xash3d-fwgs/ref_vk/vk_render.c
Ivan Avdeev 750d3b7608 rtx: fix brush models being invisible
An incorrect range of used vertices was pased into `VkAccelerationStructureGeometryTrianglesDataKHR`.
 `maxVertex` was being set to a count of vertices per geometry, not a maximum used vertex number.

The fix is to track `vertex_offset` of the first used vertex, which makes `maxVertex` correct.
2021-07-04 12:48:32 -07:00

942 lines
28 KiB
C

#include "vk_render.h"
#include "vk_core.h"
#include "vk_buffer.h"
#include "vk_const.h"
#include "vk_common.h"
#include "vk_pipeline.h"
#include "vk_textures.h"
#include "vk_math.h"
#include "vk_rtx.h"
#include "vk_descriptor.h"
#include "eiface.h"
#include "xash3d_mathlib.h"
#include "protocol.h" // MAX_DLIGHTS
#include <memory.h>
#define MAX_UNIFORM_SLOTS (MAX_SCENE_ENTITIES * 2 /* solid + trans */ + 1)
typedef struct {
matrix4x4 mvp;
vec4_t color;
} uniform_data_t;
typedef struct vk_buffer_alloc_s {
// TODO uint32_t sequence
uint32_t unit_size; // if 0 then this alloc slot is free
uint32_t buffer_offset_in_units;
uint32_t count;
qboolean locked;
vk_lifetime_t lifetime;
} vk_buffer_alloc_t;
// TODO estimate
#define MAX_ALLOCS 1024
static struct {
VkPipelineLayout pipeline_layout;
VkPipeline pipelines[kRenderTransAdd + 1];
vk_buffer_t buffer;
vk_ring_buffer_t buffer_alloc;
vk_buffer_t uniform_buffer;
uint32_t ubo_align;
vk_buffer_alloc_t allocs[MAX_ALLOCS];
int allocs_free[MAX_ALLOCS];
int num_free_allocs;
struct {
vec3_t origin, color;
} static_lights[32];
int num_static_lights;
} g_render;
static qboolean createPipelines( void )
{
/* VkPushConstantRange push_const = { */
/* .offset = 0, */
/* .size = sizeof(AVec3f), */
/* .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, */
/* }; */
VkDescriptorSetLayout descriptor_layouts[] = {
vk_desc.one_uniform_buffer_layout,
vk_desc.one_texture_layout,
vk_desc.one_texture_layout,
vk_desc.one_uniform_buffer_layout,
};
VkPipelineLayoutCreateInfo plci = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = ARRAYSIZE(descriptor_layouts),
.pSetLayouts = descriptor_layouts,
/* .pushConstantRangeCount = 1, */
/* .pPushConstantRanges = &push_const, */
};
// FIXME store layout separately
XVK_CHECK(vkCreatePipelineLayout(vk_core.device, &plci, NULL, &g_render.pipeline_layout));
{
struct ShaderSpec {
float alpha_test_threshold;
uint32_t max_dlights;
} spec_data = { .25f, MAX_DLIGHTS };
const VkSpecializationMapEntry spec_map[] = {
{.constantID = 0, .offset = offsetof(struct ShaderSpec, alpha_test_threshold), .size = sizeof(float) },
{.constantID = 1, .offset = offsetof(struct ShaderSpec, max_dlights), .size = sizeof(uint32_t) },
};
VkSpecializationInfo shader_spec = {
.mapEntryCount = ARRAYSIZE(spec_map),
.pMapEntries = spec_map,
.dataSize = sizeof(struct ShaderSpec),
.pData = &spec_data
};
const VkVertexInputAttributeDescription attribs[] = {
{.binding = 0, .location = 0, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = offsetof(vk_vertex_t, pos)},
{.binding = 0, .location = 1, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = offsetof(vk_vertex_t, normal)},
{.binding = 0, .location = 2, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(vk_vertex_t, gl_tc)},
{.binding = 0, .location = 3, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(vk_vertex_t, lm_tc)},
};
const vk_shader_stage_t shader_stages[] = {
{
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.filename = "brush.vert.spv",
.specialization_info = NULL,
}, {
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.filename = "brush.frag.spv",
.specialization_info = &shader_spec,
}};
vk_pipeline_graphics_create_info_t ci = {
.layout = g_render.pipeline_layout,
.attribs = attribs,
.num_attribs = ARRAYSIZE(attribs),
.stages = shader_stages,
.num_stages = ARRAYSIZE(shader_stages),
.vertex_stride = sizeof(vk_vertex_t),
.depthTestEnable = VK_TRUE,
.depthWriteEnable = VK_TRUE,
.depthCompareOp = VK_COMPARE_OP_LESS,
.blendEnable = VK_FALSE,
.cullMode = VK_CULL_MODE_FRONT_BIT,
};
for (int i = 0; i < ARRAYSIZE(g_render.pipelines); ++i)
{
const char *name = "UNDEFINED";
switch (i)
{
case kRenderNormal:
spec_data.alpha_test_threshold = 0.f;
ci.blendEnable = VK_FALSE;
ci.depthWriteEnable = VK_TRUE;
ci.depthTestEnable = VK_TRUE;
name = "brush kRenderNormal";
break;
case kRenderTransColor:
spec_data.alpha_test_threshold = 0.f;
ci.depthWriteEnable = VK_TRUE;
ci.depthTestEnable = VK_TRUE;
ci.blendEnable = VK_TRUE;
ci.colorBlendOp = VK_BLEND_OP_ADD; // TODO check
ci.srcAlphaBlendFactor = ci.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
ci.dstAlphaBlendFactor = ci.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
name = "brush kRenderTransColor";
break;
case kRenderTransAdd:
spec_data.alpha_test_threshold = 0.f;
ci.depthWriteEnable = VK_FALSE;
ci.depthTestEnable = VK_TRUE;
ci.blendEnable = VK_TRUE;
ci.colorBlendOp = VK_BLEND_OP_ADD; // TODO check
// sprites do SRC_ALPHA
ci.srcAlphaBlendFactor = ci.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;// TODO ? FACTOR_ONE;
ci.dstAlphaBlendFactor = ci.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
name = "brush kRenderTransAdd";
break;
case kRenderTransAlpha:
spec_data.alpha_test_threshold = .25f;
ci.depthWriteEnable = VK_TRUE;
ci.depthTestEnable = VK_TRUE;
ci.blendEnable = VK_FALSE;
name = "brush kRenderTransAlpha(test)";
break;
case kRenderGlow:
spec_data.alpha_test_threshold = 0.f;
ci.depthWriteEnable = VK_FALSE;
ci.depthTestEnable = VK_FALSE;
ci.blendEnable = VK_TRUE;
ci.colorBlendOp = VK_BLEND_OP_ADD; // TODO check
ci.srcAlphaBlendFactor = ci.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
ci.dstAlphaBlendFactor = ci.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
break;
case kRenderTransTexture:
spec_data.alpha_test_threshold = 0.f;
ci.depthWriteEnable = VK_FALSE;
ci.depthTestEnable = VK_TRUE;
ci.blendEnable = VK_TRUE;
ci.colorBlendOp = VK_BLEND_OP_ADD; // TODO check
ci.srcAlphaBlendFactor = ci.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
ci.dstAlphaBlendFactor = ci.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
name = "brush kRenderTransTexture/Glow";
break;
default:
ASSERT(!"Unreachable");
}
g_render.pipelines[i] = VK_PipelineGraphicsCreate(&ci);
if (!g_render.pipelines[i])
{
// TODO complain
return false;
}
if (vk_core.debug)
{
VkDebugUtilsObjectNameInfoEXT debug_name = {
.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT,
.objectHandle = (uint64_t)g_render.pipelines[i],
.objectType = VK_OBJECT_TYPE_PIPELINE,
.pObjectName = name,
};
XVK_CHECK(vkSetDebugUtilsObjectNameEXT(vk_core.device, &debug_name));
}
}
}
return true;
}
static void resetAllocFreeList( void ) {
g_render.num_free_allocs = MAX_ALLOCS;
for (int i = 0; i < MAX_ALLOCS; ++i) {
g_render.allocs_free[i] = MAX_ALLOCS - i - 1;
g_render.allocs[i].unit_size = 0;
}
}
typedef struct {
uint32_t num_lights, pad[3];
struct {
vec4_t pos_r;
vec4_t color;
} light[MAX_DLIGHTS];
} vk_ubo_lights_t;
qboolean VK_RenderInit( void )
{
// TODO Better estimates
const uint32_t vertex_buffer_size = MAX_BUFFER_VERTICES * sizeof(float) * (3 + 3 + 2 + 2);
const uint32_t index_buffer_size = MAX_BUFFER_INDICES * sizeof(uint16_t);
uint32_t uniform_unit_size;
g_render.ubo_align = Q_max(4, vk_core.physical_device.properties.limits.minUniformBufferOffsetAlignment);
uniform_unit_size = ((sizeof(uniform_data_t) + g_render.ubo_align - 1) / g_render.ubo_align) * g_render.ubo_align;
// TODO device memory and friends (e.g. handle mobile memory ...)
if (!createBuffer("render buffer", &g_render.buffer, vertex_buffer_size + index_buffer_size,
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | (vk_core.rtx ? VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR : 0),
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | (vk_core.rtx ? VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT : 0))) // TODO staging buffer?
return false;
if (!createBuffer("render uniform_buffer", &g_render.uniform_buffer, uniform_unit_size * MAX_UNIFORM_SLOTS,
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | (vk_core.rtx ? VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT : 0))) // TODO staging buffer?
return false;
{
VkDescriptorBufferInfo dbi_uniform_data = {
.buffer = g_render.uniform_buffer.buffer,
.offset = 0,
.range = sizeof(uniform_data_t),
};
VkDescriptorBufferInfo dbi_uniform_lights = {
.buffer = g_render.uniform_buffer.buffer,
.offset = 0,
.range = sizeof(vk_ubo_lights_t),
};
VkWriteDescriptorSet wds[] = {{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
.pBufferInfo = &dbi_uniform_data,
.dstSet = vk_desc.ubo_sets[0], // FIXME
}, {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
.pBufferInfo = &dbi_uniform_lights,
.dstSet = vk_desc.ubo_sets[1], // FIXME
}};
vkUpdateDescriptorSets(vk_core.device, ARRAYSIZE(wds), wds, 0, NULL);
}
if (!createPipelines())
return false;
resetAllocFreeList();
g_render.buffer_alloc.size = g_render.buffer.size;
return true;
}
void VK_RenderShutdown( void )
{
for (int i = 0; i < ARRAYSIZE(g_render.pipelines); ++i)
vkDestroyPipeline(vk_core.device, g_render.pipelines[i], NULL);
vkDestroyPipelineLayout( vk_core.device, g_render.pipeline_layout, NULL );
destroyBuffer( &g_render.buffer );
destroyBuffer( &g_render.uniform_buffer );
}
vk_buffer_handle_t VK_RenderBufferAlloc( uint32_t unit_size, uint32_t count, vk_lifetime_t lifetime )
{
const uint32_t alloc_size = unit_size * count;
uint32_t offset;
vk_buffer_alloc_t *alloc;
vk_buffer_handle_t handle = InvalidHandle;
// FIXME long lifetimes are not supported yet
ASSERT(lifetime != LifetimeLong);
ASSERT(unit_size > 0);
if (!g_render.num_free_allocs) {
gEngine.Con_Printf(S_ERROR "Cannot allocate buffer, allocs count exhausted\n" );
return InvalidHandle;
}
offset = VK_RingBuffer_Alloc(&g_render.buffer_alloc, alloc_size, unit_size);
if (offset == AllocFailed) {
gEngine.Con_Printf(S_ERROR "Cannot allocate %u bytes aligned at %u from buffer; only %u are left",
alloc_size, unit_size, g_render.buffer_alloc.free);
return InvalidHandle;
}
// TODO bake sequence number into handle (to detect buffer lifetime misuse)
handle = g_render.allocs_free[--g_render.num_free_allocs];
alloc = g_render.allocs + handle;
ASSERT(alloc->unit_size == 0);
alloc->buffer_offset_in_units = offset / unit_size;
alloc->unit_size = unit_size;
alloc->lifetime = lifetime;
alloc->count = count;
return handle;
}
static vk_buffer_alloc_t *getBufferFromHandle( vk_buffer_handle_t handle )
{
vk_buffer_alloc_t *alloc;
ASSERT(handle >= 0);
ASSERT(handle < MAX_ALLOCS);
// TODO check sequence number
alloc = g_render.allocs + handle;
ASSERT(alloc->unit_size != 0);
return alloc;
}
vk_buffer_lock_t VK_RenderBufferLock( vk_buffer_handle_t handle )
{
vk_buffer_lock_t ret = {0};
vk_buffer_alloc_t *alloc = getBufferFromHandle( handle );
ASSERT(!alloc->locked);
alloc->locked = true;
ret.unit_size = alloc->unit_size;
ret.count = alloc->count;
ret.ptr = ((byte*)g_render.buffer.mapped) + alloc->unit_size * alloc->buffer_offset_in_units;
return ret;
}
void VK_RenderBufferUnlock( vk_buffer_handle_t handle )
{
vk_buffer_alloc_t *alloc = getBufferFromHandle( handle );
ASSERT(alloc->locked);
alloc->locked = false;
// TODO upload from staging to gpumem
}
uint32_t VK_RenderBufferGetOffsetInUnits( vk_buffer_handle_t handle )
{
const vk_buffer_alloc_t *alloc = getBufferFromHandle( handle );
return alloc->buffer_offset_in_units;
}
// Free all LifetimeSingleFrame resources
void VK_RenderBufferClearFrame( void )
{
VK_RingBuffer_ClearFrame(&g_render.buffer_alloc);
for (int i = 0; i < MAX_ALLOCS; ++i) {
vk_buffer_alloc_t *alloc = g_render.allocs + i;
if (!alloc->unit_size)
continue;
if (alloc->lifetime != LifetimeSingleFrame)
continue;
alloc->unit_size = 0;
g_render.allocs_free[g_render.num_free_allocs++] = i;
ASSERT(g_render.num_free_allocs <= MAX_ALLOCS);
}
}
// Free all LifetimeMap resources
void VK_RenderBufferClearMap( void )
{
VK_RingBuffer_Clear(&g_render.buffer_alloc);
g_render.num_static_lights = 0;
resetAllocFreeList();
}
void VK_RenderMapLoadEnd( void )
{
VK_RingBuffer_Fix(&g_render.buffer_alloc);
}
void VK_RenderBufferPrintStats( void )
{
gEngine.Con_Reportf("Buffer usage: %uKiB of (%uKiB)\n",
g_render.buffer_alloc.permanent_size / 1024,
g_render.buffer.size / 1024);
}
#define MAX_DRAW_COMMANDS 8192 // TODO estimate
#define MAX_DEBUG_NAME_LENGTH 32
typedef struct render_draw_s {
int lightmap, texture;
int render_mode;
uint32_t element_count;
uint32_t index_offset, vertex_offset;
vk_buffer_handle_t index_buffer, vertex_buffer;
/* TODO this should be a separate thing? */ struct { float r, g, b; } emissive;
} render_draw_t;
typedef struct {
render_draw_t draw;
uint32_t ubo_offset;
//char debug_name[MAX_DEBUG_NAME_LENGTH];
matrix3x4 transform;
} draw_command_t;
static struct {
int uniform_data_set_mask;
uniform_data_t current_uniform_data;
uniform_data_t dirty_uniform_data;
uint32_t current_ubo_offset;
uint32_t uniform_free_offset;
draw_command_t draw_commands[MAX_DRAW_COMMANDS];
int num_draw_commands;
matrix4x4 model, view, projection;
qboolean current_frame_is_ray_traced;
} g_render_state;
enum {
UNIFORM_UNSET = 0,
UNIFORM_SET_COLOR = 1,
UNIFORM_SET_MATRIX_MODEL = 2,
UNIFORM_SET_MATRIX_VIEW = 4,
UNIFORM_SET_MATRIX_PROJECTION = 8,
UNIFORM_SET_ALL = UNIFORM_SET_COLOR | UNIFORM_SET_MATRIX_MODEL | UNIFORM_SET_MATRIX_VIEW | UNIFORM_SET_MATRIX_PROJECTION,
UNIFORM_UPLOADED = 16,
};
void VK_RenderBegin( qboolean ray_tracing ) {
g_render_state.uniform_free_offset = 0;
g_render_state.uniform_data_set_mask = UNIFORM_UNSET;
g_render_state.current_ubo_offset = UINT32_MAX;
memset(&g_render_state.current_uniform_data, 0, sizeof(g_render_state.current_uniform_data));
memset(&g_render_state.dirty_uniform_data, 0, sizeof(g_render_state.dirty_uniform_data));
g_render_state.num_draw_commands = 0;
g_render_state.current_frame_is_ray_traced = ray_tracing;
if (ray_tracing)
VK_RayFrameBegin();
}
void VK_RenderStateSetColor( float r, float g, float b, float a )
{
g_render_state.uniform_data_set_mask |= UNIFORM_SET_COLOR;
g_render_state.dirty_uniform_data.color[0] = r;
g_render_state.dirty_uniform_data.color[1] = g;
g_render_state.dirty_uniform_data.color[2] = b;
g_render_state.dirty_uniform_data.color[3] = a;
}
// Vulkan has Y pointing down, and z should end up in (0, 1)
// NOTE this matrix is row-major
static const matrix4x4 vk_proj_fixup = {
{1, 0, 0, 0},
{0, -1, 0, 0},
{0, 0, .5, .5},
{0, 0, 0, 1}
};
void VK_RenderStateSetMatrixProjection(const matrix4x4 projection)
{
g_render_state.uniform_data_set_mask |= UNIFORM_SET_MATRIX_PROJECTION;
Matrix4x4_Concat( g_render_state.projection, vk_proj_fixup, projection );
}
void VK_RenderStateSetMatrixView(const matrix4x4 view)
{
g_render_state.uniform_data_set_mask |= UNIFORM_SET_MATRIX_VIEW;
Matrix4x4_Copy(g_render_state.view, view);
}
void VK_RenderStateSetMatrixModel( const matrix4x4 model )
{
g_render_state.uniform_data_set_mask |= UNIFORM_SET_MATRIX_MODEL;
Matrix4x4_Copy(g_render_state.model, model);
// Assume that projection and view matrices are already properly set
ASSERT(g_render_state.uniform_data_set_mask & UNIFORM_SET_MATRIX_VIEW);
ASSERT(g_render_state.uniform_data_set_mask & UNIFORM_SET_MATRIX_PROJECTION);
{
matrix4x4 mv, mvp;
// TODO this can be cached (on a really slow device?)
Matrix4x4_Concat(mv, g_render_state.view, g_render_state.model);
Matrix4x4_Concat(mvp, g_render_state.projection, mv);
Matrix4x4_ToArrayFloatGL(mvp, (float*)g_render_state.dirty_uniform_data.mvp);
}
}
static uint32_t allocUniform( uint32_t size, uint32_t alignment ) {
// FIXME Q_max is not correct, we need NAIMENSCHEEE OBSCHEEE KRATNOE
const uint32_t align = Q_max(alignment, g_render.ubo_align);
const uint32_t offset = (((g_render_state.uniform_free_offset + align - 1) / align) * align);
if (offset + size > g_render.uniform_buffer.size)
return UINT32_MAX;
g_render_state.uniform_free_offset = offset + size;
return offset;
}
static void VK_RenderScheduleDraw( const render_draw_t *draw )
{
const vk_buffer_alloc_t *vertex_buffer = NULL, *index_buffer = NULL;
draw_command_t *draw_command;
ASSERT(draw->render_mode >= 0);
ASSERT(draw->render_mode < ARRAYSIZE(g_render.pipelines));
ASSERT(draw->lightmap >= 0);
ASSERT(draw->texture >= 0);
{
vertex_buffer = getBufferFromHandle(draw->vertex_buffer);
ASSERT(vertex_buffer);
ASSERT(!vertex_buffer->locked);
}
// Index buffer is optional
if (draw->index_buffer != InvalidHandle)
{
index_buffer = getBufferFromHandle(draw->index_buffer);
ASSERT(index_buffer);
ASSERT(!index_buffer->locked);
}
if ((g_render_state.uniform_data_set_mask & UNIFORM_SET_ALL) != UNIFORM_SET_ALL) {
gEngine.Con_Printf( S_ERROR "Not all uniform state was initialized prior to rendering\n" );
return;
}
if (g_render_state.num_draw_commands >= ARRAYSIZE(g_render_state.draw_commands)) {
gEngine.Con_Printf( S_ERROR "Maximum number of draw commands reached\n" );
return;
}
// Figure out whether we need to update UBO data, and upload new data if we do
// TODO generally it's not safe to do memcmp for structures comparison
if (g_render_state.current_ubo_offset == UINT32_MAX || ((g_render_state.uniform_data_set_mask & UNIFORM_UPLOADED) == 0) || memcmp(&g_render_state.current_uniform_data, &g_render_state.dirty_uniform_data, sizeof(g_render_state.current_uniform_data)) != 0) {
uniform_data_t *ubo;
g_render_state.current_ubo_offset = allocUniform( sizeof(uniform_data_t), 16 );
if (g_render_state.current_ubo_offset == UINT32_MAX) {
gEngine.Con_Printf( S_ERROR "Ran out of uniform slots\n" );
return;
}
ubo = (uniform_data_t*)((byte*)g_render.uniform_buffer.mapped + g_render_state.current_ubo_offset);
memcpy(&g_render_state.current_uniform_data, &g_render_state.dirty_uniform_data, sizeof(g_render_state.dirty_uniform_data));
memcpy(ubo, &g_render_state.current_uniform_data, sizeof(*ubo));
g_render_state.uniform_data_set_mask |= UNIFORM_UPLOADED;
}
draw_command = g_render_state.draw_commands + (g_render_state.num_draw_commands++);
draw_command->draw = *draw;
draw_command->ubo_offset = g_render_state.current_ubo_offset;
Matrix3x4_Copy(draw_command->transform, g_render_state.model);
}
void VK_RenderAddStaticLight(vec3_t origin, vec3_t color)
{
if (g_render.num_static_lights == ARRAYSIZE(g_render.static_lights))
return;
VectorCopy(origin, g_render.static_lights[g_render.num_static_lights].origin);
VectorCopy(color, g_render.static_lights[g_render.num_static_lights].color);
g_render.num_static_lights++;
}
// Return offset of dlights data into UBO buffer
static uint32_t writeDlightsToUBO( void )
{
vk_ubo_lights_t* ubo_lights;
int num_lights = 0;
const uint32_t ubo_lights_offset = allocUniform(sizeof(*ubo_lights), 4);
if (ubo_lights_offset == UINT32_MAX) {
gEngine.Con_Printf(S_ERROR "Cannot allocate UBO for DLights\n");
return UINT32_MAX;
}
ubo_lights = (vk_ubo_lights_t*)((byte*)(g_render.uniform_buffer.mapped) + ubo_lights_offset);
// TODO rtx and query light styles
#if 1
for (int i = 0; i < g_render.num_static_lights && num_lights < ARRAYSIZE(ubo_lights->light); ++i) {
Vector4Set(
ubo_lights->light[num_lights].color,
g_render.static_lights[i].color[0],
g_render.static_lights[i].color[1],
g_render.static_lights[i].color[2],
1.f);
Vector4Set(
ubo_lights->light[num_lights].pos_r,
g_render.static_lights[i].origin[0],
g_render.static_lights[i].origin[1],
g_render.static_lights[i].origin[2],
50.f /* FIXME WHAT */);
num_lights++;
}
#endif
// TODO this should not be here (where? vk_scene?)
for (int i = 0; i < MAX_DLIGHTS && num_lights < ARRAYSIZE(ubo_lights->light); ++i) {
const dlight_t *l = gEngine.GetDynamicLight(i);
if( !l || l->die < gpGlobals->time || !l->radius )
continue;
Vector4Set(
ubo_lights->light[num_lights].color,
l->color.r / 255.f,
l->color.g / 255.f,
l->color.b / 255.f,
1.f);
Vector4Set(
ubo_lights->light[num_lights].pos_r,
l->origin[0],
l->origin[1],
l->origin[2],
l->radius);
num_lights++;
}
ubo_lights->num_lights = num_lights;
return ubo_lights_offset;
}
void VK_RenderEnd( VkCommandBuffer cmdbuf )
{
// TODO we can sort collected draw commands for more efficient and correct rendering
// that requires adding info about distance to camera for correct order-dependent blending
int pipeline = -1;
int texture = -1;
int lightmap = -1;
uint32_t ubo_offset = -1;
const uint32_t dlights_ubo_offset = writeDlightsToUBO();
if (dlights_ubo_offset == UINT32_MAX)
return;
ASSERT(!g_render_state.current_frame_is_ray_traced);
{
const VkDeviceSize offset = 0;
vkCmdBindVertexBuffers(cmdbuf, 0, 1, &g_render.buffer.buffer, &offset);
vkCmdBindIndexBuffer(cmdbuf, g_render.buffer.buffer, 0, VK_INDEX_TYPE_UINT16);
}
vkCmdBindDescriptorSets(vk_core.cb, VK_PIPELINE_BIND_POINT_GRAPHICS, g_render.pipeline_layout, 3, 1, vk_desc.ubo_sets + 1, 1, &dlights_ubo_offset);
for (int i = 0; i < g_render_state.num_draw_commands; ++i) {
const draw_command_t *const draw = g_render_state.draw_commands + i;
const vk_buffer_alloc_t *vertex_buffer = getBufferFromHandle( draw->draw.vertex_buffer );
const vk_buffer_alloc_t *index_buffer = draw->draw.index_buffer != InvalidHandle ? getBufferFromHandle( draw->draw.index_buffer ) : NULL;
const uint32_t vertex_offset = vertex_buffer->buffer_offset_in_units + draw->draw.vertex_offset;
if (ubo_offset != draw->ubo_offset)
{
ubo_offset = draw->ubo_offset;
vkCmdBindDescriptorSets(vk_core.cb, VK_PIPELINE_BIND_POINT_GRAPHICS, g_render.pipeline_layout, 0, 1, vk_desc.ubo_sets, 1, &ubo_offset);
}
if (pipeline != draw->draw.render_mode) {
pipeline = draw->draw.render_mode;
vkCmdBindPipeline(vk_core.cb, VK_PIPELINE_BIND_POINT_GRAPHICS, g_render.pipelines[pipeline]);
}
if (lightmap != draw->draw.lightmap) {
lightmap = draw->draw.lightmap;
vkCmdBindDescriptorSets(vk_core.cb, VK_PIPELINE_BIND_POINT_GRAPHICS, g_render.pipeline_layout, 2, 1, &findTexture(lightmap)->vk.descriptor, 0, NULL);
}
if (texture != draw->draw.texture)
{
texture = draw->draw.texture;
// TODO names/enums for binding points
vkCmdBindDescriptorSets(vk_core.cb, VK_PIPELINE_BIND_POINT_GRAPHICS, g_render.pipeline_layout, 1, 1, &findTexture(texture)->vk.descriptor, 0, NULL);
}
if (draw->draw.index_buffer) {
const uint32_t index_offset = index_buffer->buffer_offset_in_units + draw->draw.index_offset;
vkCmdDrawIndexed(vk_core.cb, draw->draw.element_count, 1, index_offset, vertex_offset, 0);
} else {
vkCmdDraw(vk_core.cb, draw->draw.element_count, 1, vertex_offset, 0);
}
}
}
void VK_RenderDebugLabelBegin( const char *name )
{
// TODO fix this
/* if (vk_core.debug) { */
/* VkDebugUtilsLabelEXT label = { */
/* .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, */
/* .pLabelName = name, */
/* }; */
/* vkCmdBeginDebugUtilsLabelEXT(vk_core.cb, &label); */
/* } */
}
void VK_RenderDebugLabelEnd( void )
{
/* if (vk_core.debug) */
/* vkCmdEndDebugUtilsLabelEXT(vk_core.cb); */
}
void VK_RenderEndRTX( VkCommandBuffer cmdbuf, VkImageView img_dst_view, VkImage img_dst, uint32_t w, uint32_t h )
{
const uint32_t dlights_ubo_offset = writeDlightsToUBO();
if (dlights_ubo_offset == UINT32_MAX)
return;
ASSERT(vk_core.rtx);
{
const vk_ray_frame_render_args_t args = {
.cmdbuf = cmdbuf,
.dst = {
.image_view = img_dst_view,
.image = img_dst,
.width = w,
.height = h,
},
// FIXME this should really be in vk_rtx, calling vk_render(or what?) to alloc slot for it
.ubo = {
.buffer = g_render.uniform_buffer.buffer,
.offset = allocUniform(sizeof(matrix4x4) * 2, sizeof(matrix4x4)),
.size = sizeof(matrix4x4) * 2,
},
.dlights = {
.buffer = g_render.uniform_buffer.buffer,
.offset = dlights_ubo_offset,
.size = sizeof(vk_ubo_lights_t),
},
.geometry_data = {
.buffer = g_render.buffer.buffer,
.size = VK_WHOLE_SIZE,
},
};
if (args.ubo.offset == UINT32_MAX) {
gEngine.Con_Printf(S_ERROR "Cannot allocate UBO for RTX\n");
return;
}
{
matrix4x4 *ubo_matrices = (matrix4x4*)((byte*)g_render.uniform_buffer.mapped + args.ubo.offset);
matrix4x4 proj_inv, view_inv;
Matrix4x4_Invert_Full(proj_inv, g_render_state.projection);
Matrix4x4_ToArrayFloatGL(proj_inv, (float*)ubo_matrices[0]);
// TODO there's a more efficient way to construct an inverse view matrix
// from vforward/right/up vectors and origin in g_camera
Matrix4x4_Invert_Full(view_inv, g_render_state.view);
Matrix4x4_ToArrayFloatGL(view_inv, (float*)ubo_matrices[1]);
}
VK_RayFrameEnd(&args);
}
}
qboolean VK_RenderModelInit( vk_render_model_t *model ) {
if (vk_core.rtx && (g_render_state.current_frame_is_ray_traced || !model->dynamic)) {
// TODO runtime rtx switch: ???
const vk_ray_model_init_t args = {
.buffer = g_render.buffer.buffer,
.model = model,
};
model->ray_model = VK_RayModelCreate(args);
return !!model->ray_model;
}
// TODO pre-bake optimal draws
return true;
}
void VK_RenderModelDestroy( vk_render_model_t* model ) {
if (vk_core.rtx && (g_render_state.current_frame_is_ray_traced || !model->dynamic)) {
VK_RayModelDestroy(model->ray_model);
}
}
void VK_RenderModelDraw( vk_render_model_t* model ) {
int current_texture = -1;
int index_count = 0;
int index_offset = -1;
int vertex_offset = 0;
vk_buffer_handle_t vertex_buffer = InvalidHandle;
vk_buffer_handle_t index_buffer = InvalidHandle;
if (g_render_state.current_frame_is_ray_traced) {
VK_RayFrameAddModel(model->ray_model, model, (const matrix3x4*)g_render_state.model);
return;
}
for (int i = 0; i < model->num_geometries; ++i) {
const vk_render_geometry_t *geom = model->geometries + i;
if (geom->texture < 0)
continue;
if (current_texture != geom->texture || vertex_buffer != geom->vertex_buffer || index_buffer != geom->index_buffer || vertex_offset != geom->vertex_offset)
{
if (index_count) {
const render_draw_t draw = {
.lightmap = tglob.lightmapTextures[0], // FIXME there can be more than one lightmap textures
.texture = current_texture,
.render_mode = model->render_mode,
.element_count = index_count,
.vertex_buffer = vertex_buffer,
.index_buffer = index_buffer,
.vertex_offset = vertex_offset,
.index_offset = index_offset,
};
VK_RenderScheduleDraw( &draw );
}
current_texture = geom->texture;
vertex_buffer = geom->vertex_buffer;
index_buffer = geom->index_buffer;
index_count = 0;
index_offset = -1;
vertex_offset = geom->vertex_offset;
}
if (index_offset < 0)
index_offset = geom->index_offset;
// Make sure that all surfaces are concatenated in buffers
ASSERT(index_offset + index_count == geom->index_offset);
index_count += geom->element_count;
}
if (index_count) {
const render_draw_t draw = {
.lightmap = tglob.lightmapTextures[0],
.texture = current_texture,
.render_mode = model->render_mode,
.element_count = index_count,
.vertex_buffer = vertex_buffer,
.index_buffer = index_buffer,
.vertex_offset = vertex_offset,
.index_offset = index_offset,
};
VK_RenderScheduleDraw( &draw );
}
}
#define MAX_DYNAMIC_GEOMETRY 256
static struct {
vk_render_model_t model;
vk_render_geometry_t geometries[MAX_DYNAMIC_GEOMETRY];
} g_dynamic_model = {0};
void VK_RenderModelDynamicBegin( const char *debug_name, int render_mode ) {
ASSERT(!g_dynamic_model.model.geometries);
g_dynamic_model.model.debug_name = debug_name;
g_dynamic_model.model.geometries = g_dynamic_model.geometries;
g_dynamic_model.model.num_geometries = 0;
g_dynamic_model.model.render_mode = render_mode;
}
void VK_RenderModelDynamicAddGeometry( const vk_render_geometry_t *geom ) {
ASSERT(g_dynamic_model.model.geometries);
if (g_dynamic_model.model.num_geometries == MAX_DYNAMIC_GEOMETRY) {
gEngine.Con_Printf(S_ERROR "Ran out of dynamic model geometry slots for model %s\n", g_dynamic_model.model.debug_name);
return;
}
g_dynamic_model.geometries[g_dynamic_model.model.num_geometries++] = *geom;
}
void VK_RenderModelDynamicCommit( void ) {
ASSERT(g_dynamic_model.model.geometries);
if (g_dynamic_model.model.num_geometries > 0) {
g_dynamic_model.model.dynamic = true;
VK_RenderModelInit( &g_dynamic_model.model );
VK_RenderModelDraw( &g_dynamic_model.model );
}
g_dynamic_model.model.debug_name = NULL;
g_dynamic_model.model.geometries = NULL;
}