Paranoia2/utils/common/mathlib.h
2020-08-31 19:50:41 +03:00

290 lines
11 KiB
C

/***
*
* Copyright (c) 1996-2002, Valve LLC. All rights reserved.
*
* This product contains software technology licensed from Id
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
* All Rights Reserved.
*
****/
#ifndef __MATHLIB__
#define __MATHLIB__
// mathlib.h
#include <math.h>
#include <float.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef DOUBLEVEC_T
typedef double vec_t;
#else
typedef float vec_t;
#endif
struct half
{
unsigned short sh;
half( ){};
half( const float x );
operator float () const;
};
typedef vec_t vec2_t[2]; // x,y
typedef vec_t vec3_t[3]; // x,y,z
typedef vec_t vec4_t[4]; // x,y,z,w
typedef vec_t vec5_t[5]; // rare case
typedef vec_t matrix3x4[4][3]; // rad matrix
typedef vec_t matrix4x4[4][4]; // rad matrix
typedef byte bvec3_t[3]; // x,y,z
typedef short svec3_t[3];
typedef half hvec3_t[3];
// euler angle order
#define PITCH 0
#define YAW 1
#define ROLL 2
#ifndef M_PI
#define M_PI (vec_t)3.14159265358979323846
#endif
#ifndef M_PI2
#define M_PI2 (vec_t)6.28318530717958647692
#endif
#define M_PI_F ((vec_t)(M_PI))
#define M_PI2_F ((vec_t)(M_PI2))
#define RAD2DEG( x ) ((vec_t)(x) * (vec_t)(180 / M_PI))
#define DEG2RAD( x ) ((vec_t)(x) * (vec_t)(M_PI / 180))
#define MINSPLIT_EPSILON 0.002
#define MAXSPLIT_EPSILON 0.2
#define SMALL_FLOAT 1e-12
#define SIDE_FRONT 0
#define SIDE_BACK 1
#define SIDE_ON 2
#define SIDE_CROSS -2
#define PLANE_X 0 // 0 - 2 are axial planes
#define PLANE_Y 1 // 3 needs alternate calc
#define PLANE_Z 2
#define PLANE_ANY_X 3
#define PLANE_ANY_Y 4
#define PLANE_ANY_Z 5
#define PLANE_LAST_AXIAL PLANE_Z
#define PLANE_NONAXIAL 3
#define Q_min( a, b ) (((a) < (b)) ? (a) : (b))
#define Q_max( a, b ) (((a) > (b)) ? (a) : (b))
#define Q_recip( a ) ((vec_t)(1.0 / (vec_t)(a)))
#define Q_floor( a ) ((vec_t)(long)(a))
#define Q_ceil( a ) ((vec_t)(long)((a) + 1))
#define Q_round( a ) (floor(( a ) + 0.5))
#define Q_rounddn( x, y ) (floor( x / y + 0.5 ) * y )
#define Q_roundup( x, y ) (ceil( x / y ) * y )
#define Q_rint(x) ((x) < 0 ? ((int)((x) - 0.5)) : ((int)((x) + 0.5)))
#define IS_NAN(x) (((*(int *)&x) & (255<<23)) == (255<<23))
#define AxisFromNormal( n ) ( fabs( n[0] ) < NORMAL_EPSILON ) + ( fabs( n[1] ) < NORMAL_EPSILON ) + ( fabs( n[2] ) < NORMAL_EPSILON )
#define ARRAYSIZE( p ) (sizeof( p ) / sizeof( p[0] ))
//
// Vector operations
//
#define Vector2Set(v, x, y) ((v)[0]=(x),(v)[1]=(y))
#define Vector2Scale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale))
#define Vector2Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1])
#define VectorIsNAN(v) (IS_NAN(v[0]) || IS_NAN(v[1]) || IS_NAN(v[2]))
#define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2])
#define DotProductAbs(x,y) (abs((x)[0]*(y)[0])+abs((x)[1]*(y)[1])+abs((x)[2]*(y)[2]))
#define DotProductFabs(x,y) (fabs((x)[0]*(y)[0])+fabs((x)[1]*(y)[1])+fabs((x)[2]*(y)[2]))
#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
#define Vector2Cross(a,b) ((a)[0]*(b)[1]-(a)[1]*(b)[0])
#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
#define VectorAddScalar(a,b,c) ((c)[0]=(a)[0]+(b),(c)[1]=(a)[1]+(b),(c)[2]=(a)[2]+(b))
#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
#define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale))
#define VectorCompare(v1,v2) ((v1)[0]==(v2)[0] && (v1)[1]==(v2)[1] && (v1)[2]==(v2)[2])
#define VectorCompareMin(a,b,c) ((c)[0] = Q_min((a)[0], (b)[0]), (c)[1] = Q_min((a)[1], (b)[1]), (c)[2] = Q_min((a)[2], (b)[2]))
#define VectorCompareMax(a,b,c) ((c)[0] = Q_max((a)[0], (b)[0]), (c)[1] = Q_max((a)[1], (b)[1]), (c)[2] = Q_max((a)[2], (b)[2]))
#define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2])
#define VectorDivide( in, d, out ) VectorScale( in, (1.0 / (d)), out )
#define VectorFill( a, b ) ((a)[0] = (b), (a)[1] = (b), (a)[2] = (b))
#define VectorMaximum(a) (Q_max((a)[0], Q_max((a)[1], (a)[2] )))
#define VectorMinimum(a) (Q_min((a)[0], Q_min((a)[1], (a)[2] )))
#define VectorMax(a) ( Q_max((a)[0], Q_max((a)[1], (a)[2])) )
#define VectorAvg(a) ( ((a)[0] + (a)[1] + (a)[2]) / 3 )
#define VectorLength(a) ( sqrt( DotProduct( a, a )))
#define VectorLength2(a) (DotProduct( a, a ))
#define VectorDistance(a, b) (sqrt( VectorDistance2( a, b )))
#define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))
#define VectorAverage(a,b,o) ((o)[0]=((a)[0]+(b)[0])*0.5,(o)[1]=((a)[1]+(b)[1])*0.5,(o)[2]=((a)[2]+(b)[2])*0.5)
#define VectorSet(v, x, y, z) ((v)[0]=(x),(v)[1]=(y),(v)[2]=(z))
#define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0)
#define VectorNormalize2( v ) { vec_t ilength = sqrt( DotProduct( v, v )); if( ilength ) ilength = 1.0 / ilength; VectorScale( v, ilength, v ); }
#define VectorLerp( v1, lerp, v2, c ) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2]))
#define VectorNegate(x, y) ((y)[0] = -(x)[0], (y)[1] = -(x)[1], (y)[2] = -(x)[2])
#define VectorRecip(x, y) ((y)[0] = 1.0 / (x)[0], (y)[1] = 1.0 / (x)[1], (y)[2] = 1.0 / (x)[2])
#define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2])
#define VectorMAM( scale1, b1, scale2, b2, c ) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2])
#define VectorIsNull( v ) ((v)[0] == 0.0 && (v)[1] == 0.0 && (v)[2] == 0.0)
#define VectorIsFinite( v ) ( _finite( (v)[0] ) && _finite( (v)[1] ) && _finite((v)[2] ))
#define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal))
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
#define PlaneDist2(point,plane) (DotProduct((point), (plane)->normal))
#define PlaneDiff2(point,plane) ((DotProduct((point), (plane)->normal)) - (plane)->dist)
#define bound( min, num, max ) ((num) >= (min) ? ((num) < (max) ? (num) : (max)) : (min))
#define Vector4Set(v, a, b, c, d) ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c),(v)[3] = (d))
#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define VectorSnap( a, b, c ) (c[0] = Q_rounddn( a[0], b ), c[1] = Q_rounddn( a[1], b ), c[2] = Q_rounddn( a[2], b ))
// return the smallest power of two >= x.
// returns 0 if x == 0 or x > 0x80000000 (ie numbers that would be negative if x was signed)
// NOTE: the old code took an int, and if you pass in an int of 0x80000000 casted to a uint,
// you'll get 0x80000000, which is correct for uints, instead of 0, which was correct for ints
_forceinline uint SmallestPowerOfTwoGreaterOrEqual( uint x )
{
x -= 1;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x + 1;
}
// Remap a value in the range [A,B] to [C,D].
inline float RemapVal( float val, float A, float B, float C, float D)
{
if ( A == B )
return val >= B ? D : C;
return C + (D - C) * (val - A) / (B - A);
}
inline float RemapValClamped( float val, float A, float B, float C, float D)
{
if ( A == B )
return val >= B ? D : C;
float cVal = (val - A) / (B - A);
cVal = bound( 0.0f, cVal, 1.0f );
return C + (D - C) * cVal;
}
inline vec_t VectorNormalize( vec3_t v )
{
double length;
length = DotProduct( v, v );
length = sqrt( length );
if( length < 1e-6 )
{
VectorClear( v );
return 0.0;
}
v[0] /= length;
v[1] /= length;
v[2] /= length;
return length;
}
_forceinline int ffsl( long mask )
{
int bit;
if( mask == 0 ) return 0;
for( bit = 1; !(mask & 1); bit++ )
mask = (unsigned long)mask >> 1;
return bit;
}
/*
==============
fix_coord
converts the reletive tex coords to absolute
==============
*/
_forceinline uint fix_coord( vec_t in, uint width )
{
if( in > 0 ) return (uint)in % width;
return width - ((uint)fabs( in ) % width);
}
bool VectorIsOnAxis( const vec3_t v );
bool VectorCompareEpsilon( const vec3_t vec1, const vec3_t vec2, vec_t epsilon );
bool VectorCompareEpsilon2( const vec3_t vec1, const float vec2[3], vec_t epsilon );
void CalcST( const vec3_t p0, const vec3_t p1, const vec3_t p2, const vec2_t t0, const vec2_t t1, const vec2_t t2, vec3_t s, vec3_t t, bool areaweight = false );
void VectorVectors( const vec3_t forward, vec3_t right, vec3_t up );
vec_t VectorNormalizeLength2( const vec3_t v, vec3_t out );
void SinCos( float radians, float *sine, float *cosine );
uint VertexHashKey( const vec3_t point, uint hashSize );
int PlaneTypeForNormal( const vec3_t normal );
int SignbitsForPlane( const vec3_t normal );
float RandomFloat( float flLow, float flHigh );
float ColorNormalize( const vec3_t in, vec3_t out );
unsigned short FloatToHalf( float v );
float HalfToFloat( unsigned short h );
//
// Bounding Box operations
//
void ClearBounds( vec3_t mins, vec3_t maxs );
bool BoundsIsCleared( const vec3_t mins, const vec3_t maxs );
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs );
bool BoundsIntersect( const vec3_t mins1, const vec3_t maxs1, const vec3_t mins2, const vec3_t maxs2, vec_t epsilon = 0.0 );
bool BoundsAndSphereIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t origin, vec_t radius );
bool SphereIntersect( const vec3_t vSphereCenter, vec_t fSphereRadiusSquared, const vec3_t vLinePt, const vec3_t vLineDir );
vec_t RadiusFromBounds( const vec3_t mins, const vec3_t maxs );
void ExpandBounds( vec3_t mins, vec3_t maxs, vec_t offset );
void COM_NormalizeAngles( vec3_t angles );
//
// Quaternion & matrices
//
#define Matrix3x4_LoadIdentity( mat ) Matrix3x4_Copy( mat, matrix3x4_identity )
#define Matrix3x4_Copy( out, in ) memcpy( out, in, sizeof( matrix3x4 ))
#define Matrix4x4_LoadIdentity( mat ) Matrix3x4_Copy( mat, matrix4x4_identity )
#define Matrix4x4_Copy( out, in ) memcpy( out, in, sizeof( matrix4x4 ))
void AngleQuaternion( const vec3_t angles, vec4_t q );
void Matrix3x4_CreateFromEntityScale3f( matrix3x4 out, const vec3_t angles, const vec3_t origin, const vec3_t scale );
void Matrix3x4_FromOriginQuat( matrix3x4 out, const vec4_t quaternion, const vec3_t origin );
void Matrix3x4_MatrixToEntityScale3f( const matrix3x4 in, vec3_t origin, vec3_t angles, vec3_t scale );
void Matrix3x4_ConcatTransforms( matrix3x4 out, const matrix3x4 in1, const matrix3x4 in2 );
void Matrix3x4_TransformStandardPlane( const matrix3x4 in, const vec3_t normal, float d, vec3_t out, float *dist );
void Matrix3x4_VectorITransform( const matrix3x4 in, const vec3_t v, vec3_t out );
void Matrix3x4_VectorTransform( const matrix3x4 in, const vec3_t v, vec3_t out );
void Matrix3x4_Vector4Transform( const matrix3x4 in, const vec4_t v, vec4_t out );
void Matrix3x4_VectorIRotate( const matrix3x4 in, const vec3_t v, vec3_t out );
void Matrix3x4_VectorRotate( const matrix3x4 in, const vec3_t v, vec3_t out );
void QuaternionSlerp( const vec4_t p, vec4_t q, vec_t t, vec4_t qt );
bool Matrix3x4_Invert_Full( matrix3x4 out, const matrix3x4 in );
vec_t Matrix3x4_CalcSign( const matrix3x4 in );
extern vec3_t vec3_origin;
extern const matrix3x4 matrix3x4_identity;
extern const matrix4x4 matrix4x4_identity;
bool Matrix4x4_Invert_Full( matrix4x4 out, const matrix4x4 in1 );
void Matrix4x4_Concat( matrix4x4 out, const matrix4x4 in1, const matrix4x4 in2 );
#ifdef __cplusplus
}
#endif
#endif