Use NEON/SSE sincos, use fast inverse square root

This commit is contained in:
a1batross 2016-04-03 22:48:10 +03:00
parent 82b7877147
commit 3157d15c37
9 changed files with 1210 additions and 35 deletions

View File

@ -141,6 +141,7 @@ LOCAL_C_INCLUDES := $(LOCAL_PATH) \
$(LOCAL_PATH)/include \
$(LOCAL_PATH)/include/hud \
$(LOCAL_PATH)/include/studio \
$(LOCAL_PATH)/include/math \
$(LOCAL_PATH)/../common \
$(LOCAL_PATH)/../engine \
$(LOCAL_PATH)/../game_shared \

View File

@ -24,7 +24,7 @@ cmake_minimum_required(VERSION 2.6.0)
project (CLDLL)
# set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -pedantic")
set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} -flto -march=native -Wall -Wl,--no-undefined")
set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} -march=native -Wall -Wl,--no-undefined")
set (CMAKE_C_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -ggdb")
set (CMAKE_C_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
set (CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_CXX_FLAGS_MINSIZEREL} -Os")
@ -195,6 +195,7 @@ include_directories (
include/
include/hud/
include/studio/
include/math/
../cl_dll/
../common/
../engine/
@ -205,7 +206,7 @@ include_directories (
add_library (${CLDLL_LIBRARY} SHARED ${CLDLL_SOURCES})
add_definitions( -D_CS16CLIENT_ENABLE_GSRC_SUPPORT
-DLINUX -D_LINUX -DCLIENT_WEAPONS -DCLIENT_DLL
-D_DEBUG -D_CS16CLIENT_ALLOW_SPECIAL_SCRIPTING
-D_DEBUG -DVECTORIZE_SINCOS
-Dstricmp=strcasecmp -D_strnicmp=strncasecmp -Dstrnicmp=strncasecmp)
target_link_libraries( ${CLDLL_LIBRARY} ${CMAKE_DL_LIBS} -L/usr/lib/i386-linux-gnu -lSDL2 )

View File

@ -0,0 +1,301 @@
/* NEON implementation of sin, cos, exp and log
Inspired by Intel Approximate Math library, and based on the
corresponding algorithms of the cephes math library
*/
/* Copyright (C) 2011 Julien Pommier
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
(this is the zlib license)
*/
#include <arm_neon.h>
typedef float32x4_t v4sf; // vector of 4 float
typedef uint32x4_t v4su; // vector of 4 uint32
typedef int32x4_t v4si; // vector of 4 uint32
#define c_inv_mant_mask ~0x7f800000u
#define c_cephes_SQRTHF 0.707106781186547524
#define c_cephes_log_p0 7.0376836292E-2
#define c_cephes_log_p1 - 1.1514610310E-1
#define c_cephes_log_p2 1.1676998740E-1
#define c_cephes_log_p3 - 1.2420140846E-1
#define c_cephes_log_p4 + 1.4249322787E-1
#define c_cephes_log_p5 - 1.6668057665E-1
#define c_cephes_log_p6 + 2.0000714765E-1
#define c_cephes_log_p7 - 2.4999993993E-1
#define c_cephes_log_p8 + 3.3333331174E-1
#define c_cephes_log_q1 -2.12194440e-4
#define c_cephes_log_q2 0.693359375
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
v4sf log_ps(v4sf x) {
v4sf one = vdupq_n_f32(1);
x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
v4si ux = vreinterpretq_s32_f32(x);
v4si emm0 = vshrq_n_s32(ux, 23);
/* keep only the fractional part */
ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
x = vreinterpretq_f32_s32(ux);
emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
v4sf e = vcvtq_f32_s32(emm0);
e = vaddq_f32(e, one);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
x = vsubq_f32(x, one);
e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
x = vaddq_f32(x, tmp);
v4sf z = vmulq_f32(x,x);
v4sf y = vdupq_n_f32(c_cephes_log_p0);
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
y = vmulq_f32(y, x);
y = vmulq_f32(y, z);
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
y = vaddq_f32(y, tmp);
tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
y = vsubq_f32(y, tmp);
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
x = vaddq_f32(x, y);
x = vaddq_f32(x, tmp);
x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
return x;
}
#define c_exp_hi 88.3762626647949f
#define c_exp_lo -88.3762626647949f
#define c_cephes_LOG2EF 1.44269504088896341
#define c_cephes_exp_C1 0.693359375
#define c_cephes_exp_C2 -2.12194440e-4
#define c_cephes_exp_p0 1.9875691500E-4
#define c_cephes_exp_p1 1.3981999507E-3
#define c_cephes_exp_p2 8.3334519073E-3
#define c_cephes_exp_p3 4.1665795894E-2
#define c_cephes_exp_p4 1.6666665459E-1
#define c_cephes_exp_p5 5.0000001201E-1
/* exp() computed for 4 float at once */
v4sf exp_ps(v4sf x) {
v4sf tmp, fx;
v4sf one = vdupq_n_f32(1);
x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
/* express exp(x) as exp(g + n*log(2)) */
fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
/* perform a floorf */
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
/* if greater, substract 1 */
v4su mask = vcgtq_f32(tmp, fx);
mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
x = vsubq_f32(x, tmp);
x = vsubq_f32(x, z);
static const float cephes_exp_p[6] = { c_cephes_exp_p0, c_cephes_exp_p1, c_cephes_exp_p2, c_cephes_exp_p3, c_cephes_exp_p4, c_cephes_exp_p5 };
v4sf y = vld1q_dup_f32(cephes_exp_p+0);
v4sf c1 = vld1q_dup_f32(cephes_exp_p+1);
v4sf c2 = vld1q_dup_f32(cephes_exp_p+2);
v4sf c3 = vld1q_dup_f32(cephes_exp_p+3);
v4sf c4 = vld1q_dup_f32(cephes_exp_p+4);
v4sf c5 = vld1q_dup_f32(cephes_exp_p+5);
y = vmulq_f32(y, x);
z = vmulq_f32(x,x);
y = vaddq_f32(y, c1);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c2);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c3);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c4);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c5);
y = vmulq_f32(y, z);
y = vaddq_f32(y, x);
y = vaddq_f32(y, one);
/* build 2^n */
int32x4_t mm;
mm = vcvtq_s32_f32(fx);
mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
mm = vshlq_n_s32(mm, 23);
v4sf pow2n = vreinterpretq_f32_s32(mm);
y = vmulq_f32(y, pow2n);
return y;
}
#define c_minus_cephes_DP1 -0.78515625
#define c_minus_cephes_DP2 -2.4187564849853515625e-4
#define c_minus_cephes_DP3 -3.77489497744594108e-8
#define c_sincof_p0 -1.9515295891E-4
#define c_sincof_p1 8.3321608736E-3
#define c_sincof_p2 -1.6666654611E-1
#define c_coscof_p0 2.443315711809948E-005
#define c_coscof_p1 -1.388731625493765E-003
#define c_coscof_p2 4.166664568298827E-002
#define c_cephes_FOPI 1.27323954473516 // 4 / M_PI
/* evaluation of 4 sines & cosines at once.
The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
Note also that when you compute sin(x), cos(x) is available at
almost no extra price so both sin_ps and cos_ps make use of
sincos_ps..
*/
void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos) { // any x
v4sf xmm1, xmm2, xmm3, y;
v4su emm2;
v4su sign_mask_sin, sign_mask_cos;
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
x = vabsq_f32(x);
/* scale by 4/Pi */
y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
/* store the integer part of y in mm0 */
emm2 = vcvtq_u32_f32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
y = vcvtq_f32_u32(emm2);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
x = vaddq_f32(x, xmm1);
x = vaddq_f32(x, xmm2);
x = vaddq_f32(x, xmm3);
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
and the second polynom (Pi/4 <= x <= 0) in y2 */
v4sf z = vmulq_f32(x,x);
v4sf y1, y2;
y1 = vmulq_n_f32(z, c_coscof_p0);
y2 = vmulq_n_f32(z, c_sincof_p0);
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, z);
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, z);
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, x);
y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
y2 = vaddq_f32(y2, x);
y1 = vaddq_f32(y1, vdupq_n_f32(1));
/* select the correct result from the two polynoms */
v4sf ys = vbslq_f32(poly_mask, y1, y2);
v4sf yc = vbslq_f32(poly_mask, y2, y1);
*ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
*ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
}
v4sf sin_ps(v4sf x) {
v4sf ysin, ycos;
sincos_ps(x, &ysin, &ycos);
return ysin;
}
v4sf cos_ps(v4sf x) {
v4sf ysin, ycos;
sincos_ps(x, &ysin, &ycos);
return ycos;
}

View File

@ -0,0 +1,711 @@
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
Inspired by Intel Approximate Math library, and based on the
corresponding algorithms of the cephes math library
The default is to use the SSE1 version. If you define USE_SSE2 the
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
not expect any significant performance improvement with SSE2.
*/
/* Copyright (C) 2007 Julien Pommier
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
(this is the zlib license)
*/
#include <xmmintrin.h>
/* yes I know, the top of this file is quite ugly */
#ifdef _MSC_VER /* visual c++ */
# define ALIGN16_BEG __declspec(align(16))
# define ALIGN16_END
#else /* gcc or icc */
# define ALIGN16_BEG
# define ALIGN16_END __attribute__((aligned(16)))
#endif
/* __m128 is ugly to write */
typedef __m128 v4sf; // vector of 4 float (sse1)
#ifdef USE_SSE2
# include <emmintrin.h>
typedef __m128i v4si; // vector of 4 int (sse2)
#else
typedef __m64 v2si; // vector of 2 int (mmx)
#endif
/* declare some SSE constants -- why can't I figure a better way to do that? */
#define _PS_CONST(Name, Val) \
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PI32_CONST(Name, Val) \
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PS_CONST_TYPE(Name, Type, Val) \
static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
_PS_CONST(1 , 1.0f);
_PS_CONST(0p5, 0.5f);
/* the smallest non denormalized float number */
_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
_PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
_PI32_CONST(1, 1);
_PI32_CONST(inv1, ~1);
_PI32_CONST(2, 2);
_PI32_CONST(4, 4);
_PI32_CONST(0x7f, 0x7f);
_PS_CONST(cephes_SQRTHF, 0.707106781186547524);
_PS_CONST(cephes_log_p0, 7.0376836292E-2);
_PS_CONST(cephes_log_p1, - 1.1514610310E-1);
_PS_CONST(cephes_log_p2, 1.1676998740E-1);
_PS_CONST(cephes_log_p3, - 1.2420140846E-1);
_PS_CONST(cephes_log_p4, + 1.4249322787E-1);
_PS_CONST(cephes_log_p5, - 1.6668057665E-1);
_PS_CONST(cephes_log_p6, + 2.0000714765E-1);
_PS_CONST(cephes_log_p7, - 2.4999993993E-1);
_PS_CONST(cephes_log_p8, + 3.3333331174E-1);
_PS_CONST(cephes_log_q1, -2.12194440e-4);
_PS_CONST(cephes_log_q2, 0.693359375);
#ifndef USE_SSE2
typedef union xmm_mm_union {
__m128 xmm;
__m64 mm[2];
} xmm_mm_union;
#define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) { \
xmm_mm_union u; u.xmm = xmm_; \
mm0_ = u.mm[0]; \
mm1_ = u.mm[1]; \
}
#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { \
xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; \
}
#endif // USE_SSE2
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
v4sf log_ps(v4sf x) {
#ifdef USE_SSE2
v4si emm0;
#else
v2si mm0, mm1;
#endif
v4sf one = *(v4sf*)_ps_1;
v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */
#ifndef USE_SSE2
/* part 1: x = frexpf(x, &e); */
COPY_XMM_TO_MM(x, mm0, mm1);
mm0 = _mm_srli_pi32(mm0, 23);
mm1 = _mm_srli_pi32(mm1, 23);
#else
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
#endif
/* keep only the fractional part */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
#ifndef USE_SSE2
/* now e=mm0:mm1 contain the really base-2 exponent */
mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f);
mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f);
v4sf e = _mm_cvtpi32x2_ps(mm0, mm1);
_mm_empty(); /* bye bye mmx */
#else
emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
v4sf e = _mm_cvtepi32_ps(emm0);
#endif
e = _mm_add_ps(e, one);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
v4sf tmp = _mm_and_ps(x, mask);
x = _mm_sub_ps(x, one);
e = _mm_sub_ps(e, _mm_and_ps(one, mask));
x = _mm_add_ps(x, tmp);
v4sf z = _mm_mul_ps(x,x);
v4sf y = *(v4sf*)_ps_cephes_log_p0;
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
y = _mm_mul_ps(y, x);
y = _mm_mul_ps(y, z);
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
y = _mm_add_ps(y, tmp);
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
x = _mm_add_ps(x, y);
x = _mm_add_ps(x, tmp);
x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
return x;
}
_PS_CONST(exp_hi, 88.3762626647949f);
_PS_CONST(exp_lo, -88.3762626647949f);
_PS_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS_CONST(cephes_exp_C1, 0.693359375);
_PS_CONST(cephes_exp_C2, -2.12194440e-4);
_PS_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS_CONST(cephes_exp_p5, 5.0000001201E-1);
v4sf exp_ps(v4sf x) {
v4sf tmp = _mm_setzero_ps(), fx;
#ifdef USE_SSE2
v4si emm0;
#else
v2si mm0, mm1;
#endif
v4sf one = *(v4sf*)_ps_1;
x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
/* how to perform a floorf with SSE: just below */
#ifndef USE_SSE2
/* step 1 : cast to int */
tmp = _mm_movehl_ps(tmp, fx);
mm0 = _mm_cvttps_pi32(fx);
mm1 = _mm_cvttps_pi32(tmp);
/* step 2 : cast back to float */
tmp = _mm_cvtpi32x2_ps(mm0, mm1);
#else
emm0 = _mm_cvttps_epi32(fx);
tmp = _mm_cvtepi32_ps(emm0);
#endif
/* if greater, substract 1 */
v4sf mask = _mm_cmpgt_ps(tmp, fx);
mask = _mm_and_ps(mask, one);
fx = _mm_sub_ps(tmp, mask);
tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
x = _mm_sub_ps(x, tmp);
x = _mm_sub_ps(x, z);
z = _mm_mul_ps(x,x);
v4sf y = *(v4sf*)_ps_cephes_exp_p0;
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, x);
y = _mm_add_ps(y, one);
/* build 2^n */
#ifndef USE_SSE2
z = _mm_movehl_ps(z, fx);
mm0 = _mm_cvttps_pi32(fx);
mm1 = _mm_cvttps_pi32(z);
mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f);
mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f);
mm0 = _mm_slli_pi32(mm0, 23);
mm1 = _mm_slli_pi32(mm1, 23);
v4sf pow2n;
COPY_MM_TO_XMM(mm0, mm1, pow2n);
_mm_empty();
#else
emm0 = _mm_cvttps_epi32(fx);
emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
emm0 = _mm_slli_epi32(emm0, 23);
v4sf pow2n = _mm_castsi128_ps(emm0);
#endif
y = _mm_mul_ps(y, pow2n);
return y;
}
_PS_CONST(minus_cephes_DP1, -0.78515625);
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
_PS_CONST(sincof_p0, -1.9515295891E-4);
_PS_CONST(sincof_p1, 8.3321608736E-3);
_PS_CONST(sincof_p2, -1.6666654611E-1);
_PS_CONST(coscof_p0, 2.443315711809948E-005);
_PS_CONST(coscof_p1, -1.388731625493765E-003);
_PS_CONST(coscof_p2, 4.166664568298827E-002);
_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
it runs also on old athlons XPs and the pentium III of your grand
mother.
The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
Performance is also surprisingly good, 1.33 times faster than the
macos vsinf SSE2 function, and 1.5 times faster than the
__vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
too bad for an SSE1 function (with no special tuning) !
However the latter libraries probably have a much better handling of NaN,
Inf, denormalized and other special arguments..
On my core 1 duo, the execution of this function takes approximately 95 cycles.
From what I have observed on the experiments with Intel AMath lib, switching to an
SSE2 version would improve the perf by only 10%.
Since it is based on SSE intrinsics, it has to be compiled at -O2 to
deliver full speed.
*/
v4sf sin_ps(v4sf x) { // any x
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
#ifdef USE_SSE2
v4si emm0, emm2;
#else
v2si mm0, mm1, mm2, mm3;
#endif
sign_bit = x;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
#ifdef USE_SSE2
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
/* get the swap sign flag */
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
v4sf swap_sign_bit = _mm_castsi128_ps(emm0);
v4sf poly_mask = _mm_castsi128_ps(emm2);
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
#else
/* store the integer part of y in mm0:mm1 */
xmm2 = _mm_movehl_ps(xmm2, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm2);
/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
y = _mm_cvtpi32x2_ps(mm2, mm3);
/* get the swap sign flag */
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);
/* get the polynom selection mask */
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
v4sf swap_sign_bit, poly_mask;
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit);
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
_mm_empty(); /* good-bye mmx */
#endif
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
v4sf z = _mm_mul_ps(x,x);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y,y2);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);
return y;
}
/* almost the same as sin_ps */
v4sf cos_ps(v4sf x) { // any x
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
#ifdef USE_SSE2
v4si emm0, emm2;
#else
v2si mm0, mm1, mm2, mm3;
#endif
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
#ifdef USE_SSE2
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
/* get the swap sign flag */
emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask */
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
v4sf sign_bit = _mm_castsi128_ps(emm0);
v4sf poly_mask = _mm_castsi128_ps(emm2);
#else
/* store the integer part of y in mm0:mm1 */
xmm2 = _mm_movehl_ps(xmm2, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm2);
/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
y = _mm_cvtpi32x2_ps(mm2, mm3);
mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);
/* get the swap sign flag in mm0:mm1 and the
polynom selection mask in mm2:mm3 */
mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
v4sf sign_bit, poly_mask;
COPY_MM_TO_XMM(mm0, mm1, sign_bit);
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
_mm_empty(); /* good-bye mmx */
#endif
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
v4sf z = _mm_mul_ps(x,x);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y,y2);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);
return y;
}
/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
it is almost as fast, and gives you a free cosine with your sine */
void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
#ifdef USE_SSE2
v4si emm0, emm2, emm4;
#else
v2si mm0, mm1, mm2, mm3, mm4, mm5;
#endif
sign_bit_sin = x;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
#ifdef USE_SSE2
/* store the integer part of y in emm2 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
v4sf swap_sign_bit_sin = _mm_castsi128_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
v4sf poly_mask = _mm_castsi128_ps(emm2);
#else
/* store the integer part of y in mm2:mm3 */
xmm3 = _mm_movehl_ps(xmm3, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm3);
/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
y = _mm_cvtpi32x2_ps(mm2, mm3);
mm4 = mm2;
mm5 = mm3;
/* get the swap sign flag for the sine */
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);
v4sf swap_sign_bit_sin;
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);
/* get the polynom selection mask for the sine */
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
v4sf poly_mask;
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
#endif
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
#ifdef USE_SSE2
emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
emm4 = _mm_slli_epi32(emm4, 29);
v4sf sign_bit_cos = _mm_castsi128_ps(emm4);
#else
/* get the sign flag for the cosine */
mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
mm4 = _mm_slli_pi32(mm4, 29);
mm5 = _mm_slli_pi32(mm5, 29);
v4sf sign_bit_cos;
COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
_mm_empty(); /* good-bye mmx */
#endif
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
v4sf z = _mm_mul_ps(x,x);
y = *(v4sf*)_ps_coscof_p0;
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
v4sf ysin2 = _mm_and_ps(xmm3, y2);
v4sf ysin1 = _mm_andnot_ps(xmm3, y);
y2 = _mm_sub_ps(y2,ysin2);
y = _mm_sub_ps(y, ysin1);
xmm1 = _mm_add_ps(ysin1,ysin2);
xmm2 = _mm_add_ps(y,y2);
/* update the sign */
*s = _mm_xor_ps(xmm1, sign_bit_sin);
*c = _mm_xor_ps(xmm2, sign_bit_cos);
}

View File

@ -21,6 +21,8 @@
#include "stdlib.h"
#include "math.h"
float rsqrt( float x );
// Header file containing definition of globalvars_t and entvars_t
typedef int func_t; //
typedef int string_t; // from engine's pr_comp.h;
@ -44,18 +46,9 @@ public:
inline Vector2D Normalize ( void ) const
{
Vector2D vec2;
float flLen = Length();
if ( flLen == 0 )
{
return Vector2D( (float)0, (float)0 );
}
else
{
flLen = 1 / flLen;
return Vector2D( x * flLen, y * flLen );
}
float flLen = rsqrt( x * x + y * y );
if ( flLen == 0 ) return Vector2D( 0.0f, 0.0f );
else return Vector2D( x * flLen, y * flLen );
}
vec_t x, y;
@ -94,9 +87,12 @@ public:
operator const float *() const { return &x; } // Vectors will now automatically convert to float * when needed
inline Vector Normalize(void) const
{
float flLen = Length();
/*float flLen = Length();
if (flLen == 0) return Vector(0,0,1); // ????
flLen = 1 / flLen;
flLen = 1 / flLen;*/
float flLen = rsqrt( x * x + y * y + z * z );
if( flLen == 0.0f ) return Vector( 0, 0, 1 ); // ????
return Vector(x * flLen, y * flLen, z * flLen);
}

View File

@ -12,6 +12,44 @@
#include "com_model.h"
#include "studio_util.h"
#ifdef VECTORIZE_SINCOS
// Test shown that this is not so effictively
#if defined(__SSE__) || defined(_M_IX86_FP)
#if defined(__SSE2__) || defined(_M_IX86_FP)
#define USE_SSE2
#endif
#include "sse_mathfun.h"
#endif
#if defined(__ARM_NEON__) || defined(__NEON__)
#include "neon_mathfun.h"
#endif
void SinCosFastVector(float r1, float r2, float r3, float r4,
float *s0, float *s1, float *s2, float *s3,
float *c0, float *c1, float *c2, float *c3)
{
v4sf rad_vector = {r1, r2, r3, r4};
v4sf sin_vector, cos_vector;
sincos_ps(rad_vector, &sin_vector, &cos_vector);
*s0 = sin_vector[0];
if(s1) *s1 = sin_vector[1];
if(s2) *s2 = sin_vector[2];
if(s3) *s3 = sin_vector[3];
*c0 = cos_vector[0];
if(s1) *c1 = cos_vector[1];
if(s2) *c2 = cos_vector[2];
if(s3) *c3 = cos_vector[3];
}
#endif
/*
====================
AngleMatrix
@ -20,9 +58,18 @@ AngleMatrix
*/
void AngleMatrix (const float *angles, float (*matrix)[4] )
{
float angle;
float sr, sp, sy, cr, cp, cy;
#ifdef VECTORIZE_SINCOS
SinCosFastVector( DEG2RAD(angles[YAW]),
DEG2RAD(angles[PITCH]),
DEG2RAD(angles[ROLL]), 0,
&sy, &sp, &sr, NULL,
&cy, &cp, &cr, NULL);
#else
float angle;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
@ -32,6 +79,7 @@ void AngleMatrix (const float *angles, float (*matrix)[4] )
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
#endif
// matrix = (YAW * PITCH) * ROLL
matrix[0][0] = cp*cy;
@ -135,9 +183,17 @@ AngleQuaternion
*/
void AngleQuaternion( float *angles, vec4_t quaternion )
{
float angle;
float sr, sp, sy, cr, cp, cy;
#ifdef VECTORIZE_SINCOS
SinCosFastVector( angles[2] * 0.5,
angles[1] * 0.5,
angles[0] * 0.5, 0,
&sy, &sp, &sr, NULL,
&cy, &cp, &cr, NULL);
#else
float angle;
// FIXME: rescale the inputs to 1/2 angle
angle = angles[2] * 0.5;
sy = sin(angle);
@ -148,6 +204,7 @@ void AngleQuaternion( float *angles, vec4_t quaternion )
angle = angles[0] * 0.5;
sr = sin(angle);
cr = cos(angle);
#endif
quaternion[0] = sr*cp*cy-cr*sp*sy; // X
quaternion[1] = cr*sp*cy+sr*cp*sy; // Y

View File

@ -34,6 +34,23 @@
double sqrt(double x);
float rsqrt( float number )
{
int i;
float x, y;
if( number == 0.0f )
return 0.0f;
x = number * 0.5f;
i = *(int *)&number; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (1.5f - (x * y * y)); // first iteration
return y;
}
float Length(const float *v)
{
int i;
@ -78,17 +95,16 @@ void VectorAngles( const float *forward, float *angles )
float VectorNormalize (float *v)
{
float length, ilength;
float length;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length); // FIXME
length = rsqrt (length);
if (length)
{
ilength = 1/length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
v[0] *= length;
v[1] *= length;
v[2] *= length;
}
return length;

View File

@ -32,17 +32,85 @@
vec3_t vec3_origin = {0,0,0};
int nanmask = 255<<23;
/*
=================
rsqrt
=================
*/
float rsqrt( float number )
{
int i;
float x, y;
if( number == 0.0f )
return 0.0f;
x = number * 0.5f;
i = *(int *)&number; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (1.5f - (x * y * y)); // first iteration
return y;
}
float anglemod(float a)
{
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
return a;
}
#define RAD2DEG( x ) ((float)(x) * (float)(180.f / M_PI))
#define DEG2RAD( x ) ((float)(x) * (float)(M_PI / 180.f))
#ifdef VECTORIZE_SINCOS
// Test shown that this is not so effictively
#if defined(__SSE__) || defined(_M_IX86_FP)
#if defined(__SSE2__) || defined(_M_IX86_FP)
#define USE_SSE2
#endif
#include "sse_mathfun.h"
#endif
#if defined(__ARM_NEON__) || defined(__NEON__)
#include "neon_mathfun.h"
#endif
void SinCosFastVector(float r1, float r2, float r3, float r4,
float *s0, float *s1, float *s2, float *s3,
float *c0, float *c1, float *c2, float *c3)
{
v4sf rad_vector = {r1, r2, r3, r4};
v4sf sin_vector, cos_vector;
sincos_ps(rad_vector, &sin_vector, &cos_vector);
*s0 = sin_vector[0];
if(s1) *s1 = sin_vector[1];
if(s2) *s2 = sin_vector[2];
if(s3) *s3 = sin_vector[3];
*c0 = cos_vector[0];
if(s1) *c1 = cos_vector[1];
if(s2) *c2 = cos_vector[2];
if(s3) *c3 = cos_vector[3];
}
#endif
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
float sr, sp, sy, cr, cp, cy;
#ifdef VECTORIZE_SINCOS
SinCosFastVector( DEG2RAD(angles[YAW]),
DEG2RAD(angles[PITCH]),
DEG2RAD(angles[ROLL]), 0,
&sy, &sp, &sr, NULL,
&cy, &cp, &cr, NULL);
#else
float angle;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
@ -52,6 +120,7 @@ void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
#endif
if (forward)
{
@ -75,9 +144,16 @@ void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
float sr, sp, sy, cr, cp, cy;
#ifdef VECTORIZE_SINCOS
SinCosFastVector( DEG2RAD(angles[YAW]),
DEG2RAD(angles[PITCH]),
DEG2RAD(angles[ROLL]), 0,
&sy, &sp, &sr, NULL,
&cy, &cp, &cr, NULL);
#else
float angle;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
@ -87,6 +163,7 @@ void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, v
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
#endif
if (forward)
{
@ -111,9 +188,16 @@ void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, v
void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
{
float angle;
float sr, sp, sy, cr, cp, cy;
#ifdef VECTORIZE_SINCOS
SinCosFastVector( DEG2RAD(angles[YAW]),
DEG2RAD(angles[PITCH]),
DEG2RAD(angles[ROLL]), 0,
&sy, &sp, &sr, NULL,
&cy, &cp, &cr, NULL);
#else
float angle;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
@ -123,6 +207,7 @@ void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
#endif
// matrix = (YAW * PITCH) * ROLL
matrix[0][0] = cp*cy;
@ -141,9 +226,16 @@ void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
void AngleIMatrix (const vec3_t angles, float matrix[3][4] )
{
float angle;
float sr, sp, sy, cr, cp, cy;
#ifdef VECTORIZE_SINCOS
SinCosFastVector( DEG2RAD(angles[YAW]),
DEG2RAD(angles[PITCH]),
DEG2RAD(angles[ROLL]), 0,
&sy, &sp, &sr, NULL,
&cy, &cp, &cr, NULL);
#else
float angle;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
@ -153,6 +245,7 @@ void AngleIMatrix (const vec3_t angles, float matrix[3][4] )
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
#endif
// matrix = (YAW * PITCH) * ROLL
matrix[0][0] = cp*cy;
@ -334,11 +427,10 @@ float VectorNormalize (vec3_t v)
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length); // FIXME
if (length)
{
ilength = 1/length;
ilength = rsqrt( length );
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;