binutils-gdb/gdb/ia64-linux-nat.c

645 lines
16 KiB
C
Raw Normal View History

2002-02-24 23:31:19 +01:00
/* Functions specific to running gdb native on IA-64 running
GNU/Linux.
Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
2000-03-21 01:11:10 +01:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#include "regcache.h"
2000-03-21 01:11:10 +01:00
#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
#include <sys/user.h>
#include <asm/ptrace_offsets.h>
#include <sys/procfs.h>
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
2000-03-21 01:11:10 +01:00
/* These must match the order of the register names.
Some sort of lookup table is needed because the offsets associated
with the registers are all over the board. */
static int u_offsets[] =
{
/* general registers */
-1, /* gr0 not available; i.e, it's always zero */
PT_R1,
PT_R2,
PT_R3,
PT_R4,
PT_R5,
PT_R6,
PT_R7,
PT_R8,
PT_R9,
PT_R10,
PT_R11,
PT_R12,
PT_R13,
PT_R14,
PT_R15,
PT_R16,
PT_R17,
PT_R18,
PT_R19,
PT_R20,
PT_R21,
PT_R22,
PT_R23,
PT_R24,
PT_R25,
PT_R26,
PT_R27,
PT_R28,
PT_R29,
PT_R30,
PT_R31,
/* gr32 through gr127 not directly available via the ptrace interface */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
/* Floating point registers */
-1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
PT_F2,
PT_F3,
PT_F4,
PT_F5,
PT_F6,
PT_F7,
PT_F8,
PT_F9,
PT_F10,
PT_F11,
PT_F12,
PT_F13,
PT_F14,
PT_F15,
PT_F16,
PT_F17,
PT_F18,
PT_F19,
PT_F20,
PT_F21,
PT_F22,
PT_F23,
PT_F24,
PT_F25,
PT_F26,
PT_F27,
PT_F28,
PT_F29,
PT_F30,
PT_F31,
PT_F32,
PT_F33,
PT_F34,
PT_F35,
PT_F36,
PT_F37,
PT_F38,
PT_F39,
PT_F40,
PT_F41,
PT_F42,
PT_F43,
PT_F44,
PT_F45,
PT_F46,
PT_F47,
PT_F48,
PT_F49,
PT_F50,
PT_F51,
PT_F52,
PT_F53,
PT_F54,
PT_F55,
PT_F56,
PT_F57,
PT_F58,
PT_F59,
PT_F60,
PT_F61,
PT_F62,
PT_F63,
PT_F64,
PT_F65,
PT_F66,
PT_F67,
PT_F68,
PT_F69,
PT_F70,
PT_F71,
PT_F72,
PT_F73,
PT_F74,
PT_F75,
PT_F76,
PT_F77,
PT_F78,
PT_F79,
PT_F80,
PT_F81,
PT_F82,
PT_F83,
PT_F84,
PT_F85,
PT_F86,
PT_F87,
PT_F88,
PT_F89,
PT_F90,
PT_F91,
PT_F92,
PT_F93,
PT_F94,
PT_F95,
PT_F96,
PT_F97,
PT_F98,
PT_F99,
PT_F100,
PT_F101,
PT_F102,
PT_F103,
PT_F104,
PT_F105,
PT_F106,
PT_F107,
PT_F108,
PT_F109,
PT_F110,
PT_F111,
PT_F112,
PT_F113,
PT_F114,
PT_F115,
PT_F116,
PT_F117,
PT_F118,
PT_F119,
PT_F120,
PT_F121,
PT_F122,
PT_F123,
PT_F124,
PT_F125,
PT_F126,
PT_F127,
/* predicate registers - we don't fetch these individually */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* branch registers */
PT_B0,
PT_B1,
PT_B2,
PT_B3,
PT_B4,
PT_B5,
PT_B6,
PT_B7,
/* virtual frame pointer and virtual return address pointer */
-1, -1,
/* other registers */
PT_PR,
PT_CR_IIP, /* ip */
PT_CR_IPSR, /* psr */
2000-06-13 05:17:11 +02:00
PT_CFM, /* cfm */
2000-03-21 01:11:10 +01:00
/* kernel registers not visible via ptrace interface (?) */
-1, -1, -1, -1, -1, -1, -1, -1,
/* hole */
-1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_RSC,
PT_AR_BSP,
PT_AR_BSPSTORE,
PT_AR_RNAT,
-1,
-1, /* Not available: FCR, IA32 floating control register */
-1, -1,
-1, /* Not available: EFLAG */
-1, /* Not available: CSD */
-1, /* Not available: SSD */
-1, /* Not available: CFLG */
-1, /* Not available: FSR */
-1, /* Not available: FIR */
-1, /* Not available: FDR */
-1,
PT_AR_CCV,
-1, -1, -1,
PT_AR_UNAT,
-1, -1, -1,
PT_AR_FPSR,
-1, -1, -1,
-1, /* Not available: ITC */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_PFS,
PT_AR_LC,
-1, /* Not available: EC, the Epilog Count register */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1,
/* nat bits - not fetched directly; instead we obtain these bits from
either rnat or unat or from memory. */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
};
CORE_ADDR
2000-07-30 03:48:28 +02:00
register_addr (int regno, CORE_ADDR blockend)
2000-03-21 01:11:10 +01:00
{
CORE_ADDR addr;
if (regno < 0 || regno >= NUM_REGS)
error ("Invalid register number %d.", regno);
if (u_offsets[regno] == -1)
addr = 0;
else
addr = (CORE_ADDR) u_offsets[regno];
return addr;
}
int ia64_cannot_fetch_register (regno)
int regno;
{
return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1;
}
int ia64_cannot_store_register (regno)
int regno;
{
/* Rationale behind not permitting stores to bspstore...
The IA-64 architecture provides bspstore and bsp which refer
memory locations in the RSE's backing store. bspstore is the
next location which will be written when the RSE needs to write
to memory. bsp is the address at which r32 in the current frame
would be found if it were written to the backing store.
The IA-64 architecture provides read-only access to bsp and
read/write access to bspstore (but only when the RSE is in
the enforced lazy mode). It should be noted that stores
to bspstore also affect the value of bsp. Changing bspstore
does not affect the number of dirty entries between bspstore
and bsp, so changing bspstore by N words will also cause bsp
to be changed by (roughly) N as well. (It could be N-1 or N+1
depending upon where the NaT collection bits fall.)
2002-02-24 23:56:08 +01:00
OTOH, the Linux kernel provides read/write access to bsp (and
2000-03-21 01:11:10 +01:00
currently read/write access to bspstore as well). But it
is definitely the case that if you change one, the other
will change at the same time. It is more useful to gdb to
be able to change bsp. So in order to prevent strange and
undesirable things from happening when a dummy stack frame
is popped (after calling an inferior function), we allow
bspstore to be read, but not written. (Note that popping
a (generic) dummy stack frame causes all registers that
were previously read from the inferior process to be written
back.) */
return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1
|| regno == IA64_BSPSTORE_REGNUM;
}
void
2000-07-30 03:48:28 +02:00
supply_gregset (gregset_t *gregsetp)
2000-03-21 01:11:10 +01:00
{
int regi;
greg_t *regp = (greg_t *) gregsetp;
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
{
supply_register (regi, (char *) (regp + (regi - IA64_GR0_REGNUM)));
}
/* FIXME: NAT collection bits are at index 32; gotta deal with these
somehow... */
supply_register (IA64_PR_REGNUM, (char *) (regp + 33));
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
{
supply_register (regi, (char *) (regp + 34 + (regi - IA64_BR0_REGNUM)));
}
supply_register (IA64_IP_REGNUM, (char *) (regp + 42));
supply_register (IA64_CFM_REGNUM, (char *) (regp + 43));
supply_register (IA64_PSR_REGNUM, (char *) (regp + 44));
supply_register (IA64_RSC_REGNUM, (char *) (regp + 45));
supply_register (IA64_BSP_REGNUM, (char *) (regp + 46));
supply_register (IA64_BSPSTORE_REGNUM, (char *) (regp + 47));
supply_register (IA64_RNAT_REGNUM, (char *) (regp + 48));
supply_register (IA64_CCV_REGNUM, (char *) (regp + 49));
supply_register (IA64_UNAT_REGNUM, (char *) (regp + 50));
supply_register (IA64_FPSR_REGNUM, (char *) (regp + 51));
supply_register (IA64_PFS_REGNUM, (char *) (regp + 52));
supply_register (IA64_LC_REGNUM, (char *) (regp + 53));
supply_register (IA64_EC_REGNUM, (char *) (regp + 54));
}
void
2000-07-30 03:48:28 +02:00
fill_gregset (gregset_t *gregsetp, int regno)
2000-03-21 01:11:10 +01:00
{
2000-04-03 20:58:48 +02:00
int regi;
greg_t *regp = (greg_t *) gregsetp;
#define COPY_REG(_idx_,_regi_) \
if ((regno == -1) || regno == _regi_) \
memcpy (regp + _idx_, &registers[REGISTER_BYTE (_regi_)], \
REGISTER_RAW_SIZE (_regi_))
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
{
COPY_REG (regi - IA64_GR0_REGNUM, regi);
}
/* FIXME: NAT collection bits at index 32? */
COPY_REG (33, IA64_PR_REGNUM);
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
{
COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
}
COPY_REG (42, IA64_IP_REGNUM);
COPY_REG (43, IA64_CFM_REGNUM);
COPY_REG (44, IA64_PSR_REGNUM);
COPY_REG (45, IA64_RSC_REGNUM);
COPY_REG (46, IA64_BSP_REGNUM);
COPY_REG (47, IA64_BSPSTORE_REGNUM);
COPY_REG (48, IA64_RNAT_REGNUM);
COPY_REG (49, IA64_CCV_REGNUM);
COPY_REG (50, IA64_UNAT_REGNUM);
COPY_REG (51, IA64_FPSR_REGNUM);
COPY_REG (52, IA64_PFS_REGNUM);
COPY_REG (53, IA64_LC_REGNUM);
COPY_REG (54, IA64_EC_REGNUM);
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), unpack the register contents and supply them as gdb's
idea of the current floating point register values. */
void
2000-07-30 03:48:28 +02:00
supply_fpregset (fpregset_t *fpregsetp)
2000-04-03 20:58:48 +02:00
{
register int regi;
char *from;
for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
{
from = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
supply_register (regi, from);
}
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), update the register specified by REGNO from gdb's idea
of the current floating point register set. If REGNO is -1, update
them all. */
void
2000-07-30 03:48:28 +02:00
fill_fpregset (fpregset_t *fpregsetp, int regno)
2000-04-03 20:58:48 +02:00
{
int regi;
char *to;
char *from;
for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
{
if ((regno == -1) || (regno == regi))
{
from = (char *) &registers[REGISTER_BYTE (regi)];
to = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
memcpy (to, from, REGISTER_RAW_SIZE (regi));
}
}
2000-03-21 01:11:10 +01:00
}
2000-04-13 04:18:13 +02:00
#define IA64_PSR_DB (1UL << 24)
#define IA64_PSR_DD (1UL << 39)
static void
2001-05-04 06:15:33 +02:00
enable_watchpoints_in_psr (ptid_t ptid)
2000-04-13 04:18:13 +02:00
{
CORE_ADDR psr;
2001-05-04 06:15:33 +02:00
psr = read_register_pid (IA64_PSR_REGNUM, ptid);
2000-04-13 04:18:13 +02:00
if (!(psr & IA64_PSR_DB))
{
psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
watchpoints and breakpoints. */
2001-05-04 06:15:33 +02:00
write_register_pid (IA64_PSR_REGNUM, psr, ptid);
2000-04-13 04:18:13 +02:00
}
}
static long
2001-05-04 06:15:33 +02:00
fetch_debug_register (ptid_t ptid, int idx)
2000-04-13 04:18:13 +02:00
{
long val;
int tid;
2001-05-04 06:15:33 +02:00
tid = TIDGET (ptid);
2000-04-13 04:18:13 +02:00
if (tid == 0)
2001-05-04 06:15:33 +02:00
tid = PIDGET (ptid);
2000-04-13 04:18:13 +02:00
val = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) (PT_DBR + 8 * idx), 0);
return val;
}
static void
2001-05-04 06:15:33 +02:00
store_debug_register (ptid_t ptid, int idx, long val)
2000-04-13 04:18:13 +02:00
{
int tid;
2001-05-04 06:15:33 +02:00
tid = TIDGET (ptid);
2000-04-13 04:18:13 +02:00
if (tid == 0)
2001-05-04 06:15:33 +02:00
tid = PIDGET (ptid);
2000-04-13 04:18:13 +02:00
(void) ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) (PT_DBR + 8 * idx), val);
}
static void
2001-05-04 06:15:33 +02:00
fetch_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
2000-04-13 04:18:13 +02:00
{
if (dbr_addr)
2001-05-04 06:15:33 +02:00
*dbr_addr = fetch_debug_register (ptid, 2 * idx);
2000-04-13 04:18:13 +02:00
if (dbr_mask)
2001-05-04 06:15:33 +02:00
*dbr_mask = fetch_debug_register (ptid, 2 * idx + 1);
2000-04-13 04:18:13 +02:00
}
static void
2001-05-04 06:15:33 +02:00
store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
2000-04-13 04:18:13 +02:00
{
if (dbr_addr)
2001-05-04 06:15:33 +02:00
store_debug_register (ptid, 2 * idx, *dbr_addr);
2000-04-13 04:18:13 +02:00
if (dbr_mask)
2001-05-04 06:15:33 +02:00
store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
2000-04-13 04:18:13 +02:00
}
static int
is_power_of_2 (int val)
{
int i, onecount;
onecount = 0;
for (i = 0; i < 8 * sizeof (val); i++)
if (val & (1 << i))
onecount++;
return onecount <= 1;
}
int
2001-05-04 06:15:33 +02:00
ia64_linux_insert_watchpoint (ptid_t ptid, CORE_ADDR addr, int len, int rw)
2000-04-13 04:18:13 +02:00
{
int idx;
long dbr_addr, dbr_mask;
int max_watchpoints = 4;
if (len <= 0 || !is_power_of_2 (len))
return -1;
for (idx = 0; idx < max_watchpoints; idx++)
{
2001-05-04 06:15:33 +02:00
fetch_debug_register_pair (ptid, idx, NULL, &dbr_mask);
2000-04-13 04:18:13 +02:00
if ((dbr_mask & (0x3UL << 62)) == 0)
{
/* Exit loop if both r and w bits clear */
break;
}
}
if (idx == max_watchpoints)
return -1;
dbr_addr = (long) addr;
dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
switch (rw)
{
case hw_write:
dbr_mask |= (1L << 62); /* Set w bit */
break;
case hw_read:
dbr_mask |= (1L << 63); /* Set r bit */
break;
case hw_access:
dbr_mask |= (3L << 62); /* Set both r and w bits */
break;
default:
return -1;
}
2001-05-04 06:15:33 +02:00
store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
enable_watchpoints_in_psr (ptid);
2000-04-13 04:18:13 +02:00
return 0;
}
int
2001-05-04 06:15:33 +02:00
ia64_linux_remove_watchpoint (ptid_t ptid, CORE_ADDR addr, int len)
2000-04-13 04:18:13 +02:00
{
int idx;
long dbr_addr, dbr_mask;
int max_watchpoints = 4;
if (len <= 0 || !is_power_of_2 (len))
return -1;
for (idx = 0; idx < max_watchpoints; idx++)
{
2001-05-04 06:15:33 +02:00
fetch_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
2000-04-13 04:18:13 +02:00
if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
{
dbr_addr = 0;
dbr_mask = 0;
2001-05-04 06:15:33 +02:00
store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
2000-04-13 04:18:13 +02:00
return 0;
}
}
return -1;
}
CORE_ADDR
2001-05-04 06:15:33 +02:00
ia64_linux_stopped_by_watchpoint (ptid_t ptid)
2000-04-13 04:18:13 +02:00
{
CORE_ADDR psr;
int tid;
struct siginfo siginfo;
2001-05-04 06:15:33 +02:00
tid = TIDGET(ptid);
2000-04-13 04:18:13 +02:00
if (tid == 0)
2001-05-04 06:15:33 +02:00
tid = PIDGET (ptid);
2000-04-13 04:18:13 +02:00
errno = 0;
ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_ARG3_TYPE) 0, &siginfo);
if (errno != 0 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2000-04-13 04:18:13 +02:00
return 0;
2001-05-04 06:15:33 +02:00
psr = read_register_pid (IA64_PSR_REGNUM, ptid);
2000-04-13 04:18:13 +02:00
psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
for the next instruction */
2001-05-04 06:15:33 +02:00
write_register_pid (IA64_PSR_REGNUM, psr, ptid);
2000-04-13 04:18:13 +02:00
return (CORE_ADDR) siginfo.si_addr;
}