = (1 << bhdr.bitsPerPixel) * sizeof( RGBQUAD );
}
else cbPalBytes = bhdr.colors * sizeof( RGBQUAD );
}
memcpy( palette, buf_p, cbPalBytes );
if( bhdr.bitsPerPixel == 4 || bhdr.bitsPerPixel == 8 )
{
pixbuf = pic->palette;
// bmp have a reversed palette colors
for( i = 0; i < bhdr.colors; i++ )
{
*pixbuf++ = palette[i][2];
*pixbuf++ = palette[i][1];
*pixbuf++ = palette[i][0];
if( palette[i][0] != palette[i][1] || palette[i][1] != palette[i][2] )
pic->flags |= IMAGE_HAS_COLOR;
}
}
else bpp = 4;
buf_p += cbPalBytes;
bps = bhdr.width * (bhdr.bitsPerPixel >> 3);
switch( bhdr.bitsPerPixel )
{
case 1:
padSize = (( 32 - ( bhdr.width % 32 )) / 8 ) % 4;
break;
case 4:
padSize = (( 8 - ( bhdr.width % 8 )) / 2 ) % 4;
break;
case 16:
padSize = ( 4 - ( bhdr.width * 2 % 4 )) % 4;
break;
case 8:
case 24:
padSize = ( 4 - ( bps % 4 )) % 4;
break;
}
for( row = rows - 1; row >= 0; row-- )
{
pixbuf = pic->buffer + (row * columns * bpp);
for( column = 0; column < columns; column++ )
{
byte red, green, blue, alpha;
int c, k, palIndex;
word shortPixel;
switch( bhdr.bitsPerPixel )
{
case 1:
alpha = *buf_p++;
column--; // ingnore main iterations
for( c = 0, k = 128; c < 8; c++, k >>= 1 )
{
red = green = blue = (!!(alpha & k) == 1 ? 0xFF : 0x00);
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 0x00;
if( ++column == columns )
break;
}
break;
case 4:
alpha = *buf_p++;
palIndex = alpha >> 4;
red = palette[palIndex][2];
green = palette[palIndex][1];
blue = palette[palIndex][0];
alpha = palette[palIndex][3];
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
{
*pixbuf++ = palIndex;
}
else
{
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
}
if( ++column == columns )
break;
palIndex = alpha & 0x0F;
red = palette[palIndex][2];
green = palette[palIndex][1];
blue = palette[palIndex][0];
alpha = palette[palIndex][3];
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
{
*pixbuf++ = palIndex;
}
else
{
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
}
break;
case 8:
palIndex = *buf_p++;
red = palette[palIndex][2];
green = palette[palIndex][1];
blue = palette[palIndex][0];
alpha = palette[palIndex][3];
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
{
*pixbuf++ = palIndex;
}
else
{
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
}
break;
case 16:
shortPixel = *(word *)buf_p, buf_p += 2;
*pixbuf++ = blue = (shortPixel & ( 31 << 10 )) >> 7;
*pixbuf++ = green = (shortPixel & ( 31 << 5 )) >> 2;
*pixbuf++ = red = (shortPixel & ( 31 )) << 3;
*pixbuf++ = alpha = 0xff;
break;
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha = 0xFF;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alpha = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
break;
default:
MsgDev( D_ERROR, "Image_LoadBMP: illegal pixel_size (%s)\n", name );
Mem_Free( pic );
return NULL;
}
if( !FBitSet( pic->flags, IMAGE_QUANTIZED ) && ( red != green || green != blue ))
pic->flags |= IMAGE_HAS_COLOR;
if( alpha != 255 )
{
if( alpha != 0 )
{
SetBits( pic->flags, IMAGE_HAS_8BIT_ALPHA );
ClearBits( pic->flags, IMAGE_HAS_1BIT_ALPHA );
}
else if( !FBitSet( pic->flags, IMAGE_HAS_8BIT_ALPHA ))
SetBits( pic->flags, IMAGE_HAS_1BIT_ALPHA );
}
}
buf_p += padSize; // probably actual only for 4-bit bmps
}
return pic;
}
/*
================
COM_LoadImage
handle bmp & tga
================
*/
rgbdata_t *COM_LoadImage( const char *filename )
{
size_t fileSize;
byte *buf = (byte *)COM_LoadFile( filename, &fileSize, false );
const char *ext = COM_FileExtension( filename );
rgbdata_t *pic = NULL;
if( !buf ) return NULL;
if( !Q_stricmp( ext, "tga" ))
pic = Image_LoadTGA( filename, buf, fileSize );
else if( !Q_stricmp( ext, "bmp" ))
pic = Image_LoadBMP( filename, buf, fileSize );
else MsgDev( D_ERROR, "COM_LoadImage: unsupported format (%s)\n", ext );
Mem_Free( buf ); // release file
return pic; // may be NULL
}
/*
================
COM_LoadImage
handle bmp & tga
================
*/
rgbdata_t *COM_LoadImageMemory( const char *filename, const byte *buf, size_t fileSize )
{
const char *ext = COM_FileExtension( filename );
rgbdata_t *pic = NULL;
if( !buf )
{
MsgDev( D_ERROR, "COM_LoadImageMemory: unable to load (%s)\n", filename );
return NULL;
}
if( !Q_stricmp( ext, "tga" ))
pic = Image_LoadTGA( filename, buf, fileSize );
else if( !Q_stricmp( ext, "bmp" ))
pic = Image_LoadBMP( filename, buf, fileSize );
else MsgDev( D_ERROR, "COM_LoadImage: unsupported format (%s)\n", ext );
return pic; // may be NULL
}
/*
=============================================================================
IMAGE PROCESSING
=============================================================================
*/
#define TRANSPARENT_R 0x0
#define TRANSPARENT_G 0x0
#define TRANSPARENT_B 0xFF
#define IS_TRANSPARENT( p ) ( p[0] == TRANSPARENT_R && p[1] == TRANSPARENT_G && p[2] == TRANSPARENT_B )
#define LERPBYTE( i ) r = resamplerow1[i]; out[i] = (byte)(((( resamplerow2[i] - r ) * lerp)>>16 ) + r )
static void Image_Resample32LerpLine( const byte *in, byte *out, int inwidth, int outwidth )
{
int j, xi, oldx = 0, f, fstep, endx, lerp;
fstep = (int)(inwidth * 65536.0f / outwidth);
endx = (inwidth-1);
for( j = 0, f = 0; j < outwidth; j++, f += fstep )
{
xi = f>>16;
if( xi != oldx )
{
in += (xi - oldx) * 4;
oldx = xi;
}
if( xi < endx )
{
lerp = f & 0xFFFF;
*out++ = (byte)((((in[4] - in[0]) * lerp)>>16) + in[0]);
*out++ = (byte)((((in[5] - in[1]) * lerp)>>16) + in[1]);
*out++ = (byte)((((in[6] - in[2]) * lerp)>>16) + in[2]);
*out++ = (byte)((((in[7] - in[3]) * lerp)>>16) + in[3]);
}
else // last pixel of the line has no pixel to lerp to
{
*out++ = in[0];
*out++ = in[1];
*out++ = in[2];
*out++ = in[3];
}
}
}
void Image_Resample32Lerp( const void *indata, int inwidth, int inheight, void *outdata, int outwidth, int outheight )
{
const byte *inrow;
int i, j, r, yi, oldy = 0, f, fstep, lerp, endy = (inheight - 1);
int inwidth4 = inwidth * 4;
int outwidth4 = outwidth * 4;
byte *out = (byte *)outdata;
byte *resamplerow1;
byte *resamplerow2;
fstep = (int)(inheight * 65536.0f / outheight);
resamplerow1 = (byte *)Mem_Alloc( outwidth * 4 * 2 );
resamplerow2 = resamplerow1 + outwidth * 4;
inrow = (const byte *)indata;
Image_Resample32LerpLine( inrow, resamplerow1, inwidth, outwidth );
Image_Resample32LerpLine( inrow + inwidth4, resamplerow2, inwidth, outwidth );
for( i = 0, f = 0; i < outheight; i++, f += fstep )
{
yi = f >> 16;
if( yi < endy )
{
lerp = f & 0xFFFF;
if( yi != oldy )
{
inrow = (byte *)indata + inwidth4 * yi;
if( yi == ( oldy + 1 )) memcpy( resamplerow1, resamplerow2, outwidth4 );
else Image_Resample32LerpLine( inrow, resamplerow1, inwidth, outwidth );
Image_Resample32LerpLine( inrow + inwidth4, resamplerow2, inwidth, outwidth );
oldy = yi;
}
j = outwidth - 4;
while( j >= 0 )
{
LERPBYTE( 0);
LERPBYTE( 1);
LERPBYTE( 2);
LERPBYTE( 3);
LERPBYTE( 4);
LERPBYTE( 5);
LERPBYTE( 6);
LERPBYTE( 7);
LERPBYTE( 8);
LERPBYTE( 9);
LERPBYTE(10);
LERPBYTE(11);
LERPBYTE(12);
LERPBYTE(13);
LERPBYTE(14);
LERPBYTE(15);
out += 16;
resamplerow1 += 16;
resamplerow2 += 16;
j -= 4;
}
if( j & 2 )
{
LERPBYTE( 0);
LERPBYTE( 1);
LERPBYTE( 2);
LERPBYTE( 3);
LERPBYTE( 4);
LERPBYTE( 5);
LERPBYTE( 6);
LERPBYTE( 7);
out += 8;
resamplerow1 += 8;
resamplerow2 += 8;
}
if( j & 1 )
{
LERPBYTE( 0);
LERPBYTE( 1);
LERPBYTE( 2);
LERPBYTE( 3);
out += 4;
resamplerow1 += 4;
resamplerow2 += 4;
}
resamplerow1 -= outwidth4;
resamplerow2 -= outwidth4;
}
else
{
if( yi != oldy )
{
inrow = (byte *)indata + inwidth4 * yi;
if( yi == ( oldy + 1 )) memcpy( resamplerow1, resamplerow2, outwidth4 );
else Image_Resample32LerpLine( inrow, resamplerow1, inwidth, outwidth );
oldy = yi;
}
memcpy( out, resamplerow1, outwidth4 );
}
}
Mem_Free( resamplerow1 );
}
void Image_Resample8Nolerp( const void *indata, int inwidth, int inheight, void *outdata, int outwidth, int outheight )
{
int i, j;
byte *in, *inrow;
size_t frac, fracstep;
byte *out = (byte *)outdata;
in = (byte *)indata;
fracstep = inwidth * 0x10000 / outwidth;
for( i = 0; i < outheight; i++, out += outwidth )
{
inrow = in + inwidth * (i * inheight / outheight);
frac = fracstep >> 1;
for( j = 0; j < outwidth; j++ )
{
out[j] = inrow[frac>>16];
frac += fracstep;
}
}
}
/*
================
Image_Resample
================
*/
rgbdata_t *Image_Resample( rgbdata_t *pic, int new_width, int new_height )
{
if( !pic ) return NULL;
// nothing to resample ?
if( pic->width == new_width && pic->height == new_height )
return pic;
MsgDev( D_REPORT, "Image_Resample: from %ix%i to %ix%i\n", pic->width, pic->height, new_width, new_height );
rgbdata_t *out = Image_Alloc( new_width, new_height, FBitSet( pic->flags, IMAGE_QUANTIZED ));
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
Image_Resample8Nolerp( pic->buffer, pic->width, pic->height, out->buffer, out->width, out->height );
else Image_Resample32Lerp( pic->buffer, pic->width, pic->height, out->buffer, out->width, out->height );
// copy remaining data from source
if( FBitSet( pic->flags, IMAGE_QUANTIZED ))
memcpy( out->palette, pic->palette, 768 );
out->flags = pic->flags;
// release old image
Mem_Free( pic );
return out;
}
/*
==============
Image_MakeOneBitAlpha
remap all pixels of color 0, 0, 255 to index 255
and remap index 255 to something else
==============
*/
void Image_MakeOneBitAlpha( rgbdata_t *pic )
{
byte transtable[256], *buf;
int i, j, firsttrans = -1;
if( !pic || !FBitSet( pic->flags, IMAGE_QUANTIZED ))
return; // only for quantized images
for( i = 0; i < 256; i++ )
{
if( IS_TRANSPARENT(( pic->palette + ( i * 3 ))))
{
transtable[i] = 255;
if( firsttrans < 0 )
firsttrans = i;
}
else transtable[i] = i;
}
// if there is some transparency, translate it
if( 0 )//firsttrans >= 0 )
{
if( !IS_TRANSPARENT(( pic->palette + ( 255 * 3 ))))
transtable[255] = firsttrans;
buf = pic->buffer;
for( j = 0; j < pic->height; j++ )
{
for( i = 0; i < pic->width; i++ )
{
*buf = transtable[*buf];
buf++;
}
}
// move palette entry for pixels previously mapped to entry 255
pic->palette[firsttrans*3+0] = pic->palette[255*3+0];
pic->palette[firsttrans*3+1] = pic->palette[255*3+1];
pic->palette[firsttrans*3+2] = pic->palette[255*3+2];
pic->palette[255*3+0] = TRANSPARENT_R;
pic->palette[255*3+1] = TRANSPARENT_G;
pic->palette[255*3+2] = TRANSPARENT_B;
}
else
{
// jsut turn last color to blue
pic->palette[255*3+0] = TRANSPARENT_R;
pic->palette[255*3+1] = TRANSPARENT_G;
pic->palette[255*3+2] = TRANSPARENT_B;
}
// needs for software mip generator
SetBits( pic->flags, IMAGE_HAS_1BIT_ALPHA );
}
/*
================
Image_ApplyGamma
we can't store alpha-channel into 8-bit texture
but we can store it separate as another image
================
*/
void Image_ApplyGamma( rgbdata_t *pic )
{
if( !pic || g_gamma == 1.8f )
return;
if( !FBitSet( pic->flags, IMAGE_QUANTIZED ))
return; // only for quantized images
float g = g_gamma / 1.8;
// gamma correct the monster textures to a gamma of 1.8
for( int i = 0; i < 256; i++ )
{
pic->palette[i*3+0] = pow( pic->palette[i*3+0] / 255.0f, g ) * 255;
pic->palette[i*3+1] = pow( pic->palette[i*3+1] / 255.0f, g ) * 255;
pic->palette[i*3+2] = pow( pic->palette[i*3+2] / 255.0f, g ) * 255;
}
}
/*
================
Image_Flip
================
*/
rgbdata_t *Image_Flip( rgbdata_t *src )
{
word width = src->width;
word height = src->height;
int samples = FBitSet( src->flags, IMAGE_QUANTIZED ) ? 1 : 4;
bool flip_x = FBitSet( src->flags, IMAGE_FLIP_X ) ? true : false;
bool flip_y = FBitSet( src->flags, IMAGE_FLIP_Y ) ? true : false;
bool flip_i = FBitSet( src->flags, IMAGE_ROT_90 ) ? true : false;
int row_inc = ( flip_y ? -samples : samples ) * width;
int col_inc = ( flip_x ? -samples : samples );
int row_ofs = ( flip_y ? ( height - 1 ) * width * samples : 0 );
int col_ofs = ( flip_x ? ( width - 1 ) * samples : 0 );
const byte *p, *line;
int i, x, y;
rgbdata_t *dst;
byte *out;
// nothing to process
if( !FBitSet( src->flags, IMAGE_FLIP_X|IMAGE_FLIP_Y|IMAGE_ROT_90 ))
return src;
dst = Image_Copy( src );
out = dst->buffer;
if( flip_i )
{
for( x = 0, line = src->buffer + col_ofs; x < width; x++, line += col_inc )
for( y = 0, p = line + row_ofs; y < height; y++, p += row_inc, out += samples )
for( i = 0; i < samples; i++ )
out[i] = p[i];
}
else
{
for( y = 0, line = src->buffer + row_ofs; y < height; y++, line += row_inc )
for( x = 0, p = line + col_ofs; x < width; x++, p += col_inc, out += samples )
for( i = 0; i < samples; i++ )
out[i] = p[i];
}
// update bounds
if( FBitSet( src->flags, IMAGE_ROT_90 ))
{
dst->width = height;
dst->height = width;
}
else
{
dst->width = width;
dst->height = height;
}
Mem_Free( src ); // release source image
return dst;
}