Use NEON/SSE sincos, use fast inverse square root
This commit is contained in:
parent
82b7877147
commit
3157d15c37
@ -141,6 +141,7 @@ LOCAL_C_INCLUDES := $(LOCAL_PATH) \
|
||||
$(LOCAL_PATH)/include \
|
||||
$(LOCAL_PATH)/include/hud \
|
||||
$(LOCAL_PATH)/include/studio \
|
||||
$(LOCAL_PATH)/include/math \
|
||||
$(LOCAL_PATH)/../common \
|
||||
$(LOCAL_PATH)/../engine \
|
||||
$(LOCAL_PATH)/../game_shared \
|
||||
|
@ -24,7 +24,7 @@ cmake_minimum_required(VERSION 2.6.0)
|
||||
project (CLDLL)
|
||||
|
||||
# set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -pedantic")
|
||||
set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} -flto -march=native -Wall -Wl,--no-undefined")
|
||||
set (CMAKE_C_FLAGS "${CMAKE_CXX_FLAGS} -march=native -Wall -Wl,--no-undefined")
|
||||
set (CMAKE_C_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -ggdb")
|
||||
set (CMAKE_C_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||
set (CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_CXX_FLAGS_MINSIZEREL} -Os")
|
||||
@ -195,6 +195,7 @@ include_directories (
|
||||
include/
|
||||
include/hud/
|
||||
include/studio/
|
||||
include/math/
|
||||
../cl_dll/
|
||||
../common/
|
||||
../engine/
|
||||
@ -205,7 +206,7 @@ include_directories (
|
||||
add_library (${CLDLL_LIBRARY} SHARED ${CLDLL_SOURCES})
|
||||
add_definitions( -D_CS16CLIENT_ENABLE_GSRC_SUPPORT
|
||||
-DLINUX -D_LINUX -DCLIENT_WEAPONS -DCLIENT_DLL
|
||||
-D_DEBUG -D_CS16CLIENT_ALLOW_SPECIAL_SCRIPTING
|
||||
-D_DEBUG -DVECTORIZE_SINCOS
|
||||
-Dstricmp=strcasecmp -D_strnicmp=strncasecmp -Dstrnicmp=strncasecmp)
|
||||
target_link_libraries( ${CLDLL_LIBRARY} ${CMAKE_DL_LIBS} -L/usr/lib/i386-linux-gnu -lSDL2 )
|
||||
|
||||
|
301
cl_dll/include/math/neon_mathfun.h
Normal file
301
cl_dll/include/math/neon_mathfun.h
Normal file
@ -0,0 +1,301 @@
|
||||
/* NEON implementation of sin, cos, exp and log
|
||||
|
||||
Inspired by Intel Approximate Math library, and based on the
|
||||
corresponding algorithms of the cephes math library
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2011 Julien Pommier
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
(this is the zlib license)
|
||||
*/
|
||||
|
||||
#include <arm_neon.h>
|
||||
|
||||
typedef float32x4_t v4sf; // vector of 4 float
|
||||
typedef uint32x4_t v4su; // vector of 4 uint32
|
||||
typedef int32x4_t v4si; // vector of 4 uint32
|
||||
|
||||
#define c_inv_mant_mask ~0x7f800000u
|
||||
#define c_cephes_SQRTHF 0.707106781186547524
|
||||
#define c_cephes_log_p0 7.0376836292E-2
|
||||
#define c_cephes_log_p1 - 1.1514610310E-1
|
||||
#define c_cephes_log_p2 1.1676998740E-1
|
||||
#define c_cephes_log_p3 - 1.2420140846E-1
|
||||
#define c_cephes_log_p4 + 1.4249322787E-1
|
||||
#define c_cephes_log_p5 - 1.6668057665E-1
|
||||
#define c_cephes_log_p6 + 2.0000714765E-1
|
||||
#define c_cephes_log_p7 - 2.4999993993E-1
|
||||
#define c_cephes_log_p8 + 3.3333331174E-1
|
||||
#define c_cephes_log_q1 -2.12194440e-4
|
||||
#define c_cephes_log_q2 0.693359375
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
v4sf log_ps(v4sf x) {
|
||||
v4sf one = vdupq_n_f32(1);
|
||||
|
||||
x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
|
||||
v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
|
||||
|
||||
v4si ux = vreinterpretq_s32_f32(x);
|
||||
|
||||
v4si emm0 = vshrq_n_s32(ux, 23);
|
||||
|
||||
/* keep only the fractional part */
|
||||
ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
|
||||
ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
|
||||
x = vreinterpretq_f32_s32(ux);
|
||||
|
||||
emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
|
||||
v4sf e = vcvtq_f32_s32(emm0);
|
||||
|
||||
e = vaddq_f32(e, one);
|
||||
|
||||
/* part2:
|
||||
if( x < SQRTHF ) {
|
||||
e -= 1;
|
||||
x = x + x - 1.0;
|
||||
} else { x = x - 1.0; }
|
||||
*/
|
||||
v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
|
||||
v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
|
||||
x = vsubq_f32(x, one);
|
||||
e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
|
||||
x = vaddq_f32(x, tmp);
|
||||
|
||||
v4sf z = vmulq_f32(x,x);
|
||||
|
||||
v4sf y = vdupq_n_f32(c_cephes_log_p0);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
|
||||
y = vmulq_f32(y, x);
|
||||
|
||||
y = vmulq_f32(y, z);
|
||||
|
||||
|
||||
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
|
||||
y = vaddq_f32(y, tmp);
|
||||
|
||||
|
||||
tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
|
||||
y = vsubq_f32(y, tmp);
|
||||
|
||||
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
|
||||
x = vaddq_f32(x, y);
|
||||
x = vaddq_f32(x, tmp);
|
||||
x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
|
||||
return x;
|
||||
}
|
||||
|
||||
#define c_exp_hi 88.3762626647949f
|
||||
#define c_exp_lo -88.3762626647949f
|
||||
|
||||
#define c_cephes_LOG2EF 1.44269504088896341
|
||||
#define c_cephes_exp_C1 0.693359375
|
||||
#define c_cephes_exp_C2 -2.12194440e-4
|
||||
|
||||
#define c_cephes_exp_p0 1.9875691500E-4
|
||||
#define c_cephes_exp_p1 1.3981999507E-3
|
||||
#define c_cephes_exp_p2 8.3334519073E-3
|
||||
#define c_cephes_exp_p3 4.1665795894E-2
|
||||
#define c_cephes_exp_p4 1.6666665459E-1
|
||||
#define c_cephes_exp_p5 5.0000001201E-1
|
||||
|
||||
/* exp() computed for 4 float at once */
|
||||
v4sf exp_ps(v4sf x) {
|
||||
v4sf tmp, fx;
|
||||
|
||||
v4sf one = vdupq_n_f32(1);
|
||||
x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
|
||||
x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
|
||||
|
||||
/* express exp(x) as exp(g + n*log(2)) */
|
||||
fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
|
||||
|
||||
/* perform a floorf */
|
||||
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
|
||||
|
||||
/* if greater, substract 1 */
|
||||
v4su mask = vcgtq_f32(tmp, fx);
|
||||
mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
|
||||
|
||||
|
||||
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
|
||||
|
||||
tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
|
||||
v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
|
||||
x = vsubq_f32(x, tmp);
|
||||
x = vsubq_f32(x, z);
|
||||
|
||||
static const float cephes_exp_p[6] = { c_cephes_exp_p0, c_cephes_exp_p1, c_cephes_exp_p2, c_cephes_exp_p3, c_cephes_exp_p4, c_cephes_exp_p5 };
|
||||
v4sf y = vld1q_dup_f32(cephes_exp_p+0);
|
||||
v4sf c1 = vld1q_dup_f32(cephes_exp_p+1);
|
||||
v4sf c2 = vld1q_dup_f32(cephes_exp_p+2);
|
||||
v4sf c3 = vld1q_dup_f32(cephes_exp_p+3);
|
||||
v4sf c4 = vld1q_dup_f32(cephes_exp_p+4);
|
||||
v4sf c5 = vld1q_dup_f32(cephes_exp_p+5);
|
||||
|
||||
y = vmulq_f32(y, x);
|
||||
z = vmulq_f32(x,x);
|
||||
y = vaddq_f32(y, c1);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c2);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c3);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c4);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c5);
|
||||
|
||||
y = vmulq_f32(y, z);
|
||||
y = vaddq_f32(y, x);
|
||||
y = vaddq_f32(y, one);
|
||||
|
||||
/* build 2^n */
|
||||
int32x4_t mm;
|
||||
mm = vcvtq_s32_f32(fx);
|
||||
mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
|
||||
mm = vshlq_n_s32(mm, 23);
|
||||
v4sf pow2n = vreinterpretq_f32_s32(mm);
|
||||
|
||||
y = vmulq_f32(y, pow2n);
|
||||
return y;
|
||||
}
|
||||
|
||||
#define c_minus_cephes_DP1 -0.78515625
|
||||
#define c_minus_cephes_DP2 -2.4187564849853515625e-4
|
||||
#define c_minus_cephes_DP3 -3.77489497744594108e-8
|
||||
#define c_sincof_p0 -1.9515295891E-4
|
||||
#define c_sincof_p1 8.3321608736E-3
|
||||
#define c_sincof_p2 -1.6666654611E-1
|
||||
#define c_coscof_p0 2.443315711809948E-005
|
||||
#define c_coscof_p1 -1.388731625493765E-003
|
||||
#define c_coscof_p2 4.166664568298827E-002
|
||||
#define c_cephes_FOPI 1.27323954473516 // 4 / M_PI
|
||||
|
||||
/* evaluation of 4 sines & cosines at once.
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
take into account the special handling they have for greater values
|
||||
-- it does not return garbage for arguments over 8192, though, but
|
||||
the extra precision is missing).
|
||||
|
||||
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
||||
surprising but correct result.
|
||||
|
||||
Note also that when you compute sin(x), cos(x) is available at
|
||||
almost no extra price so both sin_ps and cos_ps make use of
|
||||
sincos_ps..
|
||||
*/
|
||||
void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos) { // any x
|
||||
v4sf xmm1, xmm2, xmm3, y;
|
||||
|
||||
v4su emm2;
|
||||
|
||||
v4su sign_mask_sin, sign_mask_cos;
|
||||
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
|
||||
x = vabsq_f32(x);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = vcvtq_u32_f32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
|
||||
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
|
||||
y = vcvtq_f32_u32(emm2);
|
||||
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
|
||||
xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
|
||||
xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
|
||||
x = vaddq_f32(x, xmm1);
|
||||
x = vaddq_f32(x, xmm2);
|
||||
x = vaddq_f32(x, xmm3);
|
||||
|
||||
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
|
||||
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
and the second polynom (Pi/4 <= x <= 0) in y2 */
|
||||
v4sf z = vmulq_f32(x,x);
|
||||
v4sf y1, y2;
|
||||
|
||||
y1 = vmulq_n_f32(z, c_coscof_p0);
|
||||
y2 = vmulq_n_f32(z, c_sincof_p0);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
|
||||
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
|
||||
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, x);
|
||||
y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
|
||||
y2 = vaddq_f32(y2, x);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(1));
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
v4sf ys = vbslq_f32(poly_mask, y1, y2);
|
||||
v4sf yc = vbslq_f32(poly_mask, y2, y1);
|
||||
*ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
|
||||
*ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
|
||||
}
|
||||
|
||||
v4sf sin_ps(v4sf x) {
|
||||
v4sf ysin, ycos;
|
||||
sincos_ps(x, &ysin, &ycos);
|
||||
return ysin;
|
||||
}
|
||||
|
||||
v4sf cos_ps(v4sf x) {
|
||||
v4sf ysin, ycos;
|
||||
sincos_ps(x, &ysin, &ycos);
|
||||
return ycos;
|
||||
}
|
||||
|
||||
|
711
cl_dll/include/math/sse_mathfun.h
Normal file
711
cl_dll/include/math/sse_mathfun.h
Normal file
@ -0,0 +1,711 @@
|
||||
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
|
||||
|
||||
Inspired by Intel Approximate Math library, and based on the
|
||||
corresponding algorithms of the cephes math library
|
||||
|
||||
The default is to use the SSE1 version. If you define USE_SSE2 the
|
||||
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
|
||||
not expect any significant performance improvement with SSE2.
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2007 Julien Pommier
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
(this is the zlib license)
|
||||
*/
|
||||
|
||||
#include <xmmintrin.h>
|
||||
|
||||
/* yes I know, the top of this file is quite ugly */
|
||||
|
||||
#ifdef _MSC_VER /* visual c++ */
|
||||
# define ALIGN16_BEG __declspec(align(16))
|
||||
# define ALIGN16_END
|
||||
#else /* gcc or icc */
|
||||
# define ALIGN16_BEG
|
||||
# define ALIGN16_END __attribute__((aligned(16)))
|
||||
#endif
|
||||
|
||||
/* __m128 is ugly to write */
|
||||
typedef __m128 v4sf; // vector of 4 float (sse1)
|
||||
|
||||
#ifdef USE_SSE2
|
||||
# include <emmintrin.h>
|
||||
typedef __m128i v4si; // vector of 4 int (sse2)
|
||||
#else
|
||||
typedef __m64 v2si; // vector of 2 int (mmx)
|
||||
#endif
|
||||
|
||||
/* declare some SSE constants -- why can't I figure a better way to do that? */
|
||||
#define _PS_CONST(Name, Val) \
|
||||
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
#define _PI32_CONST(Name, Val) \
|
||||
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
#define _PS_CONST_TYPE(Name, Type, Val) \
|
||||
static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
|
||||
_PS_CONST(1 , 1.0f);
|
||||
_PS_CONST(0p5, 0.5f);
|
||||
/* the smallest non denormalized float number */
|
||||
_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
|
||||
_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
|
||||
_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
|
||||
|
||||
_PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
|
||||
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
|
||||
|
||||
_PI32_CONST(1, 1);
|
||||
_PI32_CONST(inv1, ~1);
|
||||
_PI32_CONST(2, 2);
|
||||
_PI32_CONST(4, 4);
|
||||
_PI32_CONST(0x7f, 0x7f);
|
||||
|
||||
_PS_CONST(cephes_SQRTHF, 0.707106781186547524);
|
||||
_PS_CONST(cephes_log_p0, 7.0376836292E-2);
|
||||
_PS_CONST(cephes_log_p1, - 1.1514610310E-1);
|
||||
_PS_CONST(cephes_log_p2, 1.1676998740E-1);
|
||||
_PS_CONST(cephes_log_p3, - 1.2420140846E-1);
|
||||
_PS_CONST(cephes_log_p4, + 1.4249322787E-1);
|
||||
_PS_CONST(cephes_log_p5, - 1.6668057665E-1);
|
||||
_PS_CONST(cephes_log_p6, + 2.0000714765E-1);
|
||||
_PS_CONST(cephes_log_p7, - 2.4999993993E-1);
|
||||
_PS_CONST(cephes_log_p8, + 3.3333331174E-1);
|
||||
_PS_CONST(cephes_log_q1, -2.12194440e-4);
|
||||
_PS_CONST(cephes_log_q2, 0.693359375);
|
||||
|
||||
#ifndef USE_SSE2
|
||||
typedef union xmm_mm_union {
|
||||
__m128 xmm;
|
||||
__m64 mm[2];
|
||||
} xmm_mm_union;
|
||||
|
||||
#define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) { \
|
||||
xmm_mm_union u; u.xmm = xmm_; \
|
||||
mm0_ = u.mm[0]; \
|
||||
mm1_ = u.mm[1]; \
|
||||
}
|
||||
|
||||
#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { \
|
||||
xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; \
|
||||
}
|
||||
|
||||
#endif // USE_SSE2
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
v4sf log_ps(v4sf x) {
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0;
|
||||
#else
|
||||
v2si mm0, mm1;
|
||||
#endif
|
||||
v4sf one = *(v4sf*)_ps_1;
|
||||
|
||||
v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
|
||||
|
||||
x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */
|
||||
|
||||
#ifndef USE_SSE2
|
||||
/* part 1: x = frexpf(x, &e); */
|
||||
COPY_XMM_TO_MM(x, mm0, mm1);
|
||||
mm0 = _mm_srli_pi32(mm0, 23);
|
||||
mm1 = _mm_srli_pi32(mm1, 23);
|
||||
#else
|
||||
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
|
||||
#endif
|
||||
/* keep only the fractional part */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
|
||||
x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
|
||||
|
||||
#ifndef USE_SSE2
|
||||
/* now e=mm0:mm1 contain the really base-2 exponent */
|
||||
mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f);
|
||||
mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f);
|
||||
v4sf e = _mm_cvtpi32x2_ps(mm0, mm1);
|
||||
_mm_empty(); /* bye bye mmx */
|
||||
#else
|
||||
emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
|
||||
v4sf e = _mm_cvtepi32_ps(emm0);
|
||||
#endif
|
||||
|
||||
e = _mm_add_ps(e, one);
|
||||
|
||||
/* part2:
|
||||
if( x < SQRTHF ) {
|
||||
e -= 1;
|
||||
x = x + x - 1.0;
|
||||
} else { x = x - 1.0; }
|
||||
*/
|
||||
v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
|
||||
v4sf tmp = _mm_and_ps(x, mask);
|
||||
x = _mm_sub_ps(x, one);
|
||||
e = _mm_sub_ps(e, _mm_and_ps(one, mask));
|
||||
x = _mm_add_ps(x, tmp);
|
||||
|
||||
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
|
||||
v4sf y = *(v4sf*)_ps_cephes_log_p0;
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
|
||||
y = _mm_mul_ps(y, x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
|
||||
|
||||
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
|
||||
y = _mm_add_ps(y, tmp);
|
||||
|
||||
|
||||
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
|
||||
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
|
||||
x = _mm_add_ps(x, y);
|
||||
x = _mm_add_ps(x, tmp);
|
||||
x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
|
||||
return x;
|
||||
}
|
||||
|
||||
_PS_CONST(exp_hi, 88.3762626647949f);
|
||||
_PS_CONST(exp_lo, -88.3762626647949f);
|
||||
|
||||
_PS_CONST(cephes_LOG2EF, 1.44269504088896341);
|
||||
_PS_CONST(cephes_exp_C1, 0.693359375);
|
||||
_PS_CONST(cephes_exp_C2, -2.12194440e-4);
|
||||
|
||||
_PS_CONST(cephes_exp_p0, 1.9875691500E-4);
|
||||
_PS_CONST(cephes_exp_p1, 1.3981999507E-3);
|
||||
_PS_CONST(cephes_exp_p2, 8.3334519073E-3);
|
||||
_PS_CONST(cephes_exp_p3, 4.1665795894E-2);
|
||||
_PS_CONST(cephes_exp_p4, 1.6666665459E-1);
|
||||
_PS_CONST(cephes_exp_p5, 5.0000001201E-1);
|
||||
|
||||
v4sf exp_ps(v4sf x) {
|
||||
v4sf tmp = _mm_setzero_ps(), fx;
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0;
|
||||
#else
|
||||
v2si mm0, mm1;
|
||||
#endif
|
||||
v4sf one = *(v4sf*)_ps_1;
|
||||
|
||||
x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
|
||||
x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
|
||||
|
||||
/* express exp(x) as exp(g + n*log(2)) */
|
||||
fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
|
||||
fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
|
||||
|
||||
/* how to perform a floorf with SSE: just below */
|
||||
#ifndef USE_SSE2
|
||||
/* step 1 : cast to int */
|
||||
tmp = _mm_movehl_ps(tmp, fx);
|
||||
mm0 = _mm_cvttps_pi32(fx);
|
||||
mm1 = _mm_cvttps_pi32(tmp);
|
||||
/* step 2 : cast back to float */
|
||||
tmp = _mm_cvtpi32x2_ps(mm0, mm1);
|
||||
#else
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
tmp = _mm_cvtepi32_ps(emm0);
|
||||
#endif
|
||||
/* if greater, substract 1 */
|
||||
v4sf mask = _mm_cmpgt_ps(tmp, fx);
|
||||
mask = _mm_and_ps(mask, one);
|
||||
fx = _mm_sub_ps(tmp, mask);
|
||||
|
||||
tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
|
||||
v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
|
||||
x = _mm_sub_ps(x, tmp);
|
||||
x = _mm_sub_ps(x, z);
|
||||
|
||||
z = _mm_mul_ps(x,x);
|
||||
|
||||
v4sf y = *(v4sf*)_ps_cephes_exp_p0;
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, x);
|
||||
y = _mm_add_ps(y, one);
|
||||
|
||||
/* build 2^n */
|
||||
#ifndef USE_SSE2
|
||||
z = _mm_movehl_ps(z, fx);
|
||||
mm0 = _mm_cvttps_pi32(fx);
|
||||
mm1 = _mm_cvttps_pi32(z);
|
||||
mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f);
|
||||
mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f);
|
||||
mm0 = _mm_slli_pi32(mm0, 23);
|
||||
mm1 = _mm_slli_pi32(mm1, 23);
|
||||
|
||||
v4sf pow2n;
|
||||
COPY_MM_TO_XMM(mm0, mm1, pow2n);
|
||||
_mm_empty();
|
||||
#else
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
|
||||
emm0 = _mm_slli_epi32(emm0, 23);
|
||||
v4sf pow2n = _mm_castsi128_ps(emm0);
|
||||
#endif
|
||||
y = _mm_mul_ps(y, pow2n);
|
||||
return y;
|
||||
}
|
||||
|
||||
_PS_CONST(minus_cephes_DP1, -0.78515625);
|
||||
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
|
||||
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
|
||||
_PS_CONST(sincof_p0, -1.9515295891E-4);
|
||||
_PS_CONST(sincof_p1, 8.3321608736E-3);
|
||||
_PS_CONST(sincof_p2, -1.6666654611E-1);
|
||||
_PS_CONST(coscof_p0, 2.443315711809948E-005);
|
||||
_PS_CONST(coscof_p1, -1.388731625493765E-003);
|
||||
_PS_CONST(coscof_p2, 4.166664568298827E-002);
|
||||
_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
|
||||
|
||||
|
||||
/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
|
||||
it runs also on old athlons XPs and the pentium III of your grand
|
||||
mother.
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
take into account the special handling they have for greater values
|
||||
-- it does not return garbage for arguments over 8192, though, but
|
||||
the extra precision is missing).
|
||||
|
||||
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
||||
surprising but correct result.
|
||||
|
||||
Performance is also surprisingly good, 1.33 times faster than the
|
||||
macos vsinf SSE2 function, and 1.5 times faster than the
|
||||
__vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
|
||||
too bad for an SSE1 function (with no special tuning) !
|
||||
However the latter libraries probably have a much better handling of NaN,
|
||||
Inf, denormalized and other special arguments..
|
||||
|
||||
On my core 1 duo, the execution of this function takes approximately 95 cycles.
|
||||
|
||||
From what I have observed on the experiments with Intel AMath lib, switching to an
|
||||
SSE2 version would improve the perf by only 10%.
|
||||
|
||||
Since it is based on SSE intrinsics, it has to be compiled at -O2 to
|
||||
deliver full speed.
|
||||
*/
|
||||
v4sf sin_ps(v4sf x) { // any x
|
||||
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
|
||||
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0, emm2;
|
||||
#else
|
||||
v2si mm0, mm1, mm2, mm3;
|
||||
#endif
|
||||
sign_bit = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
v4sf swap_sign_bit = _mm_castsi128_ps(emm0);
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
|
||||
|
||||
#else
|
||||
/* store the integer part of y in mm0:mm1 */
|
||||
xmm2 = _mm_movehl_ps(xmm2, y);
|
||||
mm2 = _mm_cvttps_pi32(y);
|
||||
mm3 = _mm_cvttps_pi32(xmm2);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
|
||||
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
|
||||
y = _mm_cvtpi32x2_ps(mm2, mm3);
|
||||
/* get the swap sign flag */
|
||||
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
|
||||
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
|
||||
mm0 = _mm_slli_pi32(mm0, 29);
|
||||
mm1 = _mm_slli_pi32(mm1, 29);
|
||||
/* get the polynom selection mask */
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
|
||||
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
|
||||
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
|
||||
v4sf swap_sign_bit, poly_mask;
|
||||
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit);
|
||||
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
|
||||
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
|
||||
_mm_empty(); /* good-bye mmx */
|
||||
#endif
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
|
||||
y = _mm_andnot_ps(xmm3, y);
|
||||
y = _mm_add_ps(y,y2);
|
||||
/* update the sign */
|
||||
y = _mm_xor_ps(y, sign_bit);
|
||||
return y;
|
||||
}
|
||||
|
||||
/* almost the same as sin_ps */
|
||||
v4sf cos_ps(v4sf x) { // any x
|
||||
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0, emm2;
|
||||
#else
|
||||
v2si mm0, mm1, mm2, mm3;
|
||||
#endif
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
|
||||
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask */
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
v4sf sign_bit = _mm_castsi128_ps(emm0);
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
#else
|
||||
/* store the integer part of y in mm0:mm1 */
|
||||
xmm2 = _mm_movehl_ps(xmm2, y);
|
||||
mm2 = _mm_cvttps_pi32(y);
|
||||
mm3 = _mm_cvttps_pi32(xmm2);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
|
||||
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
|
||||
|
||||
y = _mm_cvtpi32x2_ps(mm2, mm3);
|
||||
|
||||
|
||||
mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);
|
||||
|
||||
/* get the swap sign flag in mm0:mm1 and the
|
||||
polynom selection mask in mm2:mm3 */
|
||||
|
||||
mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
|
||||
mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
|
||||
mm0 = _mm_slli_pi32(mm0, 29);
|
||||
mm1 = _mm_slli_pi32(mm1, 29);
|
||||
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
|
||||
|
||||
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
|
||||
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
|
||||
|
||||
v4sf sign_bit, poly_mask;
|
||||
COPY_MM_TO_XMM(mm0, mm1, sign_bit);
|
||||
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
|
||||
_mm_empty(); /* good-bye mmx */
|
||||
#endif
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
|
||||
y = _mm_andnot_ps(xmm3, y);
|
||||
y = _mm_add_ps(y,y2);
|
||||
/* update the sign */
|
||||
y = _mm_xor_ps(y, sign_bit);
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
|
||||
it is almost as fast, and gives you a free cosine with your sine */
|
||||
void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
|
||||
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
#ifdef USE_SSE2
|
||||
v4si emm0, emm2, emm4;
|
||||
#else
|
||||
v2si mm0, mm1, mm2, mm3, mm4, mm5;
|
||||
#endif
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
v4sf swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
#else
|
||||
/* store the integer part of y in mm2:mm3 */
|
||||
xmm3 = _mm_movehl_ps(xmm3, y);
|
||||
mm2 = _mm_cvttps_pi32(y);
|
||||
mm3 = _mm_cvttps_pi32(xmm3);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
|
||||
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
|
||||
|
||||
y = _mm_cvtpi32x2_ps(mm2, mm3);
|
||||
|
||||
mm4 = mm2;
|
||||
mm5 = mm3;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
|
||||
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
|
||||
mm0 = _mm_slli_pi32(mm0, 29);
|
||||
mm1 = _mm_slli_pi32(mm1, 29);
|
||||
v4sf swap_sign_bit_sin;
|
||||
COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);
|
||||
|
||||
/* get the polynom selection mask for the sine */
|
||||
|
||||
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
|
||||
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
|
||||
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
|
||||
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
|
||||
v4sf poly_mask;
|
||||
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
|
||||
#endif
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
#ifdef USE_SSE2
|
||||
emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
v4sf sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
#else
|
||||
/* get the sign flag for the cosine */
|
||||
mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
|
||||
mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
|
||||
mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
|
||||
mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
|
||||
mm4 = _mm_slli_pi32(mm4, 29);
|
||||
mm5 = _mm_slli_pi32(mm5, 29);
|
||||
v4sf sign_bit_cos;
|
||||
COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
|
||||
_mm_empty(); /* good-bye mmx */
|
||||
#endif
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
v4sf z = _mm_mul_ps(x,x);
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
v4sf ysin2 = _mm_and_ps(xmm3, y2);
|
||||
v4sf ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2,ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1,ysin2);
|
||||
xmm2 = _mm_add_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
*s = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
*c = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
}
|
||||
|
@ -21,6 +21,8 @@
|
||||
#include "stdlib.h"
|
||||
#include "math.h"
|
||||
|
||||
float rsqrt( float x );
|
||||
|
||||
// Header file containing definition of globalvars_t and entvars_t
|
||||
typedef int func_t; //
|
||||
typedef int string_t; // from engine's pr_comp.h;
|
||||
@ -44,18 +46,9 @@ public:
|
||||
|
||||
inline Vector2D Normalize ( void ) const
|
||||
{
|
||||
Vector2D vec2;
|
||||
|
||||
float flLen = Length();
|
||||
if ( flLen == 0 )
|
||||
{
|
||||
return Vector2D( (float)0, (float)0 );
|
||||
}
|
||||
else
|
||||
{
|
||||
flLen = 1 / flLen;
|
||||
return Vector2D( x * flLen, y * flLen );
|
||||
}
|
||||
float flLen = rsqrt( x * x + y * y );
|
||||
if ( flLen == 0 ) return Vector2D( 0.0f, 0.0f );
|
||||
else return Vector2D( x * flLen, y * flLen );
|
||||
}
|
||||
|
||||
vec_t x, y;
|
||||
@ -94,9 +87,12 @@ public:
|
||||
operator const float *() const { return &x; } // Vectors will now automatically convert to float * when needed
|
||||
inline Vector Normalize(void) const
|
||||
{
|
||||
float flLen = Length();
|
||||
/*float flLen = Length();
|
||||
if (flLen == 0) return Vector(0,0,1); // ????
|
||||
flLen = 1 / flLen;
|
||||
flLen = 1 / flLen;*/
|
||||
|
||||
float flLen = rsqrt( x * x + y * y + z * z );
|
||||
if( flLen == 0.0f ) return Vector( 0, 0, 1 ); // ????
|
||||
return Vector(x * flLen, y * flLen, z * flLen);
|
||||
}
|
||||
|
||||
|
@ -12,6 +12,44 @@
|
||||
#include "com_model.h"
|
||||
#include "studio_util.h"
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
|
||||
// Test shown that this is not so effictively
|
||||
#if defined(__SSE__) || defined(_M_IX86_FP)
|
||||
#if defined(__SSE2__) || defined(_M_IX86_FP)
|
||||
#define USE_SSE2
|
||||
#endif
|
||||
#include "sse_mathfun.h"
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(__ARM_NEON__) || defined(__NEON__)
|
||||
#include "neon_mathfun.h"
|
||||
#endif
|
||||
|
||||
|
||||
void SinCosFastVector(float r1, float r2, float r3, float r4,
|
||||
float *s0, float *s1, float *s2, float *s3,
|
||||
float *c0, float *c1, float *c2, float *c3)
|
||||
{
|
||||
v4sf rad_vector = {r1, r2, r3, r4};
|
||||
v4sf sin_vector, cos_vector;
|
||||
|
||||
sincos_ps(rad_vector, &sin_vector, &cos_vector);
|
||||
|
||||
*s0 = sin_vector[0];
|
||||
if(s1) *s1 = sin_vector[1];
|
||||
if(s2) *s2 = sin_vector[2];
|
||||
if(s3) *s3 = sin_vector[3];
|
||||
|
||||
*c0 = cos_vector[0];
|
||||
if(s1) *c1 = cos_vector[1];
|
||||
if(s2) *c2 = cos_vector[2];
|
||||
if(s3) *c3 = cos_vector[3];
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
====================
|
||||
AngleMatrix
|
||||
@ -20,9 +58,18 @@ AngleMatrix
|
||||
*/
|
||||
void AngleMatrix (const float *angles, float (*matrix)[4] )
|
||||
{
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
SinCosFastVector( DEG2RAD(angles[YAW]),
|
||||
DEG2RAD(angles[PITCH]),
|
||||
DEG2RAD(angles[ROLL]), 0,
|
||||
&sy, &sp, &sr, NULL,
|
||||
&cy, &cp, &cr, NULL);
|
||||
#else
|
||||
float angle;
|
||||
|
||||
angle = angles[YAW] * (M_PI*2 / 360);
|
||||
sy = sin(angle);
|
||||
cy = cos(angle);
|
||||
@ -32,6 +79,7 @@ void AngleMatrix (const float *angles, float (*matrix)[4] )
|
||||
angle = angles[ROLL] * (M_PI*2 / 360);
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
// matrix = (YAW * PITCH) * ROLL
|
||||
matrix[0][0] = cp*cy;
|
||||
@ -135,9 +183,17 @@ AngleQuaternion
|
||||
*/
|
||||
void AngleQuaternion( float *angles, vec4_t quaternion )
|
||||
{
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
SinCosFastVector( angles[2] * 0.5,
|
||||
angles[1] * 0.5,
|
||||
angles[0] * 0.5, 0,
|
||||
&sy, &sp, &sr, NULL,
|
||||
&cy, &cp, &cr, NULL);
|
||||
#else
|
||||
float angle;
|
||||
|
||||
// FIXME: rescale the inputs to 1/2 angle
|
||||
angle = angles[2] * 0.5;
|
||||
sy = sin(angle);
|
||||
@ -148,6 +204,7 @@ void AngleQuaternion( float *angles, vec4_t quaternion )
|
||||
angle = angles[0] * 0.5;
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
quaternion[0] = sr*cp*cy-cr*sp*sy; // X
|
||||
quaternion[1] = cr*sp*cy+sr*cp*sy; // Y
|
||||
|
@ -34,6 +34,23 @@
|
||||
|
||||
double sqrt(double x);
|
||||
|
||||
float rsqrt( float number )
|
||||
{
|
||||
int i;
|
||||
float x, y;
|
||||
|
||||
if( number == 0.0f )
|
||||
return 0.0f;
|
||||
|
||||
x = number * 0.5f;
|
||||
i = *(int *)&number; // evil floating point bit level hacking
|
||||
i = 0x5f3759df - (i >> 1); // what the fuck?
|
||||
y = *(float *)&i;
|
||||
y = y * (1.5f - (x * y * y)); // first iteration
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
float Length(const float *v)
|
||||
{
|
||||
int i;
|
||||
@ -78,17 +95,16 @@ void VectorAngles( const float *forward, float *angles )
|
||||
|
||||
float VectorNormalize (float *v)
|
||||
{
|
||||
float length, ilength;
|
||||
float length;
|
||||
|
||||
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||||
length = sqrt (length); // FIXME
|
||||
length = rsqrt (length);
|
||||
|
||||
if (length)
|
||||
{
|
||||
ilength = 1/length;
|
||||
v[0] *= ilength;
|
||||
v[1] *= ilength;
|
||||
v[2] *= ilength;
|
||||
v[0] *= length;
|
||||
v[1] *= length;
|
||||
v[2] *= length;
|
||||
}
|
||||
|
||||
return length;
|
||||
|
@ -32,17 +32,85 @@
|
||||
vec3_t vec3_origin = {0,0,0};
|
||||
int nanmask = 255<<23;
|
||||
|
||||
/*
|
||||
=================
|
||||
rsqrt
|
||||
=================
|
||||
*/
|
||||
float rsqrt( float number )
|
||||
{
|
||||
int i;
|
||||
float x, y;
|
||||
|
||||
if( number == 0.0f )
|
||||
return 0.0f;
|
||||
|
||||
x = number * 0.5f;
|
||||
i = *(int *)&number; // evil floating point bit level hacking
|
||||
i = 0x5f3759df - (i >> 1); // what the fuck?
|
||||
y = *(float *)&i;
|
||||
y = y * (1.5f - (x * y * y)); // first iteration
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
float anglemod(float a)
|
||||
{
|
||||
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
||||
return a;
|
||||
}
|
||||
#define RAD2DEG( x ) ((float)(x) * (float)(180.f / M_PI))
|
||||
#define DEG2RAD( x ) ((float)(x) * (float)(M_PI / 180.f))
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
// Test shown that this is not so effictively
|
||||
#if defined(__SSE__) || defined(_M_IX86_FP)
|
||||
#if defined(__SSE2__) || defined(_M_IX86_FP)
|
||||
#define USE_SSE2
|
||||
#endif
|
||||
#include "sse_mathfun.h"
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(__ARM_NEON__) || defined(__NEON__)
|
||||
#include "neon_mathfun.h"
|
||||
#endif
|
||||
|
||||
|
||||
void SinCosFastVector(float r1, float r2, float r3, float r4,
|
||||
float *s0, float *s1, float *s2, float *s3,
|
||||
float *c0, float *c1, float *c2, float *c3)
|
||||
{
|
||||
v4sf rad_vector = {r1, r2, r3, r4};
|
||||
v4sf sin_vector, cos_vector;
|
||||
|
||||
sincos_ps(rad_vector, &sin_vector, &cos_vector);
|
||||
|
||||
*s0 = sin_vector[0];
|
||||
if(s1) *s1 = sin_vector[1];
|
||||
if(s2) *s2 = sin_vector[2];
|
||||
if(s3) *s3 = sin_vector[3];
|
||||
|
||||
*c0 = cos_vector[0];
|
||||
if(s1) *c1 = cos_vector[1];
|
||||
if(s2) *c2 = cos_vector[2];
|
||||
if(s3) *c3 = cos_vector[3];
|
||||
}
|
||||
#endif
|
||||
|
||||
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||||
{
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
SinCosFastVector( DEG2RAD(angles[YAW]),
|
||||
DEG2RAD(angles[PITCH]),
|
||||
DEG2RAD(angles[ROLL]), 0,
|
||||
&sy, &sp, &sr, NULL,
|
||||
&cy, &cp, &cr, NULL);
|
||||
#else
|
||||
float angle;
|
||||
angle = angles[YAW] * (M_PI*2 / 360);
|
||||
sy = sin(angle);
|
||||
cy = cos(angle);
|
||||
@ -52,6 +120,7 @@ void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||||
angle = angles[ROLL] * (M_PI*2 / 360);
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
if (forward)
|
||||
{
|
||||
@ -75,9 +144,16 @@ void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||||
|
||||
void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||||
{
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
SinCosFastVector( DEG2RAD(angles[YAW]),
|
||||
DEG2RAD(angles[PITCH]),
|
||||
DEG2RAD(angles[ROLL]), 0,
|
||||
&sy, &sp, &sr, NULL,
|
||||
&cy, &cp, &cr, NULL);
|
||||
#else
|
||||
float angle;
|
||||
angle = angles[YAW] * (M_PI*2 / 360);
|
||||
sy = sin(angle);
|
||||
cy = cos(angle);
|
||||
@ -87,6 +163,7 @@ void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, v
|
||||
angle = angles[ROLL] * (M_PI*2 / 360);
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
if (forward)
|
||||
{
|
||||
@ -111,9 +188,16 @@ void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, v
|
||||
|
||||
void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
|
||||
{
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
SinCosFastVector( DEG2RAD(angles[YAW]),
|
||||
DEG2RAD(angles[PITCH]),
|
||||
DEG2RAD(angles[ROLL]), 0,
|
||||
&sy, &sp, &sr, NULL,
|
||||
&cy, &cp, &cr, NULL);
|
||||
#else
|
||||
float angle;
|
||||
angle = angles[YAW] * (M_PI*2 / 360);
|
||||
sy = sin(angle);
|
||||
cy = cos(angle);
|
||||
@ -123,6 +207,7 @@ void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
|
||||
angle = angles[ROLL] * (M_PI*2 / 360);
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
// matrix = (YAW * PITCH) * ROLL
|
||||
matrix[0][0] = cp*cy;
|
||||
@ -141,9 +226,16 @@ void AngleMatrix (const vec3_t angles, float (*matrix)[4] )
|
||||
|
||||
void AngleIMatrix (const vec3_t angles, float matrix[3][4] )
|
||||
{
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
#ifdef VECTORIZE_SINCOS
|
||||
SinCosFastVector( DEG2RAD(angles[YAW]),
|
||||
DEG2RAD(angles[PITCH]),
|
||||
DEG2RAD(angles[ROLL]), 0,
|
||||
&sy, &sp, &sr, NULL,
|
||||
&cy, &cp, &cr, NULL);
|
||||
#else
|
||||
float angle;
|
||||
angle = angles[YAW] * (M_PI*2 / 360);
|
||||
sy = sin(angle);
|
||||
cy = cos(angle);
|
||||
@ -153,6 +245,7 @@ void AngleIMatrix (const vec3_t angles, float matrix[3][4] )
|
||||
angle = angles[ROLL] * (M_PI*2 / 360);
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
// matrix = (YAW * PITCH) * ROLL
|
||||
matrix[0][0] = cp*cy;
|
||||
@ -334,11 +427,10 @@ float VectorNormalize (vec3_t v)
|
||||
float length, ilength;
|
||||
|
||||
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||||
length = sqrt (length); // FIXME
|
||||
|
||||
if (length)
|
||||
{
|
||||
ilength = 1/length;
|
||||
ilength = rsqrt( length );
|
||||
v[0] *= ilength;
|
||||
v[1] *= ilength;
|
||||
v[2] *= ilength;
|
||||
|
Loading…
Reference in New Issue
Block a user