1999-05-03 09:29:11 +02:00
\input texinfo
@setfilename ld.info
2001-03-13 07:14:29 +01:00
@c Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2009-02-03 18:04:53 +01:00
@c 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
@c Free Software Foundation, Inc.
1999-05-03 09:29:11 +02:00
@syncodeindex ky cp
2005-11-17 02:01:05 +01:00
@c man begin INCLUDE
1999-05-03 09:29:11 +02:00
@include configdoc.texi
@c (configdoc.texi is generated by the Makefile)
2007-03-15 15:17:20 +01:00
@include bfdver.texi
2005-11-17 02:01:05 +01:00
@c man end
1999-05-03 09:29:11 +02:00
@c @smallbook
2001-11-09 21:30:40 +01:00
@macro gcctabopt{body}
@code{\body\}
@end macro
2001-03-25 22:32:31 +02:00
@c man begin NAME
@ifset man
@c Configure for the generation of man pages
@set UsesEnvVars
@set GENERIC
@set ARM
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@set H8300
2001-03-25 22:32:31 +02:00
@set HPPA
@set I960
@set M68HC11
Multi-GOT support for m68k.
bfd/
* elf32-m68k.c (struct elf_m68k_link_hash_entry: got_entry_key,
glist): New fields.
(struct elf_m68k_got_entry_key, struct elf_m68k_got_entry,
struct elf_m68k_got, struct elf_m68k_bfd2got_entry,
struct elf_m68k_multi_got): New data structures.
(struct elf_m68k_link_hash_table: local_gp_p, use_neg_got_offsets_p,
allow_multigot_p, multi_got_): New fields.
(elf_m68k_multi_got): New macro.
(elf_m68k_link_hash_newfunc): Initialize new fields of
struct elf_m68k_link_hash_entry.
(elf_m68k_link_hash_table_create): Initialize new fields of
struct elf_m68k_link_hash_table.
(elf_m68k_link_hash_table_free): New static function implementing hook.
(elf_m68k_init_got, elf_m68k_clear_got, elf_m68k_create_empty_got): New
static functions for struct elf_m68k_got.
(elf_m68k_init_got_entry_key, elf_m68k_got_entry_hash,
elf_m68k_got_entry_eq): New static functions for
struct elf_m68k_got_entry.
(ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT,
ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT): New macros.
(enum elf_m68k_get_entry_howto): New enum.
(elf_m68k_get_got_entry, elf_m68k_update_got_entry_type,
elf_m68k_remove_got_entry_type): New static functions for
struct elf_m68k_got_entry.
(elf_m68k_add_entry_to_got): New static function.
(elf_m68k_bfd2got_entry_hash, elf_m68k_bfd2got_entry_eq,
elf_m68k_bfd2got_entry_del, elf_m68k_get_bfd2got_entry): New static
functions for struct elf_m68k_bfd2got_entry.
(struct elf_m68k_can_merge_gots_arg, elf_m68k_can_merge_gots_1,
elf_m68k_can_merge_gots): New traversal.
(struct elf_m68k_merge_gots_arg, elf_m68k_merge_gots_1,
elf_m68k_merge_gots): Ditto.
(struct elf_m68k_finalize_got_offsets_arg,
elf_m68k_finalize_got_offsets_1, elf_m68k_finalize_got_offsets): Ditto.
(struct elf_m68k_partition_multi_got_arg,
elf_m68k_partition_multi_got_1, elf_m68k_init_symndx2h_1,
elf_m68k_partition_multi_got): Ditto.
(elf_m68k_find_got_entry_ptr, elf_m68k_remove_got_entry): New static
functions.
(elf_m68k_copy_indirect_symbol): New static function implementing
a hook.
(elf_m68k_check_relocs): Update to add entries to multi-GOT.
(elf_m68k_gc_sweep_hook): Update to remove entries from multi-GOT.
(elf_m68k_always_size_sections): Assign BFDs to GOTs.
(elf_m68k_relocate_section): Update to properly handle GOT relocations.
(elf_m68k_finish_dynamic_symbol): Update to traverse all GOT entries
of a global symbol.
(bfd_elf_m68k_set_target_options): New function.
(bfd_elf32_bfd_link_hash_table_free): Define hook.
(bfd_elf32_bfd_final_link): Change expansion to bfd_elf_final_link
to skip generic calculation of GOT offsets.
(elf_backend_copy_indirect_symbol): Define hook.
* bfd-in.h (bfd_elf_m68k_set_target_options): Declare function.
* bfd-in2.h: Regenerate.
ld/
* configure.in (--enable-got): New option. Handle it.
* configure: Regenerate.
* config.in: Regenerate.
* emultempl/m68kelf.em: (got_handling_target_default): New shell
variable.
(GOT_HANDLING_TARGET_DEFAULT): New macro.
(GOT_HANDLING_DEFAULT): New macro. Initialize it from configure
option if one was given.
(got_handling): New static variable.
(elf_m68k_create_output_section_statements): New static function
implementing hook.
(PARSE_AND_LIST_PROLOGUE): Define shell variable.
(OPTION_GOT): New macro.
(PARSE_AND_LIST_LONGOPTS): Define shell variable. Specify
--got option.
(got): New linker option.
(PARSE_AND_LIST_OPTIONS): Define shell variable. Print help string
for --got option.
(PARSE_AND_LIST_ARGS_CASES): Define shell variable. Handle --got
option.
* ld.texinfo: Document --got=<type> option.
* gen-doc.texi: Add M68K.
* NEWS: Mention the new feature.
ld/testsuite/
* ld-m68k/got-12.s: New file.
* ld-m68k/got-13.s: New file.
* ld-m68k/got-14.s: New file.
* ld-m68k/got-15.s: New file.
* ld-m68k/got-34.s: New file.
* ld-m68k/got-35.s: New file.
* ld-m68k/got-single-12-ok.d: New dump test.
* ld-m68k/got-single-13-er.d: New dump test.
* ld-m68k/got-negative-14-ok.d: New dump test.
* ld-m68k/got-negative-15-er.d: New dump test.
* ld-m68k/got-negative-12-13-14-34-ok.d: New dump test.
* ld-m68k/got-negative-12-13-14-35-er.d: New dump test.
* ld-m68k/got-multigot-14-ok.d: New dump test.
* ld-m68k/got-multigot-15-er.d: New dump test.
* ld-m68k/got-multigot-12-13-14-34-35-ok.d: New dump test.
* ld-m68k/xgot-15.s: New source.
* ld-m68k/got-xgot-15-ok.d: New test.
* ld-m68k/got-xgot-12-13-14-15-34-35-ok.d: New test.
* ld-m68k/m68k.exp: Run new tests.
2008-05-21 14:01:37 +02:00
@set M68K
2001-10-30 16:20:14 +01:00
@set MMIX
2002-12-30 20:25:13 +01:00
@set MSP430
2006-05-05 02:51:37 +02:00
@set POWERPC
@set POWERPC64
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@set Renesas
@set SPU
@set TICOFF
2002-12-18 17:25:02 +01:00
@set WIN32
2003-04-01 17:50:31 +02:00
@set XTENSA
2001-03-25 22:32:31 +02:00
@end ifset
@c man end
1999-05-03 09:29:11 +02:00
@ifinfo
@format
START-INFO-DIR-ENTRY
* Ld: (ld). The GNU linker.
END-INFO-DIR-ENTRY
@end format
@end ifinfo
2007-05-22 11:16:39 +02:00
@copying
2007-03-22 22:18:34 +01:00
This file documents the @sc{gnu} linker LD
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
version @value{VERSION}.
1999-05-03 09:29:11 +02:00
2007-05-22 11:16:39 +02:00
Copyright @copyright{} 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000,
2009-02-03 18:04:53 +01:00
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
1999-05-03 09:29:11 +02:00
2000-11-06 21:27:26 +01:00
Permission is granted to copy, distribute and/or modify this document
2008-11-19 17:22:48 +01:00
under the terms of the GNU Free Documentation License, Version 1.3
2000-11-06 21:27:26 +01:00
or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in the
2003-02-21 11:27:06 +01:00
section entitled ``GNU Free Documentation License''.
2007-05-22 11:16:39 +02:00
@end copying
1999-05-03 09:29:11 +02:00
@iftex
@finalout
@setchapternewpage odd
2006-07-07 13:18:51 +02:00
@settitle The GNU linker
1999-05-03 09:29:11 +02:00
@titlepage
2006-07-07 13:18:51 +02:00
@title The GNU linker
1999-05-03 09:29:11 +02:00
@sp 1
2007-03-22 22:18:34 +01:00
@subtitle @code{ld}
@ifset VERSION_PACKAGE
@subtitle @value{VERSION_PACKAGE}
@end ifset
1999-05-03 09:29:11 +02:00
@subtitle Version @value{VERSION}
@author Steve Chamberlain
@author Ian Lance Taylor
@page
@tex
{\parskip=0pt
2000-11-06 20:24:16 +01:00
\hfill Red Hat Inc\par
\hfill nickc\@credhat.com, doc\@redhat.com\par
2006-07-07 13:18:51 +02:00
\hfill {\it The GNU linker}\par
1999-05-03 09:29:11 +02:00
\hfill Edited by Jeffrey Osier (jeffrey\@cygnus.com)\par
}
\global\parindent=0pt % Steve likes it this way.
@end tex
@vskip 0pt plus 1filll
2001-03-25 22:32:31 +02:00
@c man begin COPYRIGHT
2003-01-06 17:14:01 +01:00
Copyright @copyright{} 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001,
2009-02-04 10:13:22 +01:00
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
1999-05-03 09:29:11 +02:00
2001-03-25 22:32:31 +02:00
Permission is granted to copy, distribute and/or modify this document
2008-11-19 17:22:48 +01:00
under the terms of the GNU Free Documentation License, Version 1.3
2001-03-25 22:32:31 +02:00
or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in the
2003-02-21 11:27:06 +01:00
section entitled ``GNU Free Documentation License''.
2001-03-25 22:32:31 +02:00
@c man end
1999-05-03 09:29:11 +02:00
@end titlepage
@end iftex
2007-03-28 11:08:53 +02:00
@contents
1999-05-03 09:29:11 +02:00
@c FIXME: Talk about importance of *order* of args, cmds to linker!
2002-03-08 05:07:21 +01:00
@ifnottex
1999-05-03 09:29:11 +02:00
@node Top
2006-07-07 13:18:51 +02:00
@top LD
2007-03-22 22:18:34 +01:00
This file documents the @sc{gnu} linker ld
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
version @value{VERSION}.
1999-05-03 09:29:11 +02:00
2000-11-06 21:27:26 +01:00
This document is distributed under the terms of the GNU Free
2008-11-19 17:22:48 +01:00
Documentation License version 1.3. A copy of the license is included
in the section entitled ``GNU Free Documentation License''.
2000-11-06 21:27:26 +01:00
1999-05-03 09:29:11 +02:00
@menu
* Overview:: Overview
* Invocation:: Invocation
* Scripts:: Linker Scripts
@ifset GENERIC
* Machine Dependent:: Machine Dependent Features
@end ifset
@ifclear GENERIC
@ifset H8300
* H8/300:: ld and the H8/300
@end ifset
2003-04-15 10:51:55 +02:00
@ifset Renesas
* Renesas:: ld and other Renesas micros
1999-05-03 09:29:11 +02:00
@end ifset
@ifset I960
* i960:: ld and the Intel 960 family
@end ifset
2003-02-21 11:27:06 +01:00
@ifset ARM
* ARM:: ld and the ARM family
@end ifset
@ifset HPPA
* HPPA ELF32:: ld and HPPA 32-bit ELF
@end ifset
2004-08-02 22:03:41 +02:00
@ifset M68HC11
* M68HC11/68HC12:: ld and the Motorola 68HC11 and 68HC12 families
@end ifset
Multi-GOT support for m68k.
bfd/
* elf32-m68k.c (struct elf_m68k_link_hash_entry: got_entry_key,
glist): New fields.
(struct elf_m68k_got_entry_key, struct elf_m68k_got_entry,
struct elf_m68k_got, struct elf_m68k_bfd2got_entry,
struct elf_m68k_multi_got): New data structures.
(struct elf_m68k_link_hash_table: local_gp_p, use_neg_got_offsets_p,
allow_multigot_p, multi_got_): New fields.
(elf_m68k_multi_got): New macro.
(elf_m68k_link_hash_newfunc): Initialize new fields of
struct elf_m68k_link_hash_entry.
(elf_m68k_link_hash_table_create): Initialize new fields of
struct elf_m68k_link_hash_table.
(elf_m68k_link_hash_table_free): New static function implementing hook.
(elf_m68k_init_got, elf_m68k_clear_got, elf_m68k_create_empty_got): New
static functions for struct elf_m68k_got.
(elf_m68k_init_got_entry_key, elf_m68k_got_entry_hash,
elf_m68k_got_entry_eq): New static functions for
struct elf_m68k_got_entry.
(ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT,
ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT): New macros.
(enum elf_m68k_get_entry_howto): New enum.
(elf_m68k_get_got_entry, elf_m68k_update_got_entry_type,
elf_m68k_remove_got_entry_type): New static functions for
struct elf_m68k_got_entry.
(elf_m68k_add_entry_to_got): New static function.
(elf_m68k_bfd2got_entry_hash, elf_m68k_bfd2got_entry_eq,
elf_m68k_bfd2got_entry_del, elf_m68k_get_bfd2got_entry): New static
functions for struct elf_m68k_bfd2got_entry.
(struct elf_m68k_can_merge_gots_arg, elf_m68k_can_merge_gots_1,
elf_m68k_can_merge_gots): New traversal.
(struct elf_m68k_merge_gots_arg, elf_m68k_merge_gots_1,
elf_m68k_merge_gots): Ditto.
(struct elf_m68k_finalize_got_offsets_arg,
elf_m68k_finalize_got_offsets_1, elf_m68k_finalize_got_offsets): Ditto.
(struct elf_m68k_partition_multi_got_arg,
elf_m68k_partition_multi_got_1, elf_m68k_init_symndx2h_1,
elf_m68k_partition_multi_got): Ditto.
(elf_m68k_find_got_entry_ptr, elf_m68k_remove_got_entry): New static
functions.
(elf_m68k_copy_indirect_symbol): New static function implementing
a hook.
(elf_m68k_check_relocs): Update to add entries to multi-GOT.
(elf_m68k_gc_sweep_hook): Update to remove entries from multi-GOT.
(elf_m68k_always_size_sections): Assign BFDs to GOTs.
(elf_m68k_relocate_section): Update to properly handle GOT relocations.
(elf_m68k_finish_dynamic_symbol): Update to traverse all GOT entries
of a global symbol.
(bfd_elf_m68k_set_target_options): New function.
(bfd_elf32_bfd_link_hash_table_free): Define hook.
(bfd_elf32_bfd_final_link): Change expansion to bfd_elf_final_link
to skip generic calculation of GOT offsets.
(elf_backend_copy_indirect_symbol): Define hook.
* bfd-in.h (bfd_elf_m68k_set_target_options): Declare function.
* bfd-in2.h: Regenerate.
ld/
* configure.in (--enable-got): New option. Handle it.
* configure: Regenerate.
* config.in: Regenerate.
* emultempl/m68kelf.em: (got_handling_target_default): New shell
variable.
(GOT_HANDLING_TARGET_DEFAULT): New macro.
(GOT_HANDLING_DEFAULT): New macro. Initialize it from configure
option if one was given.
(got_handling): New static variable.
(elf_m68k_create_output_section_statements): New static function
implementing hook.
(PARSE_AND_LIST_PROLOGUE): Define shell variable.
(OPTION_GOT): New macro.
(PARSE_AND_LIST_LONGOPTS): Define shell variable. Specify
--got option.
(got): New linker option.
(PARSE_AND_LIST_OPTIONS): Define shell variable. Print help string
for --got option.
(PARSE_AND_LIST_ARGS_CASES): Define shell variable. Handle --got
option.
* ld.texinfo: Document --got=<type> option.
* gen-doc.texi: Add M68K.
* NEWS: Mention the new feature.
ld/testsuite/
* ld-m68k/got-12.s: New file.
* ld-m68k/got-13.s: New file.
* ld-m68k/got-14.s: New file.
* ld-m68k/got-15.s: New file.
* ld-m68k/got-34.s: New file.
* ld-m68k/got-35.s: New file.
* ld-m68k/got-single-12-ok.d: New dump test.
* ld-m68k/got-single-13-er.d: New dump test.
* ld-m68k/got-negative-14-ok.d: New dump test.
* ld-m68k/got-negative-15-er.d: New dump test.
* ld-m68k/got-negative-12-13-14-34-ok.d: New dump test.
* ld-m68k/got-negative-12-13-14-35-er.d: New dump test.
* ld-m68k/got-multigot-14-ok.d: New dump test.
* ld-m68k/got-multigot-15-er.d: New dump test.
* ld-m68k/got-multigot-12-13-14-34-35-ok.d: New dump test.
* ld-m68k/xgot-15.s: New source.
* ld-m68k/got-xgot-15-ok.d: New test.
* ld-m68k/got-xgot-12-13-14-15-34-35-ok.d: New test.
* ld-m68k/m68k.exp: Run new tests.
2008-05-21 14:01:37 +02:00
@ifset M68K
* M68K:: ld and Motorola 68K family
@end ifset
2006-05-05 02:51:37 +02:00
@ifset POWERPC
* PowerPC ELF32:: ld and PowerPC 32-bit ELF Support
@end ifset
@ifset POWERPC64
* PowerPC64 ELF64:: ld and PowerPC64 64-bit ELF Support
@end ifset
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@ifset SPU
* SPU ELF:: ld and SPU ELF Support
@end ifset
2000-06-20 15:29:07 +02:00
@ifset TICOFF
* TI COFF:: ld and the TI COFF
@end ifset
2002-12-18 17:25:02 +01:00
@ifset WIN32
* Win32:: ld and WIN32 (cygwin/mingw)
@end ifset
2003-04-01 17:50:31 +02:00
@ifset XTENSA
* Xtensa:: ld and Xtensa Processors
@end ifset
1999-05-03 09:29:11 +02:00
@end ifclear
@ifclear SingleFormat
* BFD:: BFD
@end ifclear
@c Following blank line required for remaining bug in makeinfo conds/menus
* Reporting Bugs:: Reporting Bugs
* MRI:: MRI Compatible Script Files
2000-11-06 20:24:16 +01:00
* GNU Free Documentation License:: GNU Free Documentation License
2006-05-11 18:11:29 +02:00
* LD Index:: LD Index
1999-05-03 09:29:11 +02:00
@end menu
2002-03-08 05:07:21 +01:00
@end ifnottex
1999-05-03 09:29:11 +02:00
@node Overview
@chapter Overview
@cindex @sc{gnu} linker
@cindex what is this?
2001-03-25 22:32:31 +02:00
2001-03-26 09:02:59 +02:00
@ifset man
2001-03-25 22:32:31 +02:00
@c man begin SYNOPSIS
2001-11-09 21:30:40 +01:00
ld [@b{options}] @var{objfile} @dots{}
2001-03-25 22:32:31 +02:00
@c man end
@c man begin SEEALSO
ar(1), nm(1), objcopy(1), objdump(1), readelf(1) and
the Info entries for @file{binutils} and
@file{ld}.
@c man end
@end ifset
@c man begin DESCRIPTION
2001-11-09 21:30:40 +01:00
@command{ld} combines a number of object and archive files, relocates
1999-05-03 09:29:11 +02:00
their data and ties up symbol references. Usually the last step in
2001-11-09 21:30:40 +01:00
compiling a program is to run @command{ld}.
1999-05-03 09:29:11 +02:00
2001-11-09 21:30:40 +01:00
@command{ld} accepts Linker Command Language files written in
1999-05-03 09:29:11 +02:00
a superset of AT&T's Link Editor Command Language syntax,
to provide explicit and total control over the linking process.
2001-03-25 22:32:31 +02:00
@ifset man
@c For the man only
2006-06-27 10:52:38 +02:00
This man page does not describe the command language; see the
2006-07-07 13:18:51 +02:00
@command{ld} entry in @code{info} for full details on the command
language and on other aspects of the GNU linker.
2001-03-25 22:32:31 +02:00
@end ifset
1999-05-03 09:29:11 +02:00
@ifclear SingleFormat
2001-11-09 21:30:40 +01:00
This version of @command{ld} uses the general purpose BFD libraries
to operate on object files. This allows @command{ld} to read, combine, and
1999-05-03 09:29:11 +02:00
write object files in many different formats---for example, COFF or
@code{a.out}. Different formats may be linked together to produce any
available kind of object file. @xref{BFD}, for more information.
@end ifclear
Aside from its flexibility, the @sc{gnu} linker is more helpful than other
linkers in providing diagnostic information. Many linkers abandon
execution immediately upon encountering an error; whenever possible,
2001-11-09 21:30:40 +01:00
@command{ld} continues executing, allowing you to identify other errors
1999-05-03 09:29:11 +02:00
(or, in some cases, to get an output file in spite of the error).
2001-03-25 22:32:31 +02:00
@c man end
1999-05-03 09:29:11 +02:00
@node Invocation
@chapter Invocation
2001-03-25 22:32:31 +02:00
@c man begin DESCRIPTION
2001-11-09 21:30:40 +01:00
The @sc{gnu} linker @command{ld} is meant to cover a broad range of situations,
1999-05-03 09:29:11 +02:00
and to be as compatible as possible with other linkers. As a result,
you have many choices to control its behavior.
2001-03-25 22:32:31 +02:00
@c man end
1999-05-03 09:29:11 +02:00
@ifset UsesEnvVars
@menu
* Options:: Command Line Options
* Environment:: Environment Variables
@end menu
@node Options
@section Command Line Options
@end ifset
@cindex command line
@cindex options
2001-03-25 22:32:31 +02:00
@c man begin OPTIONS
1999-05-03 09:29:11 +02:00
The linker supports a plethora of command-line options, but in actual
practice few of them are used in any particular context.
@cindex standard Unix system
2001-11-09 21:30:40 +01:00
For instance, a frequent use of @command{ld} is to link standard Unix
1999-05-03 09:29:11 +02:00
object files on a standard, supported Unix system. On such a system, to
link a file @code{hello.o}:
@smallexample
ld -o @var{output} /lib/crt0.o hello.o -lc
@end smallexample
2001-11-09 21:30:40 +01:00
This tells @command{ld} to produce a file called @var{output} as the
1999-05-03 09:29:11 +02:00
result of linking the file @code{/lib/crt0.o} with @code{hello.o} and
the library @code{libc.a}, which will come from the standard search
directories. (See the discussion of the @samp{-l} option below.)
2001-11-09 21:30:40 +01:00
Some of the command-line options to @command{ld} may be specified at any
1999-05-29 21:43:33 +02:00
point in the command line. However, options which refer to files, such
as @samp{-l} or @samp{-T}, cause the file to be read at the point at
which the option appears in the command line, relative to the object
files and other file options. Repeating non-file options with a
different argument will either have no further effect, or override prior
1999-05-03 09:29:11 +02:00
occurrences (those further to the left on the command line) of that
option. Options which may be meaningfully specified more than once are
noted in the descriptions below.
@cindex object files
1999-05-29 21:43:33 +02:00
Non-option arguments are object files or archives which are to be linked
together. They may follow, precede, or be mixed in with command-line
options, except that an object file argument may not be placed between
an option and its argument.
1999-05-03 09:29:11 +02:00
Usually the linker is invoked with at least one object file, but you can
specify other forms of binary input files using @samp{-l}, @samp{-R},
and the script command language. If @emph{no} binary input files at all
are specified, the linker does not produce any output, and issues the
message @samp{No input files}.
2003-02-21 11:27:06 +01:00
If the linker cannot recognize the format of an object file, it will
1999-05-03 09:29:11 +02:00
assume that it is a linker script. A script specified in this way
augments the main linker script used for the link (either the default
linker script or the one specified by using @samp{-T}). This feature
permits the linker to link against a file which appears to be an object
or an archive, but actually merely defines some symbol values, or uses
ld/
* ld.texinfo (INSERT): Describe.
* ldgram.y (ldgram_in_script, ldgram_had_equals): Delete.
(INSERT_K, AFTER, BEFORE): Add as tokens.
(ifile_p1): Handle INSERT statements.
(saved_script_handle, force_make_executable): Move to..
* ldmain.c: ..here.
(previous_script_handle): New global var.
* ldmain.h (saved_script_handle, force_make_executable): Declare.
(previous_script_handle): Likewise.
* ldlex.l (INSERT_K, AFTER, BEFORE): Add tokens.
* lexsup.c (parge_args <-T>): Set previous_script_handle.
* ldlang.c (lang_for_each_statement_worker): Handle insert statement.
(map_input_to_output_sections, print_statement): Likewise.
(lang_size_sections_1, lang_do_assignments_1): Likewise.
(insert_os_after): New function, extracted from..
(lang_insert_orphan): ..here.
(process_insert_statements): New function.
(lang_process): Call it.
(lang_add_insert): New function.
* ldlang.h (lang_insert_statement_enum): New.
(lang_insert_statement_type): New.
(lang_statement_union_type): Add insert_statement.
(lang_add_insert): Declare.
ld/testsuite/
* ld-spu/ovl.lnk: Delete overlay.
* ld-spu/ovl1.lnk: New file.
* ld-spu/ovl2.lnk: New file.
* ld-spu/ovl.d: Update.
* ld-spu/ovl2.d: Update.
2008-01-25 13:03:37 +01:00
@code{INPUT} or @code{GROUP} to load other objects. Specifying a
script in this way merely augments the main linker script, with the
extra commands placed after the main script; use the @samp{-T} option
to replace the default linker script entirely, but note the effect of
the @code{INSERT} command. @xref{Scripts}.
1999-05-03 09:29:11 +02:00
For options whose names are a single letter,
option arguments must either follow the option letter without intervening
whitespace, or be given as separate arguments immediately following the
option that requires them.
For options whose names are multiple letters, either one dash or two can
2000-12-28 20:54:33 +01:00
precede the option name; for example, @samp{-trace-symbol} and
2003-02-21 11:27:06 +01:00
@samp{--trace-symbol} are equivalent. Note---there is one exception to
2000-12-28 20:54:33 +01:00
this rule. Multiple letter options that start with a lower case 'o' can
2006-07-06 12:46:46 +02:00
only be preceded by two dashes. This is to reduce confusion with the
2000-12-28 20:54:33 +01:00
@samp{-o} option. So for example @samp{-omagic} sets the output file
name to @samp{magic} whereas @samp{--omagic} sets the NMAGIC flag on the
output.
Arguments to multiple-letter options must either be separated from the
option name by an equals sign, or be given as separate arguments
immediately following the option that requires them. For example,
@samp{--trace-symbol foo} and @samp{--trace-symbol=foo} are equivalent.
Unique abbreviations of the names of multiple-letter options are
accepted.
1999-05-03 09:29:11 +02:00
2003-02-21 11:27:06 +01:00
Note---if the linker is being invoked indirectly, via a compiler driver
(e.g. @samp{gcc}) then all the linker command line options should be
2000-01-07 20:46:04 +01:00
prefixed by @samp{-Wl,} (or whatever is appropriate for the particular
compiler driver) like this:
2000-01-07 20:06:46 +01:00
@smallexample
2009-02-24 19:06:27 +01:00
gcc -Wl,--start-group foo.o bar.o -Wl,--end-group
2000-01-07 20:06:46 +01:00
@end smallexample
This is important, because otherwise the compiler driver program may
2009-02-24 19:06:27 +01:00
silently drop the linker options, resulting in a bad link. Confusion
may also arise when passing options that require values through a
driver, as the use of a space between option and argument acts as
a separator, and causes the driver to pass only the option to the linker
and the argument to the compiler. In this case, it is simplest to use
the joined forms of both single- and multiple-letter options, such as:
@smallexample
gcc foo.o bar.o -Wl,-eENTRY -Wl,-Map=a.map
@end smallexample
2000-01-07 20:06:46 +01:00
Here is a table of the generic command line switches accepted by the GNU
linker:
2001-11-09 21:30:40 +01:00
@table @gcctabopt
2006-05-02 16:20:46 +02:00
@include at-file.texi
2005-11-17 02:01:05 +01:00
2009-02-24 19:06:27 +01:00
@kindex -a @var{keyword}
@item -a @var{keyword}
1999-05-03 09:29:11 +02:00
This option is supported for HP/UX compatibility. The @var{keyword}
argument must be one of the strings @samp{archive}, @samp{shared}, or
@samp{default}. @samp{-aarchive} is functionally equivalent to
@samp{-Bstatic}, and the other two keywords are functionally equivalent
to @samp{-Bdynamic}. This option may be used any number of times.
2009-09-23 15:54:29 +02:00
@kindex --audit @var{AUDITLIB}
@item --audit @var{AUDITLIB}
Adds @var{AUDITLIB} to the @code{DT_AUDIT} entry of the dynamic section.
@var{AUDITLIB} is not checked for existence, nor will it use the DT_SONAME
specified in the library. If specified multiple times @code{DT_AUDIT}
will contain a colon separated list of audit interfaces to use. If the linker
finds an object with an audit entry while searching for shared libraries,
it will add a corresponding @code{DT_DEPAUDIT} entry in the output file.
This option is only meaningful on ELF platforms supporting the rtld-audit
interface.
1999-05-03 09:29:11 +02:00
@ifset I960
@cindex architectures
2009-02-24 19:06:27 +01:00
@kindex -A @var{arch}
@item -A @var{architecture}
1999-05-03 09:29:11 +02:00
@kindex --architecture=@var{arch}
@itemx --architecture=@var{architecture}
2001-11-09 21:30:40 +01:00
In the current release of @command{ld}, this option is useful only for the
Intel 960 family of architectures. In that @command{ld} configuration, the
1999-05-03 09:29:11 +02:00
@var{architecture} argument identifies the particular architecture in
the 960 family, enabling some safeguards and modifying the
2001-11-09 21:30:40 +01:00
archive-library search path. @xref{i960,,@command{ld} and the Intel 960
1999-05-03 09:29:11 +02:00
family}, for details.
2001-11-09 21:30:40 +01:00
Future releases of @command{ld} may support similar functionality for
1999-05-03 09:29:11 +02:00
other architecture families.
@end ifset
@ifclear SingleFormat
@cindex binary input format
@kindex -b @var{format}
@kindex --format=@var{format}
@cindex input format
@cindex input format
@item -b @var{input-format}
@itemx --format=@var{input-format}
2001-11-09 21:30:40 +01:00
@command{ld} may be configured to support more than one kind of object
file. If your @command{ld} is configured this way, you can use the
1999-05-03 09:29:11 +02:00
@samp{-b} option to specify the binary format for input object files
2001-11-09 21:30:40 +01:00
that follow this option on the command line. Even when @command{ld} is
1999-05-03 09:29:11 +02:00
configured to support alternative object formats, you don't usually need
2001-11-09 21:30:40 +01:00
to specify this, as @command{ld} should be configured to expect as a
1999-05-03 09:29:11 +02:00
default input format the most usual format on each machine.
@var{input-format} is a text string, the name of a particular format
supported by the BFD libraries. (You can list the available binary
formats with @samp{objdump -i}.)
@xref{BFD}.
You may want to use this option if you are linking files with an unusual
binary format. You can also use @samp{-b} to switch formats explicitly (when
linking object files of different formats), by including
@samp{-b @var{input-format}} before each group of object files in a
2001-03-17 22:24:26 +01:00
particular format.
1999-05-03 09:29:11 +02:00
The default format is taken from the environment variable
@code{GNUTARGET}.
@ifset UsesEnvVars
@xref{Environment}.
@end ifset
You can also define the input format from a script, using the command
2001-03-25 22:32:31 +02:00
@code{TARGET};
@ifclear man
see @ref{Format Commands}.
@end ifclear
1999-05-03 09:29:11 +02:00
@end ifclear
@kindex -c @var{MRI-cmdfile}
@kindex --mri-script=@var{MRI-cmdfile}
@cindex compatibility, MRI
@item -c @var{MRI-commandfile}
@itemx --mri-script=@var{MRI-commandfile}
2001-11-09 21:30:40 +01:00
For compatibility with linkers produced by MRI, @command{ld} accepts script
1999-05-03 09:29:11 +02:00
files written in an alternate, restricted command language, described in
2001-03-25 22:32:31 +02:00
@ifclear man
@ref{MRI,,MRI Compatible Script Files}.
@end ifclear
@ifset man
the MRI Compatible Script Files section of GNU ld documentation.
@end ifset
Introduce MRI script files with
1999-05-03 09:29:11 +02:00
the option @samp{-c}; use the @samp{-T} option to run linker
2001-11-09 21:30:40 +01:00
scripts written in the general-purpose @command{ld} scripting language.
If @var{MRI-cmdfile} does not exist, @command{ld} looks for it in the directories
1999-05-03 09:29:11 +02:00
specified by any @samp{-L} options.
@cindex common allocation
@kindex -d
@kindex -dc
@kindex -dp
2001-03-17 22:24:26 +01:00
@item -d
1999-05-03 09:29:11 +02:00
@itemx -dc
@itemx -dp
These three options are equivalent; multiple forms are supported for
compatibility with other linkers. They assign space to common symbols
even if a relocatable output file is specified (with @samp{-r}). The
script command @code{FORCE_COMMON_ALLOCATION} has the same effect.
@xref{Miscellaneous Commands}.
2009-09-23 15:54:29 +02:00
@kindex --depaudit @var{AUDITLIB}
@kindex -P @var{AUDITLIB}
@item --depaudit @var{AUDITLIB}
@itemx -P @var{AUDITLIB}
Adds @var{AUDITLIB} to the @code{DT_DEPAUDIT} entry of the dynamic section.
@var{AUDITLIB} is not checked for existence, nor will it use the DT_SONAME
specified in the library. If specified multiple times @code{DT_DEPAUDIT}
will contain a colon separated list of audit interfaces to use. This
option is only meaningful on ELF platforms supporting the rtld-audit interface.
The -P option is provided for Solaris compatibility.
1999-05-03 09:29:11 +02:00
@cindex entry point, from command line
@kindex -e @var{entry}
@kindex --entry=@var{entry}
2001-03-17 22:24:26 +01:00
@item -e @var{entry}
1999-05-03 09:29:11 +02:00
@itemx --entry=@var{entry}
Use @var{entry} as the explicit symbol for beginning execution of your
program, rather than the default entry point. If there is no symbol
named @var{entry}, the linker will try to parse @var{entry} as a number,
and use that as the entry address (the number will be interpreted in
base 10; you may use a leading @samp{0x} for base 16, or a leading
@samp{0} for base 8). @xref{Entry Point}, for a discussion of defaults
and other ways of specifying the entry point.
2004-10-16 20:13:54 +02:00
@kindex --exclude-libs
@item --exclude-libs @var{lib},@var{lib},...
Specifies a list of archive libraries from which symbols should not be automatically
2009-01-03 19:04:16 +01:00
exported. The library names may be delimited by commas or colons. Specifying
2004-10-16 20:13:54 +02:00
@code{--exclude-libs ALL} excludes symbols in all archive libraries from
automatic export. This option is available only for the i386 PE targeted
port of the linker and for ELF targeted ports. For i386 PE, symbols
explicitly listed in a .def file are still exported, regardless of this
option. For ELF targeted ports, symbols affected by this option will
be treated as hidden.
2009-01-03 19:04:16 +01:00
@kindex --exclude-modules-for-implib
@item --exclude-modules-for-implib @var{module},@var{module},...
Specifies a list of object files or archive members, from which symbols
should not be automatically exported, but which should be copied wholesale
into the import library being generated during the link. The module names
may be delimited by commas or colons, and must match exactly the filenames
used by @command{ld} to open the files; for archive members, this is simply
the member name, but for object files the name listed must include and
match precisely any path used to specify the input file on the linker's
command-line. This option is available only for the i386 PE targeted port
of the linker. Symbols explicitly listed in a .def file are still exported,
regardless of this option.
1999-05-03 09:29:11 +02:00
@cindex dynamic symbol table
@kindex -E
@kindex --export-dynamic
2009-04-29 19:24:27 +02:00
@kindex --no-export-dynamic
1999-05-03 09:29:11 +02:00
@item -E
@itemx --export-dynamic
2009-04-29 19:24:27 +02:00
@itemx --no-export-dynamic
When creating a dynamically linked executable, using the @option{-E}
option or the @option{--export-dynamic} option causes the linker to add
all symbols to the dynamic symbol table. The dynamic symbol table is the
set of symbols which are visible from dynamic objects at run time.
If you do not use either of these options (or use the
@option{--no-export-dynamic} option to restore the default behavior), the
dynamic symbol table will normally contain only those symbols which are
referenced by some dynamic object mentioned in the link.
1999-05-03 09:29:11 +02:00
If you use @code{dlopen} to load a dynamic object which needs to refer
back to the symbols defined by the program, rather than some other
dynamic object, then you will probably need to use this option when
linking the program itself.
2006-09-07 19:16:34 +02:00
You can also use the dynamic list to control what symbols should
2001-06-19 17:22:39 +02:00
be added to the dynamic symbol table if the output format supports it.
2006-09-07 19:16:34 +02:00
See the description of @samp{--dynamic-list}.
2001-06-19 17:22:39 +02:00
2009-04-02 16:42:41 +02:00
Note that this option is specific to ELF targeted ports. PE targets
support a similar function to export all symbols from a DLL or EXE; see
the description of @samp{--export-all-symbols} below.
2003-02-21 11:27:06 +01:00
@ifclear SingleFormat
1999-05-03 09:29:11 +02:00
@cindex big-endian objects
@cindex endianness
@kindex -EB
@item -EB
Link big-endian objects. This affects the default output format.
@cindex little-endian objects
@kindex -EL
@item -EL
Link little-endian objects. This affects the default output format.
2003-02-21 11:27:06 +01:00
@end ifclear
1999-05-03 09:29:11 +02:00
2009-02-24 19:06:27 +01:00
@kindex -f @var{name}
@kindex --auxiliary=@var{name}
@item -f @var{name}
@itemx --auxiliary=@var{name}
1999-05-03 09:29:11 +02:00
When creating an ELF shared object, set the internal DT_AUXILIARY field
to the specified name. This tells the dynamic linker that the symbol
table of the shared object should be used as an auxiliary filter on the
symbol table of the shared object @var{name}.
If you later link a program against this filter object, then, when you
run the program, the dynamic linker will see the DT_AUXILIARY field. If
the dynamic linker resolves any symbols from the filter object, it will
first check whether there is a definition in the shared object
@var{name}. If there is one, it will be used instead of the definition
in the filter object. The shared object @var{name} need not exist.
Thus the shared object @var{name} may be used to provide an alternative
implementation of certain functions, perhaps for debugging or for
machine specific performance.
This option may be specified more than once. The DT_AUXILIARY entries
will be created in the order in which they appear on the command line.
2009-02-24 19:06:27 +01:00
@kindex -F @var{name}
@kindex --filter=@var{name}
1999-05-03 09:29:11 +02:00
@item -F @var{name}
2009-02-24 19:06:27 +01:00
@itemx --filter=@var{name}
1999-05-03 09:29:11 +02:00
When creating an ELF shared object, set the internal DT_FILTER field to
the specified name. This tells the dynamic linker that the symbol table
of the shared object which is being created should be used as a filter
on the symbol table of the shared object @var{name}.
If you later link a program against this filter object, then, when you
run the program, the dynamic linker will see the DT_FILTER field. The
dynamic linker will resolve symbols according to the symbol table of the
filter object as usual, but it will actually link to the definitions
found in the shared object @var{name}. Thus the filter object can be
used to select a subset of the symbols provided by the object
@var{name}.
2001-11-09 21:30:40 +01:00
Some older linkers used the @option{-F} option throughout a compilation
1999-05-03 09:29:11 +02:00
toolchain for specifying object-file format for both input and output
2003-02-21 11:27:06 +01:00
object files.
@ifclear SingleFormat
The @sc{gnu} linker uses other mechanisms for this purpose: the
2006-06-27 10:52:38 +02:00
@option{-b}, @option{--format}, @option{--oformat} options, the
1999-05-03 09:29:11 +02:00
@code{TARGET} command in linker scripts, and the @code{GNUTARGET}
2003-02-21 11:27:06 +01:00
environment variable.
@end ifclear
The @sc{gnu} linker will ignore the @option{-F} option when not
creating an ELF shared object.
1999-05-03 09:29:11 +02:00
1999-06-23 13:09:30 +02:00
@cindex finalization function
2009-02-24 19:06:27 +01:00
@kindex -fini=@var{name}
@item -fini=@var{name}
1999-06-23 13:09:30 +02:00
When creating an ELF executable or shared object, call NAME when the
executable or shared object is unloaded, by setting DT_FINI to the
address of the function. By default, the linker uses @code{_fini} as
the function to call.
1999-05-03 09:29:11 +02:00
@kindex -g
@item -g
Ignored. Provided for compatibility with other tools.
2009-02-24 19:06:27 +01:00
@kindex -G @var{value}
@kindex --gpsize=@var{value}
1999-05-03 09:29:11 +02:00
@cindex object size
2009-02-24 19:06:27 +01:00
@item -G @var{value}
1999-05-03 09:29:11 +02:00
@itemx --gpsize=@var{value}
Set the maximum size of objects to be optimized using the GP register to
@var{size}. This is only meaningful for object file formats such as
MIPS ECOFF which supports putting large and small objects into different
sections. This is ignored for other object file formats.
@cindex runtime library name
2009-02-24 19:06:27 +01:00
@kindex -h @var{name}
1999-05-03 09:29:11 +02:00
@kindex -soname=@var{name}
2009-02-24 19:06:27 +01:00
@item -h @var{name}
1999-05-03 09:29:11 +02:00
@itemx -soname=@var{name}
When creating an ELF shared object, set the internal DT_SONAME field to
the specified name. When an executable is linked with a shared object
which has a DT_SONAME field, then when the executable is run the dynamic
linker will attempt to load the shared object specified by the DT_SONAME
field rather than the using the file name given to the linker.
@kindex -i
@cindex incremental link
@item -i
Perform an incremental link (same as option @samp{-r}).
1999-06-23 13:09:30 +02:00
@cindex initialization function
2009-02-24 19:06:27 +01:00
@kindex -init=@var{name}
@item -init=@var{name}
1999-06-23 13:09:30 +02:00
When creating an ELF executable or shared object, call NAME when the
executable or shared object is loaded, by setting DT_INIT to the address
of the function. By default, the linker uses @code{_init} as the
function to call.
1999-05-03 09:29:11 +02:00
@cindex archive files, from cmd line
2009-02-24 19:06:27 +01:00
@kindex -l @var{namespec}
2007-03-29 19:16:05 +02:00
@kindex --library=@var{namespec}
2009-02-24 19:06:27 +01:00
@item -l @var{namespec}
2007-03-29 19:16:05 +02:00
@itemx --library=@var{namespec}
Add the archive or object file specified by @var{namespec} to the
list of files to link. This option may be used any number of times.
If @var{namespec} is of the form @file{:@var{filename}}, @command{ld}
2009-07-06 15:48:51 +02:00
will search the library path for a file called @var{filename}, otherwise it
2007-03-29 19:16:05 +02:00
will search the library path for a file called @file{lib@var{namespec}.a}.
1999-05-03 09:29:11 +02:00
2001-11-09 21:30:40 +01:00
On systems which support shared libraries, @command{ld} may also search for
2007-03-29 19:16:05 +02:00
files other than @file{lib@var{namespec}.a}. Specifically, on ELF
and SunOS systems, @command{ld} will search a directory for a library
called @file{lib@var{namespec}.so} before searching for one called
@file{lib@var{namespec}.a}. (By convention, a @code{.so} extension
indicates a shared library.) Note that this behavior does not apply
to @file{:@var{filename}}, which always specifies a file called
@var{filename}.
1999-05-03 09:29:11 +02:00
The linker will search an archive only once, at the location where it is
specified on the command line. If the archive defines a symbol which
was undefined in some object which appeared before the archive on the
command line, the linker will include the appropriate file(s) from the
archive. However, an undefined symbol in an object appearing later on
the command line will not cause the linker to search the archive again.
2001-11-09 21:30:40 +01:00
See the @option{-(} option for a way to force the linker to search
1999-05-03 09:29:11 +02:00
archives multiple times.
You may list the same archive multiple times on the command line.
@ifset GENERIC
This type of archive searching is standard for Unix linkers. However,
2001-11-09 21:30:40 +01:00
if you are using @command{ld} on AIX, note that it is different from the
1999-05-03 09:29:11 +02:00
behaviour of the AIX linker.
@end ifset
@cindex search directory, from cmd line
2009-02-24 19:06:27 +01:00
@kindex -L @var{dir}
1999-05-03 09:29:11 +02:00
@kindex --library-path=@var{dir}
2009-02-24 19:06:27 +01:00
@item -L @var{searchdir}
1999-05-03 09:29:11 +02:00
@itemx --library-path=@var{searchdir}
2001-11-09 21:30:40 +01:00
Add path @var{searchdir} to the list of paths that @command{ld} will search
for archive libraries and @command{ld} control scripts. You may use this
1999-05-03 09:29:11 +02:00
option any number of times. The directories are searched in the order
in which they are specified on the command line. Directories specified
on the command line are searched before the default directories. All
2001-11-09 21:30:40 +01:00
@option{-L} options apply to all @option{-l} options, regardless of the
2009-04-06 02:47:09 +02:00
order in which the options appear. @option{-L} options do not affect
how @command{ld} searches for a linker script unless @option{-T}
option is specified.
1999-05-03 09:29:11 +02:00
2003-01-06 17:14:01 +01:00
If @var{searchdir} begins with @code{=}, then the @code{=} will be replaced
by the @dfn{sysroot prefix}, a path specified when the linker is configured.
1999-05-03 09:29:11 +02:00
@ifset UsesEnvVars
The default set of paths searched (without being specified with
2001-11-09 21:30:40 +01:00
@samp{-L}) depends on which emulation mode @command{ld} is using, and in
1999-05-03 09:29:11 +02:00
some cases also on how it was configured. @xref{Environment}.
@end ifset
The paths can also be specified in a link script with the
@code{SEARCH_DIR} command. Directories specified this way are searched
at the point in which the linker script appears in the command line.
@cindex emulation
@kindex -m @var{emulation}
2009-02-24 19:06:27 +01:00
@item -m @var{emulation}
1999-05-03 09:29:11 +02:00
Emulate the @var{emulation} linker. You can list the available
emulations with the @samp{--verbose} or @samp{-V} options.
If the @samp{-m} option is not used, the emulation is taken from the
@code{LDEMULATION} environment variable, if that is defined.
Otherwise, the default emulation depends upon how the linker was
configured.
@cindex link map
@kindex -M
@kindex --print-map
@item -M
@itemx --print-map
Print a link map to the standard output. A link map provides
information about the link, including the following:
@itemize @bullet
@item
2005-05-17 16:35:21 +02:00
Where object files are mapped into memory.
1999-05-03 09:29:11 +02:00
@item
How common symbols are allocated.
@item
All archive members included in the link, with a mention of the symbol
which caused the archive member to be brought in.
2005-05-17 16:35:21 +02:00
@item
The values assigned to symbols.
Note - symbols whose values are computed by an expression which
involves a reference to a previous value of the same symbol may not
have correct result displayed in the link map. This is because the
linker discards intermediate results and only retains the final value
of an expression. Under such circumstances the linker will display
the final value enclosed by square brackets. Thus for example a
linker script containing:
@smallexample
foo = 1
foo = foo * 4
foo = foo + 8
@end smallexample
will produce the following output in the link map if the @option{-M}
option is used:
@smallexample
0x00000001 foo = 0x1
[0x0000000c] foo = (foo * 0x4)
[0x0000000c] foo = (foo + 0x8)
@end smallexample
See @ref{Expressions} for more information about expressions in linker
scripts.
1999-05-03 09:29:11 +02:00
@end itemize
@kindex -n
@cindex read-only text
@cindex NMAGIC
@kindex --nmagic
@item -n
@itemx --nmagic
2009-12-04 08:28:13 +01:00
Turn off page alignment of sections, and disable linking against shared
libraries. If the output format supports Unix style magic numbers,
mark the output as @code{NMAGIC}.
1999-05-03 09:29:11 +02:00
@kindex -N
@kindex --omagic
@cindex read/write from cmd line
@cindex OMAGIC
2001-03-17 22:24:26 +01:00
@item -N
1999-05-03 09:29:11 +02:00
@itemx --omagic
Set the text and data sections to be readable and writable. Also, do
2002-10-23 15:24:10 +02:00
not page-align the data segment, and disable linking against shared
libraries. If the output format supports Unix style magic numbers,
2004-01-20 22:08:16 +01:00
mark the output as @code{OMAGIC}. Note: Although a writable text section
is allowed for PE-COFF targets, it does not conform to the format
specification published by Microsoft.
2002-10-23 15:24:10 +02:00
@kindex --no-omagic
@cindex OMAGIC
@item --no-omagic
This option negates most of the effects of the @option{-N} option. It
sets the text section to be read-only, and forces the data segment to
be page-aligned. Note - this option does not enable linking against
shared libraries. Use @option{-Bdynamic} for this.
1999-05-03 09:29:11 +02:00
@kindex -o @var{output}
@kindex --output=@var{output}
@cindex naming the output file
@item -o @var{output}
@itemx --output=@var{output}
2001-11-09 21:30:40 +01:00
Use @var{output} as the name for the program produced by @command{ld}; if this
1999-05-03 09:29:11 +02:00
option is not specified, the name @file{a.out} is used by default. The
script command @code{OUTPUT} can also specify the output file name.
@kindex -O @var{level}
@cindex generating optimized output
@item -O @var{level}
2001-11-09 21:30:40 +01:00
If @var{level} is a numeric values greater than zero @command{ld} optimizes
1999-05-03 09:29:11 +02:00
the output. This might take significantly longer and therefore probably
2007-07-25 16:56:22 +02:00
should only be enabled for the final binary. At the moment this
option only affects ELF shared library generation. Future releases of
the linker may make more use of this option. Also currently there is
no difference in the linker's behaviour for different non-zero values
of this option. Again this may change with future releases.
1999-05-03 09:29:11 +02:00
2000-05-17 21:38:53 +02:00
@kindex -q
@kindex --emit-relocs
@cindex retain relocations in final executable
@item -q
@itemx --emit-relocs
2006-07-06 12:46:46 +02:00
Leave relocation sections and contents in fully linked executables.
2000-05-17 21:38:53 +02:00
Post link analysis and optimization tools may need this information in
order to perform correct modifications of executables. This results
in larger executables.
2002-01-07 18:32:42 +01:00
This option is currently only supported on ELF platforms.
2006-03-03 10:32:01 +01:00
@kindex --force-dynamic
@cindex forcing the creation of dynamic sections
@item --force-dynamic
Force the output file to have dynamic sections. This option is specific
to VxWorks targets.
1999-05-03 09:29:11 +02:00
@cindex partial link
@cindex relocatable output
@kindex -r
2003-06-25 08:40:27 +02:00
@kindex --relocatable
1999-05-03 09:29:11 +02:00
@item -r
2003-06-25 08:40:27 +02:00
@itemx --relocatable
1999-05-03 09:29:11 +02:00
Generate relocatable output---i.e., generate an output file that can in
2001-11-09 21:30:40 +01:00
turn serve as input to @command{ld}. This is often called @dfn{partial
1999-05-03 09:29:11 +02:00
linking}. As a side effect, in environments that support standard Unix
magic numbers, this option also sets the output file's magic number to
@code{OMAGIC}.
2001-11-09 21:30:40 +01:00
@c ; see @option{-N}.
1999-05-03 09:29:11 +02:00
If this option is not specified, an absolute file is produced. When
linking C++ programs, this option @emph{will not} resolve references to
constructors; to do that, use @samp{-Ur}.
2001-06-21 00:40:13 +02:00
When an input file does not have the same format as the output file,
partial linking is only supported if that input file does not contain any
relocations. Different output formats can have further restrictions; for
example some @code{a.out}-based formats do not support partial linking
with input files in other formats at all.
1999-05-03 09:29:11 +02:00
This option does the same thing as @samp{-i}.
@kindex -R @var{file}
@kindex --just-symbols=@var{file}
@cindex symbol-only input
@item -R @var{filename}
@itemx --just-symbols=@var{filename}
Read symbol names and their addresses from @var{filename}, but do not
relocate it or include it in the output. This allows your output file
to refer symbolically to absolute locations of memory defined in other
programs. You may use this option more than once.
2001-11-09 21:30:40 +01:00
For compatibility with other ELF linkers, if the @option{-R} option is
1999-05-03 09:29:11 +02:00
followed by a directory name, rather than a file name, it is treated as
2001-11-09 21:30:40 +01:00
the @option{-rpath} option.
1999-05-03 09:29:11 +02:00
@kindex -s
@kindex --strip-all
@cindex strip all symbols
2001-03-17 22:24:26 +01:00
@item -s
1999-05-03 09:29:11 +02:00
@itemx --strip-all
Omit all symbol information from the output file.
@kindex -S
@kindex --strip-debug
@cindex strip debugger symbols
2001-03-17 22:24:26 +01:00
@item -S
1999-05-03 09:29:11 +02:00
@itemx --strip-debug
Omit debugger symbol information (but not all symbols) from the output file.
@kindex -t
@kindex --trace
@cindex input files, displaying
2001-03-17 22:24:26 +01:00
@item -t
1999-05-03 09:29:11 +02:00
@itemx --trace
2001-11-09 21:30:40 +01:00
Print the names of the input files as @command{ld} processes them.
1999-05-03 09:29:11 +02:00
@kindex -T @var{script}
@kindex --script=@var{script}
@cindex script files
@item -T @var{scriptfile}
@itemx --script=@var{scriptfile}
Use @var{scriptfile} as the linker script. This script replaces
2001-11-09 21:30:40 +01:00
@command{ld}'s default linker script (rather than adding to it), so
1999-05-03 09:29:11 +02:00
@var{commandfile} must specify everything necessary to describe the
2001-10-31 15:19:22 +01:00
output file. @xref{Scripts}. If @var{scriptfile} does not exist in
the current directory, @code{ld} looks for it in the directories
specified by any preceding @samp{-L} options. Multiple @samp{-T}
options accumulate.
1999-05-03 09:29:11 +02:00
2007-01-19 15:51:27 +01:00
@kindex -dT @var{script}
@kindex --default-script=@var{script}
@cindex script files
@item -dT @var{scriptfile}
@itemx --default-script=@var{scriptfile}
Use @var{scriptfile} as the default linker script. @xref{Scripts}.
This option is similar to the @option{--script} option except that
processing of the script is delayed until after the rest of the
command line has been processed. This allows options placed after the
@option{--default-script} option on the command line to affect the
behaviour of the linker script, which can be important when the linker
command line cannot be directly controlled by the user. (eg because
the command line is being constructed by another tool, such as
@samp{gcc}).
1999-05-03 09:29:11 +02:00
@kindex -u @var{symbol}
@kindex --undefined=@var{symbol}
@cindex undefined symbol
@item -u @var{symbol}
@itemx --undefined=@var{symbol}
Force @var{symbol} to be entered in the output file as an undefined
symbol. Doing this may, for example, trigger linking of additional
modules from standard libraries. @samp{-u} may be repeated with
different option arguments to enter additional undefined symbols. This
option is equivalent to the @code{EXTERN} linker script command.
@kindex -Ur
@cindex constructors
2001-03-17 22:24:26 +01:00
@item -Ur
1999-05-03 09:29:11 +02:00
For anything other than C++ programs, this option is equivalent to
@samp{-r}: it generates relocatable output---i.e., an output file that can in
2001-11-09 21:30:40 +01:00
turn serve as input to @command{ld}. When linking C++ programs, @samp{-Ur}
1999-05-03 09:29:11 +02:00
@emph{does} resolve references to constructors, unlike @samp{-r}.
It does not work to use @samp{-Ur} on files that were themselves linked
with @samp{-Ur}; once the constructor table has been built, it cannot
be added to. Use @samp{-Ur} only for the last partial link, and
@samp{-r} for the others.
2001-01-14 05:36:35 +01:00
@kindex --unique[=@var{SECTION}]
@item --unique[=@var{SECTION}]
Creates a separate output section for every input section matching
@var{SECTION}, or if the optional wildcard @var{SECTION} argument is
missing, for every orphan input section. An orphan section is one not
specifically mentioned in a linker script. You may use this option
multiple times on the command line; It prevents the normal merging of
input sections with the same name, overriding output section assignments
in a linker script.
2000-09-05 05:05:19 +02:00
1999-05-03 09:29:11 +02:00
@kindex -v
@kindex -V
@kindex --version
@cindex version
@item -v
@itemx --version
@itemx -V
2001-11-09 21:30:40 +01:00
Display the version number for @command{ld}. The @option{-V} option also
1999-05-03 09:29:11 +02:00
lists the supported emulations.
@kindex -x
@kindex --discard-all
@cindex deleting local symbols
@item -x
@itemx --discard-all
Delete all local symbols.
@kindex -X
@kindex --discard-locals
@cindex local symbols, deleting
2001-03-17 22:24:26 +01:00
@item -X
1999-05-03 09:29:11 +02:00
@itemx --discard-locals
2006-09-25 18:26:57 +02:00
Delete all temporary local symbols. (These symbols start with
system-specific local label prefixes, typically @samp{.L} for ELF systems
or @samp{L} for traditional a.out systems.)
1999-05-03 09:29:11 +02:00
@kindex -y @var{symbol}
@kindex --trace-symbol=@var{symbol}
@cindex symbol tracing
@item -y @var{symbol}
@itemx --trace-symbol=@var{symbol}
Print the name of each linked file in which @var{symbol} appears. This
option may be given any number of times. On many systems it is necessary
to prepend an underscore.
This option is useful when you have an undefined symbol in your link but
don't know where the reference is coming from.
@kindex -Y @var{path}
@item -Y @var{path}
Add @var{path} to the default library search path. This option exists
for Solaris compatibility.
@kindex -z @var{keyword}
@item -z @var{keyword}
2003-08-15 11:42:17 +02:00
The recognized keywords are:
@table @samp
@item combreloc
Combines multiple reloc sections and sorts them to make dynamic symbol
lookup caching possible.
@item defs
2003-08-20 10:37:19 +02:00
Disallows undefined symbols in object files. Undefined symbols in
2003-10-25 18:26:30 +02:00
shared libraries are still allowed.
2003-08-15 11:42:17 +02:00
2005-09-08 18:03:26 +02:00
@item execstack
Marks the object as requiring executable stack.
2003-08-15 11:42:17 +02:00
@item initfirst
This option is only meaningful when building a shared object.
It marks the object so that its runtime initialization will occur
before the runtime initialization of any other objects brought into
the process at the same time. Similarly the runtime finalization of
the object will occur after the runtime finalization of any other
objects.
@item interpose
Marks the object that its symbol table interposes before all symbols
but the primary executable.
2006-06-14 04:43:58 +02:00
@item lazy
When generating an executable or shared library, mark it to tell the
dynamic linker to defer function call resolution to the point when
the function is called (lazy binding), rather than at load time.
Lazy binding is the default.
2003-08-15 11:42:17 +02:00
@item loadfltr
Marks the object that its filters be processed immediately at
runtime.
@item muldefs
Allows multiple definitions.
@item nocombreloc
Disables multiple reloc sections combining.
@item nocopyreloc
Disables production of copy relocs.
@item nodefaultlib
Marks the object that the search for dependencies of this object will
ignore any default library search paths.
@item nodelete
Marks the object shouldn't be unloaded at runtime.
@item nodlopen
Marks the object not available to @code{dlopen}.
@item nodump
Marks the object can not be dumped by @code{dldump}.
2005-09-08 18:03:26 +02:00
@item noexecstack
Marks the object as not requiring executable stack.
@item norelro
Don't create an ELF @code{PT_GNU_RELRO} segment header in the object.
2003-08-15 11:42:17 +02:00
@item now
When generating an executable or shared library, mark it to tell the
dynamic linker to resolve all symbols when the program is started, or
when the shared library is linked to using dlopen, instead of
deferring function call resolution to the point when the function is
first called.
@item origin
Marks the object may contain $ORIGIN.
2005-09-08 18:03:26 +02:00
@item relro
Create an ELF @code{PT_GNU_RELRO} segment header in the object.
2006-05-30 18:45:32 +02:00
@item max-page-size=@var{value}
Set the emulation maximum page size to @var{value}.
@item common-page-size=@var{value}
Set the emulation common page size to @var{value}.
2003-08-15 11:42:17 +02:00
@end table
2006-06-27 10:52:38 +02:00
Other keywords are ignored for Solaris compatibility.
1999-05-03 09:29:11 +02:00
@kindex -(
@cindex groups of archives
@item -( @var{archives} -)
@itemx --start-group @var{archives} --end-group
The @var{archives} should be a list of archive files. They may be
either explicit file names, or @samp{-l} options.
The specified archives are searched repeatedly until no new undefined
references are created. Normally, an archive is searched only once in
the order that it is specified on the command line. If a symbol in that
archive is needed to resolve an undefined symbol referred to by an
object in an archive that appears later on the command line, the linker
would not be able to resolve that reference. By grouping the archives,
they all be searched repeatedly until all possible references are
resolved.
Using this option has a significant performance cost. It is best to use
it only when there are unavoidable circular references between two or
more archives.
2002-12-19 18:25:02 +01:00
@kindex --accept-unknown-input-arch
@kindex --no-accept-unknown-input-arch
@item --accept-unknown-input-arch
@itemx --no-accept-unknown-input-arch
Tells the linker to accept input files whose architecture cannot be
2002-12-18 17:25:02 +01:00
recognised. The assumption is that the user knows what they are doing
2002-12-19 18:25:02 +01:00
and deliberately wants to link in these unknown input files. This was
the default behaviour of the linker, before release 2.14. The default
behaviour from release 2.14 onwards is to reject such input files, and
so the @samp{--accept-unknown-input-arch} option has been added to
restore the old behaviour.
2002-12-18 17:25:02 +01:00
2004-03-18 13:50:20 +01:00
@kindex --as-needed
@kindex --no-as-needed
@item --as-needed
@itemx --no-as-needed
This option affects ELF DT_NEEDED tags for dynamic libraries mentioned
2009-11-05 16:35:50 +01:00
on the command line after the @option{--as-needed} option. Normally
2004-03-18 13:50:20 +01:00
the linker will add a DT_NEEDED tag for each dynamic library mentioned
on the command line, regardless of whether the library is actually
2009-11-05 16:35:50 +01:00
needed or not. @option{--as-needed} causes a DT_NEEDED tag to only be
emitted for a library that satisfies an undefined symbol reference
from a regular object file or, if the library is not found in the
DT_NEEDED lists of other libraries linked up to that point, an
undefined symbol reference from another dynamic library.
2004-03-18 13:50:20 +01:00
@option{--no-as-needed} restores the default behaviour.
2004-07-19 18:40:52 +02:00
@kindex --add-needed
@kindex --no-add-needed
@item --add-needed
@itemx --no-add-needed
2009-11-05 16:35:50 +01:00
These two options have been deprecated because of the similarity of
their names to the @option{--as-needed} and @option{--no-as-needed}
options. They have been replaced by @option{--copy-dt-needed-entries}
and @option{--no-copy-dt-needed-entries}.
2004-07-19 18:40:52 +02:00
1999-05-03 09:29:11 +02:00
@kindex -assert @var{keyword}
@item -assert @var{keyword}
This option is ignored for SunOS compatibility.
@kindex -Bdynamic
@kindex -dy
@kindex -call_shared
@item -Bdynamic
@itemx -dy
@itemx -call_shared
Link against dynamic libraries. This is only meaningful on platforms
for which shared libraries are supported. This option is normally the
default on such platforms. The different variants of this option are
for compatibility with various systems. You may use this option
multiple times on the command line: it affects library searching for
2003-12-02 16:38:46 +01:00
@option{-l} options which follow it.
1999-05-03 09:29:11 +02:00
2001-03-17 22:24:26 +01:00
@kindex -Bgroup
@item -Bgroup
Set the @code{DF_1_GROUP} flag in the @code{DT_FLAGS_1} entry in the dynamic
section. This causes the runtime linker to handle lookups in this
object and its dependencies to be performed only inside the group.
2003-08-20 10:37:19 +02:00
@option{--unresolved-symbols=report-all} is implied. This option is
only meaningful on ELF platforms which support shared libraries.
2001-03-17 22:24:26 +01:00
1999-05-03 09:29:11 +02:00
@kindex -Bstatic
@kindex -dn
@kindex -non_shared
@kindex -static
2001-03-17 22:24:26 +01:00
@item -Bstatic
1999-05-03 09:29:11 +02:00
@itemx -dn
@itemx -non_shared
@itemx -static
Do not link against shared libraries. This is only meaningful on
platforms for which shared libraries are supported. The different
variants of this option are for compatibility with various systems. You
may use this option multiple times on the command line: it affects
2003-08-20 10:37:19 +02:00
library searching for @option{-l} options which follow it. This
2005-07-29 15:32:45 +02:00
option also implies @option{--unresolved-symbols=report-all}. This
option can be used with @option{-shared}. Doing so means that a
shared library is being created but that all of the library's external
references must be resolved by pulling in entries from static
2006-06-27 10:52:38 +02:00
libraries.
1999-05-03 09:29:11 +02:00
@kindex -Bsymbolic
@item -Bsymbolic
When creating a shared library, bind references to global symbols to the
definition within the shared library, if any. Normally, it is possible
for a program linked against a shared library to override the definition
within the shared library. This option is only meaningful on ELF
platforms which support shared libraries.
2007-01-16 15:56:32 +01:00
@kindex -Bsymbolic-functions
@item -Bsymbolic-functions
When creating a shared library, bind references to global function
2007-07-09 23:25:34 +02:00
symbols to the definition within the shared library, if any.
2007-01-16 15:56:32 +01:00
This option is only meaningful on ELF platforms which support shared
libraries.
2006-09-07 19:16:34 +02:00
@kindex --dynamic-list=@var{dynamic-list-file}
@item --dynamic-list=@var{dynamic-list-file}
Specify the name of a dynamic list file to the linker. This is
typically used when creating shared libraries to specify a list of
global symbols whose references shouldn't be bound to the definition
within the shared library, or creating dynamically linked executables
to specify a list of symbols which should be added to the symbol table
in the executable. This option is only meaningful on ELF platforms
which support shared libraries.
The format of the dynamic list is the same as the version node without
scope and node name. See @ref{VERSION} for more information.
2007-01-16 15:56:32 +01:00
@kindex --dynamic-list-data
@item --dynamic-list-data
Include all global data symbols to the dynamic list.
@kindex --dynamic-list-cpp-new
@item --dynamic-list-cpp-new
Provide the builtin dynamic list for C++ operator new and delete. It
is mainly useful for building shared libstdc++.
2006-09-08 15:43:54 +02:00
@kindex --dynamic-list-cpp-typeinfo
@item --dynamic-list-cpp-typeinfo
Provide the builtin dynamic list for C++ runtime type identification.
1999-05-03 09:29:11 +02:00
@kindex --check-sections
@kindex --no-check-sections
@item --check-sections
1999-06-14 03:40:26 +02:00
@itemx --no-check-sections
1999-05-03 09:29:11 +02:00
Asks the linker @emph{not} to check section addresses after they have
2006-04-07 16:14:46 +02:00
been assigned to see if there are any overlaps. Normally the linker will
1999-05-03 09:29:11 +02:00
perform this check, and if it finds any overlaps it will produce
suitable error messages. The linker does know about, and does make
allowances for sections in overlays. The default behaviour can be
2003-08-20 10:37:19 +02:00
restored by using the command line switch @option{--check-sections}.
2009-01-26 16:23:39 +01:00
Section overlap is not usually checked for relocatable links. You can
force checking in that case by using the @option{--check-sections}
option.
1999-05-03 09:29:11 +02:00
2009-11-05 16:35:50 +01:00
@kindex --copy-dt-needed-entries
@kindex --no-copy-dt-needed-entries
@item --copy-dt-needed-entries
@itemx --no-copy-dt-needed-entries
This option affects the treatment of dynamic libraries referred to
by DT_NEEDED tags @emph{inside} ELF dynamic libraries mentioned on the
command line. Normally the linker will add a DT_NEEDED tag to the
output binary for each library mentioned in a DT_NEEDED tag in an
input dynamic library. With @option{--no-copy-dt-needed-entries}
specified on the command line however any dynamic libraries that
follow it will have their DT_NEEDED entries ignored. The default
behaviour can be restored with @option{--copy-dt-needed-entries}.
This option also has an effect on the resolution of symbols in dynamic
libraries. With the default setting dynamic libraries mentioned on
the command line will be recursively searched, following their
DT_NEEDED tags to other libraries, in order to resolve symbols
required by the output binary. With
@option{--no-copy-dt-needed-entries} specified however the searching
of dynamic libraries that follow it will stop with the dynamic
library itself. No DT_NEEDED links will be traversed to resolve
symbols.
1999-05-03 09:29:11 +02:00
@cindex cross reference table
@kindex --cref
@item --cref
Output a cross reference table. If a linker map file is being
generated, the cross reference table is printed to the map file.
Otherwise, it is printed on the standard output.
The format of the table is intentionally simple, so that it may be
easily processed by a script if necessary. The symbols are printed out,
sorted by name. For each symbol, a list of file names is given. If the
symbol is defined, the first file listed is the location of the
definition. The remaining files contain references to the symbol.
2001-09-29 14:57:54 +02:00
@cindex common allocation
@kindex --no-define-common
@item --no-define-common
This option inhibits the assignment of addresses to common symbols.
The script command @code{INHIBIT_COMMON_ALLOCATION} has the same effect.
@xref{Miscellaneous Commands}.
The @samp{--no-define-common} option allows decoupling
the decision to assign addresses to Common symbols from the choice
of the output file type; otherwise a non-Relocatable output type
forces assigning addresses to Common symbols.
Using @samp{--no-define-common} allows Common symbols that are referenced
from a shared library to be assigned addresses only in the main program.
This eliminates the unused duplicate space in the shared library,
and also prevents any possible confusion over resolving to the wrong
duplicate when there are many dynamic modules with specialized search
paths for runtime symbol resolution.
1999-05-03 09:29:11 +02:00
@cindex symbols, from command line
2009-02-24 19:06:27 +01:00
@kindex --defsym=@var{symbol}=@var{exp}
@item --defsym=@var{symbol}=@var{expression}
1999-05-03 09:29:11 +02:00
Create a global symbol in the output file, containing the absolute
address given by @var{expression}. You may use this option as many
times as necessary to define multiple symbols in the command line. A
limited form of arithmetic is supported for the @var{expression} in this
context: you may give a hexadecimal constant or the name of an existing
symbol, or use @code{+} and @code{-} to add or subtract hexadecimal
constants or symbols. If you need more elaborate expressions, consider
using the linker command language from a script (@pxref{Assignments,,
Assignment: Symbol Definitions}). @emph{Note:} there should be no white
space between @var{symbol}, the equals sign (``@key{=}''), and
@var{expression}.
@cindex demangling, from command line
2000-07-20 20:02:56 +02:00
@kindex --demangle[=@var{style}]
1999-05-03 09:29:11 +02:00
@kindex --no-demangle
2000-07-20 20:02:56 +02:00
@item --demangle[=@var{style}]
1999-05-03 09:29:11 +02:00
@itemx --no-demangle
These options control whether to demangle symbol names in error messages
and other output. When the linker is told to demangle, it tries to
present symbol names in a readable fashion: it strips leading
underscores if they are used by the object file format, and converts C++
2001-03-17 22:24:26 +01:00
mangled symbol names into user readable names. Different compilers have
different mangling styles. The optional demangling style argument can be used
to choose an appropriate demangling style for your compiler. The linker will
2000-07-20 20:02:56 +02:00
demangle by default unless the environment variable @samp{COLLECT_NO_DEMANGLE}
is set. These options may be used to override the default.
1999-05-03 09:29:11 +02:00
@cindex dynamic linker, from command line
2001-05-22 16:00:18 +02:00
@kindex -I@var{file}
2009-02-24 19:06:27 +01:00
@kindex --dynamic-linker=@var{file}
@item -I@var{file}
@itemx --dynamic-linker=@var{file}
1999-05-03 09:29:11 +02:00
Set the name of the dynamic linker. This is only meaningful when
generating dynamically linked ELF executables. The default dynamic
linker is normally correct; don't use this unless you know what you are
doing.
2001-04-13 04:22:23 +02:00
@kindex --fatal-warnings
2008-06-04 11:45:05 +02:00
@kindex --no-fatal-warnings
2001-04-13 04:22:23 +02:00
@item --fatal-warnings
2008-06-04 11:45:05 +02:00
@itemx --no-fatal-warnings
Treat all warnings as errors. The default behaviour can be restored
with the option @option{--no-fatal-warnings}.
2001-04-13 04:22:23 +02:00
1999-05-03 09:29:11 +02:00
@kindex --force-exe-suffix
@item --force-exe-suffix
Make sure that an output file has a .exe suffix.
If a successfully built fully linked output file does not have a
@code{.exe} or @code{.dll} suffix, this option forces the linker to copy
the output file to one of the same name with a @code{.exe} suffix. This
option is useful when using unmodified Unix makefiles on a Microsoft
Windows host, since some versions of Windows won't run an image unless
it ends in a @code{.exe} suffix.
@kindex --gc-sections
@kindex --no-gc-sections
@cindex garbage collection
2006-08-04 16:53:26 +02:00
@item --gc-sections
@itemx --no-gc-sections
1999-05-03 09:29:11 +02:00
Enable garbage collection of unused input sections. It is ignored on
2008-01-11 10:11:18 +01:00
targets that do not support this option. The default behaviour (of not
2006-10-19 17:47:34 +02:00
performing this garbage collection) can be restored by specifying
@samp{--no-gc-sections} on the command line.
1999-05-03 09:29:11 +02:00
2008-01-10 02:12:56 +01:00
@samp{--gc-sections} decides which input sections are used by
examining symbols and relocations. The section containing the entry
symbol and all sections containing symbols undefined on the
command-line will be kept, as will sections containing symbols
referenced by dynamic objects. Note that when building shared
libraries, the linker must assume that any visible symbol is
referenced. Once this initial set of sections has been determined,
the linker recursively marks as used any section referenced by their
relocations. See @samp{--entry} and @samp{--undefined}.
2008-01-11 10:11:18 +01:00
This option can be set when doing a partial link (enabled with option
2010-02-28 00:00:41 +01:00
@samp{-r}). In this case the root of symbols kept must be explicitly
2008-01-11 10:11:18 +01:00
specified either by an @samp{--entry} or @samp{--undefined} option or by
a @code{ENTRY} command in the linker script.
2006-08-04 16:53:26 +02:00
@kindex --print-gc-sections
@kindex --no-print-gc-sections
@cindex garbage collection
@item --print-gc-sections
@itemx --no-print-gc-sections
List all sections removed by garbage collection. The listing is
printed on stderr. This option is only effective if garbage
collection has been enabled via the @samp{--gc-sections}) option. The
default behaviour (of not listing the sections that are removed) can
be restored by specifying @samp{--no-print-gc-sections} on the command
line.
1999-05-03 09:29:11 +02:00
@cindex help
@cindex usage
@kindex --help
@item --help
Print a summary of the command-line options on the standard output and exit.
2000-10-17 22:10:20 +02:00
@kindex --target-help
@item --target-help
Print a summary of all target specific options on the standard output and exit.
2009-02-24 19:06:27 +01:00
@kindex -Map=@var{mapfile}
@item -Map=@var{mapfile}
1999-05-03 09:29:11 +02:00
Print a link map to the file @var{mapfile}. See the description of the
2003-08-20 10:37:19 +02:00
@option{-M} option, above.
1999-05-03 09:29:11 +02:00
@cindex memory usage
@kindex --no-keep-memory
@item --no-keep-memory
2001-11-09 21:30:40 +01:00
@command{ld} normally optimizes for speed over memory usage by caching the
symbol tables of input files in memory. This option tells @command{ld} to
1999-05-03 09:29:11 +02:00
instead optimize for memory usage, by rereading the symbol tables as
2001-11-09 21:30:40 +01:00
necessary. This may be required if @command{ld} runs out of memory space
1999-05-03 09:29:11 +02:00
while linking a large executable.
@kindex --no-undefined
2001-03-17 22:24:26 +01:00
@kindex -z defs
1999-05-03 09:29:11 +02:00
@item --no-undefined
2001-03-17 22:24:26 +01:00
@itemx -z defs
2003-08-20 10:37:19 +02:00
Report unresolved symbol references from regular object files. This
is done even if the linker is creating a non-symbolic shared library.
The switch @option{--[no-]allow-shlib-undefined} controls the
behaviour for reporting unresolved references found in shared
2006-06-27 10:52:38 +02:00
libraries being linked in.
1999-05-03 09:29:11 +02:00
2002-05-22 07:08:31 +02:00
@kindex --allow-multiple-definition
@kindex -z muldefs
@item --allow-multiple-definition
@itemx -z muldefs
Normally when a symbol is defined multiple times, the linker will
report a fatal error. These options allow multiple definitions and the
first definition will be used.
2000-12-12 21:53:02 +01:00
@kindex --allow-shlib-undefined
2003-02-17 19:24:40 +01:00
@kindex --no-allow-shlib-undefined
2000-12-12 21:53:02 +01:00
@item --allow-shlib-undefined
2003-02-17 19:24:40 +01:00
@itemx --no-allow-shlib-undefined
2009-02-04 10:13:22 +01:00
Allows or disallows undefined symbols in shared libraries.
2003-08-20 10:37:19 +02:00
This switch is similar to @option{--no-undefined} except that it
determines the behaviour when the undefined symbols are in a
shared library rather than a regular object file. It does not affect
how undefined symbols in regular object files are handled.
2009-02-04 10:13:22 +01:00
The default behaviour is to report errors for any undefined symbols
referenced in shared libraries if the linker is being used to create
an executable, but to allow them if the linker is being used to create
a shared library.
The reasons for allowing undefined symbol references in shared
libraries specified at link time are that:
@itemize @bullet
@item
A shared library specified at link time may not be the same as the one
that is available at load time, so the symbol might actually be
resolvable at load time.
@item
There are some operating systems, eg BeOS and HPPA, where undefined
symbols in shared libraries are normal.
The BeOS kernel for example patches shared libraries at load time to
select whichever function is most appropriate for the current
architecture. This is used, for example, to dynamically select an
appropriate memset function.
@end itemize
2000-12-12 21:53:02 +01:00
2002-08-08 05:50:18 +02:00
@kindex --no-undefined-version
@item --no-undefined-version
Normally when a symbol has an undefined version, the linker will ignore
it. This option disallows symbols with undefined version and a fatal error
will be issued instead.
2004-10-26 15:46:05 +02:00
@kindex --default-symver
@item --default-symver
Create and use a default symbol version (the soname) for unversioned
2004-11-16 00:21:27 +01:00
exported symbols.
@kindex --default-imported-symver
@item --default-imported-symver
Create and use a default symbol version (the soname) for unversioned
imported symbols.
2004-10-26 15:46:05 +02:00
1999-05-03 09:29:11 +02:00
@kindex --no-warn-mismatch
@item --no-warn-mismatch
2001-11-09 21:30:40 +01:00
Normally @command{ld} will give an error if you try to link together input
1999-05-03 09:29:11 +02:00
files that are mismatched for some reason, perhaps because they have
been compiled for different processors or for different endiannesses.
2001-11-09 21:30:40 +01:00
This option tells @command{ld} that it should silently permit such possible
1999-05-03 09:29:11 +02:00
errors. This option should only be used with care, in cases when you
have taken some special action that ensures that the linker errors are
inappropriate.
2007-05-03 11:24:16 +02:00
@kindex --no-warn-search-mismatch
@item --no-warn-search-mismatch
Normally @command{ld} will give a warning if it finds an incompatible
library during a library search. This option silences the warning.
1999-05-03 09:29:11 +02:00
@kindex --no-whole-archive
@item --no-whole-archive
2001-11-09 21:30:40 +01:00
Turn off the effect of the @option{--whole-archive} option for subsequent
1999-05-03 09:29:11 +02:00
archive files.
@cindex output file after errors
@kindex --noinhibit-exec
@item --noinhibit-exec
Retain the executable output file whenever it is still usable.
Normally, the linker will not produce an output file if it encounters
errors during the link process; it exits without writing an output file
when it issues any error whatsoever.
2002-02-10 01:40:38 +01:00
@kindex -nostdlib
@item -nostdlib
Only search library directories explicitly specified on the
command line. Library directories specified in linker scripts
(including linker scripts specified on the command line) are ignored.
1999-05-03 09:29:11 +02:00
@ifclear SingleFormat
2009-02-24 19:06:27 +01:00
@kindex --oformat=@var{output-format}
@item --oformat=@var{output-format}
2001-11-09 21:30:40 +01:00
@command{ld} may be configured to support more than one kind of object
file. If your @command{ld} is configured this way, you can use the
1999-05-03 09:29:11 +02:00
@samp{--oformat} option to specify the binary format for the output
2001-11-09 21:30:40 +01:00
object file. Even when @command{ld} is configured to support alternative
object formats, you don't usually need to specify this, as @command{ld}
1999-05-03 09:29:11 +02:00
should be configured to produce as a default output format the most
usual format on each machine. @var{output-format} is a text string, the
name of a particular format supported by the BFD libraries. (You can
list the available binary formats with @samp{objdump -i}.) The script
command @code{OUTPUT_FORMAT} can also specify the output format, but
this option overrides it. @xref{BFD}.
@end ifclear
2003-05-30 17:50:12 +02:00
@kindex -pie
@kindex --pic-executable
@item -pie
@itemx --pic-executable
@cindex position independent executables
Create a position independent executable. This is currently only supported on
ELF platforms. Position independent executables are similar to shared
libraries in that they are relocated by the dynamic linker to the virtual
2003-07-27 13:58:28 +02:00
address the OS chooses for them (which can vary between invocations). Like
2003-05-30 17:50:12 +02:00
normal dynamically linked executables they can be executed and symbols
defined in the executable cannot be overridden by shared libraries.
1999-05-03 09:29:11 +02:00
@kindex -qmagic
@item -qmagic
This option is ignored for Linux compatibility.
@kindex -Qy
@item -Qy
This option is ignored for SVR4 compatibility.
@kindex --relax
@cindex synthesizing linker
@cindex relaxing addressing modes
2009-11-26 14:45:25 +01:00
@cindex --no-relax
1999-05-03 09:29:11 +02:00
@item --relax
2009-11-26 14:45:25 +01:00
@itemx --no-relax
2001-03-17 22:24:26 +01:00
An option with machine dependent effects.
1999-05-03 09:29:11 +02:00
@ifset GENERIC
This option is only supported on a few targets.
@end ifset
@ifset H8300
2001-11-09 21:30:40 +01:00
@xref{H8/300,,@command{ld} and the H8/300}.
1999-05-03 09:29:11 +02:00
@end ifset
@ifset I960
2001-11-09 21:30:40 +01:00
@xref{i960,, @command{ld} and the Intel 960 family}.
1999-05-03 09:29:11 +02:00
@end ifset
2003-04-01 17:50:31 +02:00
@ifset XTENSA
@xref{Xtensa,, @command{ld} and Xtensa Processors}.
@end ifset
2004-08-02 22:03:41 +02:00
@ifset M68HC11
@xref{M68HC11/68HC12,,@command{ld} and the 68HC11 and 68HC12}.
@end ifset
2006-05-05 02:51:37 +02:00
@ifset POWERPC
@xref{PowerPC ELF32,,@command{ld} and PowerPC 32-bit ELF Support}.
@end ifset
1999-05-03 09:29:11 +02:00
2009-11-26 14:45:25 +01:00
On some platforms the @samp{--relax} option performs target specific,
global optimizations that become possible when the linker resolves
addressing in the program, such as relaxing address modes,
synthesizing new instructions, selecting shorter version of current
instructions, and combinig constant values.
1999-05-03 09:29:11 +02:00
On some platforms these link time global optimizations may make symbolic
debugging of the resulting executable impossible.
@ifset GENERIC
2009-11-26 14:45:25 +01:00
This is known to be the case for the Matsushita MN10200 and MN10300
family of processors.
1999-05-03 09:29:11 +02:00
@end ifset
@ifset GENERIC
On platforms where this is not supported, @samp{--relax} is accepted,
but ignored.
@end ifset
2009-11-26 14:45:25 +01:00
On platforms where @samp{--relax} is accepted the option
@samp{--no-relax} can be used to disable the feature.
1999-05-03 09:29:11 +02:00
@cindex retaining specified symbols
@cindex stripping all but some symbols
@cindex symbols, retaining selectively
2009-02-24 19:06:27 +01:00
@kindex --retain-symbols-file=@var{filename}
@item --retain-symbols-file=@var{filename}
1999-05-03 09:29:11 +02:00
Retain @emph{only} the symbols listed in the file @var{filename},
discarding all others. @var{filename} is simply a flat file, with one
symbol name per line. This option is especially useful in environments
@ifset GENERIC
(such as VxWorks)
@end ifset
where a large global symbol table is accumulated gradually, to conserve
run-time memory.
@samp{--retain-symbols-file} does @emph{not} discard undefined symbols,
or symbols needed for relocations.
You may only specify @samp{--retain-symbols-file} once in the command
line. It overrides @samp{-s} and @samp{-S}.
@ifset GENERIC
2009-02-24 19:06:27 +01:00
@item -rpath=@var{dir}
1999-05-03 09:29:11 +02:00
@cindex runtime library search path
2009-02-24 19:06:27 +01:00
@kindex -rpath=@var{dir}
1999-05-03 09:29:11 +02:00
Add a directory to the runtime library search path. This is used when
2001-11-09 21:30:40 +01:00
linking an ELF executable with shared objects. All @option{-rpath}
1999-05-03 09:29:11 +02:00
arguments are concatenated and passed to the runtime linker, which uses
2001-11-09 21:30:40 +01:00
them to locate shared objects at runtime. The @option{-rpath} option is
1999-05-03 09:29:11 +02:00
also used when locating shared objects which are needed by shared
objects explicitly included in the link; see the description of the
2001-11-09 21:30:40 +01:00
@option{-rpath-link} option. If @option{-rpath} is not used when linking an
1999-05-03 09:29:11 +02:00
ELF executable, the contents of the environment variable
@code{LD_RUN_PATH} will be used if it is defined.
2001-11-09 21:30:40 +01:00
The @option{-rpath} option may also be used on SunOS. By default, on
1999-05-03 09:29:11 +02:00
SunOS, the linker will form a runtime search patch out of all the
2001-11-09 21:30:40 +01:00
@option{-L} options it is given. If a @option{-rpath} option is used, the
runtime search path will be formed exclusively using the @option{-rpath}
options, ignoring the @option{-L} options. This can be useful when using
gcc, which adds many @option{-L} options which may be on NFS mounted
2006-07-24 15:49:50 +02:00
file systems.
1999-05-03 09:29:11 +02:00
2001-11-09 21:30:40 +01:00
For compatibility with other ELF linkers, if the @option{-R} option is
1999-05-03 09:29:11 +02:00
followed by a directory name, rather than a file name, it is treated as
2001-11-09 21:30:40 +01:00
the @option{-rpath} option.
1999-05-03 09:29:11 +02:00
@end ifset
@ifset GENERIC
@cindex link-time runtime library search path
2009-02-24 19:06:27 +01:00
@kindex -rpath-link=@var{dir}
@item -rpath-link=@var{dir}
1999-05-03 09:29:11 +02:00
When using ELF or SunOS, one shared library may require another. This
happens when an @code{ld -shared} link includes a shared library as one
of the input files.
When the linker encounters such a dependency when doing a non-shared,
non-relocatable link, it will automatically try to locate the required
shared library and include it in the link, if it is not included
2001-11-09 21:30:40 +01:00
explicitly. In such a case, the @option{-rpath-link} option
1999-05-03 09:29:11 +02:00
specifies the first set of directories to search. The
2001-11-09 21:30:40 +01:00
@option{-rpath-link} option may specify a sequence of directory names
1999-05-03 09:29:11 +02:00
either by specifying a list of names separated by colons, or by
appearing multiple times.
2000-07-20 20:02:56 +02:00
This option should be used with caution as it overrides the search path
that may have been hard compiled into a shared library. In such a case it
is possible to use unintentionally a different search path than the
runtime linker would do.
1999-05-03 09:29:11 +02:00
The linker uses the following search paths to locate required shared
2006-06-27 10:52:38 +02:00
libraries:
1999-05-03 09:29:11 +02:00
@enumerate
@item
2001-11-09 21:30:40 +01:00
Any directories specified by @option{-rpath-link} options.
1999-05-03 09:29:11 +02:00
@item
2001-11-09 21:30:40 +01:00
Any directories specified by @option{-rpath} options. The difference
between @option{-rpath} and @option{-rpath-link} is that directories
specified by @option{-rpath} options are included in the executable and
used at runtime, whereas the @option{-rpath-link} option is only effective
2006-06-27 10:52:38 +02:00
at link time. Searching @option{-rpath} in this way is only supported
by native linkers and cross linkers which have been configured with
the @option{--with-sysroot} option.
1999-05-03 09:29:11 +02:00
@item
2007-10-01 11:54:58 +02:00
On an ELF system, for native linkers, if the @option{-rpath} and
@option{-rpath-link} options were not used, search the contents of the
environment variable @code{LD_RUN_PATH}.
1999-05-03 09:29:11 +02:00
@item
2001-11-09 21:30:40 +01:00
On SunOS, if the @option{-rpath} option was not used, search any
directories specified using @option{-L} options.
1999-05-03 09:29:11 +02:00
@item
2007-10-01 11:54:58 +02:00
For a native linker, the search the contents of the environment
variable @code{LD_LIBRARY_PATH}.
1999-05-03 09:29:11 +02:00
@item
2000-08-22 21:34:37 +02:00
For a native ELF linker, the directories in @code{DT_RUNPATH} or
@code{DT_RPATH} of a shared library are searched for shared
libraries needed by it. The @code{DT_RPATH} entries are ignored if
@code{DT_RUNPATH} entries exist.
@item
1999-05-03 09:29:11 +02:00
The default directories, normally @file{/lib} and @file{/usr/lib}.
@item
For a native linker on an ELF system, if the file @file{/etc/ld.so.conf}
exists, the list of directories found in that file.
@end enumerate
If the required shared library is not found, the linker will issue a
warning and continue with the link.
@end ifset
@kindex -shared
@kindex -Bshareable
@item -shared
@itemx -Bshareable
@cindex shared libraries
Create a shared library. This is currently only supported on ELF, XCOFF
and SunOS platforms. On SunOS, the linker will automatically create a
2001-11-09 21:30:40 +01:00
shared library if the @option{-e} option is not used and there are
1999-05-03 09:29:11 +02:00
undefined symbols in the link.
@kindex --sort-common
2009-02-24 19:06:27 +01:00
@item --sort-common
@itemx --sort-common=ascending
@itemx --sort-common=descending
2008-05-31 18:35:56 +02:00
This option tells @command{ld} to sort the common symbols by alignment in
ascending or descending order when it places them in the appropriate output
sections. The symbol alignments considered are sixteen-byte or larger,
eight-byte, four-byte, two-byte, and one-byte. This is to prevent gaps
between symbols due to alignment constraints. If no sorting order is
specified, then descending order is assumed.
1999-05-03 09:29:11 +02:00
2009-02-24 19:06:27 +01:00
@kindex --sort-section=name
@item --sort-section=name
2004-10-04 18:45:51 +02:00
This option will apply @code{SORT_BY_NAME} to all wildcard section
patterns in the linker script.
2009-02-24 19:06:27 +01:00
@kindex --sort-section=alignment
@item --sort-section=alignment
2004-10-04 18:45:51 +02:00
This option will apply @code{SORT_BY_ALIGNMENT} to all wildcard section
patterns in the linker script.
1999-05-03 09:29:11 +02:00
@kindex --split-by-file
2009-02-24 19:06:27 +01:00
@item --split-by-file[=@var{size}]
2001-11-09 21:30:40 +01:00
Similar to @option{--split-by-reloc} but creates a new output section for
2000-09-05 05:05:19 +02:00
each input file when @var{size} is reached. @var{size} defaults to a
size of 1 if not given.
1999-05-03 09:29:11 +02:00
@kindex --split-by-reloc
2009-02-24 19:06:27 +01:00
@item --split-by-reloc[=@var{count}]
2000-09-05 05:05:19 +02:00
Tries to creates extra sections in the output file so that no single
1999-05-03 09:29:11 +02:00
output section in the file contains more than @var{count} relocations.
2000-09-05 05:05:19 +02:00
This is useful when generating huge relocatable files for downloading into
1999-05-03 09:29:11 +02:00
certain real time kernels with the COFF object file format; since COFF
cannot represent more than 65535 relocations in a single section. Note
that this will fail to work with object file formats which do not
support arbitrary sections. The linker will not split up individual
input sections for redistribution, so if a single input section contains
more than @var{count} relocations one output section will contain that
2000-09-05 05:05:19 +02:00
many relocations. @var{count} defaults to a value of 32768.
1999-05-03 09:29:11 +02:00
@kindex --stats
@item --stats
Compute and display statistics about the operation of the linker, such
as execution time and memory usage.
2009-02-24 19:06:27 +01:00
@kindex --sysroot=@var{directory}
2005-01-19 12:42:49 +01:00
@item --sysroot=@var{directory}
Use @var{directory} as the location of the sysroot, overriding the
configure-time default. This option is only supported by linkers
that were configured using @option{--with-sysroot}.
1999-05-03 09:29:11 +02:00
@kindex --traditional-format
@cindex traditional format
@item --traditional-format
2001-11-09 21:30:40 +01:00
For some targets, the output of @command{ld} is different in some ways from
the output of some existing linker. This switch requests @command{ld} to
1999-05-03 09:29:11 +02:00
use the traditional format instead.
@cindex dbx
2001-11-09 21:30:40 +01:00
For example, on SunOS, @command{ld} combines duplicate entries in the
1999-05-03 09:29:11 +02:00
symbol string table. This can reduce the size of an output file with
full debugging information by over 30 percent. Unfortunately, the SunOS
@code{dbx} program can not read the resulting program (@code{gdb} has no
2001-11-09 21:30:40 +01:00
trouble). The @samp{--traditional-format} switch tells @command{ld} to not
1999-05-03 09:29:11 +02:00
combine duplicate entries.
2009-02-24 19:06:27 +01:00
@kindex --section-start=@var{sectionname}=@var{org}
@item --section-start=@var{sectionname}=@var{org}
2000-05-22 23:58:40 +02:00
Locate a section in the output file at the absolute
address given by @var{org}. You may use this option as many
times as necessary to locate multiple sections in the command
line.
@var{org} must be a single hexadecimal integer;
for compatibility with other linkers, you may omit the leading
@samp{0x} usually associated with hexadecimal values. @emph{Note:} there
should be no white space between @var{sectionname}, the equals
sign (``@key{=}''), and @var{org}.
2009-02-24 19:06:27 +01:00
@kindex -Tbss=@var{org}
@kindex -Tdata=@var{org}
@kindex -Ttext=@var{org}
1999-05-03 09:29:11 +02:00
@cindex segment origins, cmd line
2009-02-24 19:06:27 +01:00
@item -Tbss=@var{org}
@itemx -Tdata=@var{org}
@itemx -Ttext=@var{org}
Same as @option{--section-start}, with @code{.bss}, @code{.data} or
2003-04-01 02:34:04 +02:00
@code{.text} as the @var{sectionname}.
1999-05-03 09:29:11 +02:00
2009-02-24 19:06:27 +01:00
@kindex -Ttext-segment=@var{org}
@item -Ttext-segment=@var{org}
2009-01-16 15:14:07 +01:00
@cindex text segment origin, cmd line
When creating an ELF executable or shared object, it will set the address
of the first byte of the text segment.
2003-08-20 10:37:19 +02:00
@kindex --unresolved-symbols
@item --unresolved-symbols=@var{method}
Determine how to handle unresolved symbols. There are four possible
values for @samp{method}:
@table @samp
@item ignore-all
2003-12-02 16:38:46 +01:00
Do not report any unresolved symbols.
2003-08-20 10:37:19 +02:00
@item report-all
2003-12-02 16:38:46 +01:00
Report all unresolved symbols. This is the default.
2003-08-20 10:37:19 +02:00
@item ignore-in-object-files
Report unresolved symbols that are contained in shared libraries, but
ignore them if they come from regular object files.
@item ignore-in-shared-libs
Report unresolved symbols that come from regular object files, but
ignore them if they come from shared libraries. This can be useful
when creating a dynamic binary and it is known that all the shared
libraries that it should be referencing are included on the linker's
command line.
@end table
The behaviour for shared libraries on their own can also be controlled
by the @option{--[no-]allow-shlib-undefined} option.
Normally the linker will generate an error message for each reported
unresolved symbol but the option @option{--warn-unresolved-symbols}
can change this to a warning.
1999-05-03 09:29:11 +02:00
@kindex --verbose
@cindex verbose
@item --dll-verbose
1999-06-14 03:40:26 +02:00
@itemx --verbose
2001-11-09 21:30:40 +01:00
Display the version number for @command{ld} and list the linker emulations
1999-05-03 09:29:11 +02:00
supported. Display which input files can and cannot be opened. Display
2001-08-12 09:59:28 +02:00
the linker script being used by the linker.
1999-05-03 09:29:11 +02:00
@kindex --version-script=@var{version-scriptfile}
@cindex version script, symbol versions
2009-02-24 19:06:27 +01:00
@item --version-script=@var{version-scriptfile}
1999-05-03 09:29:11 +02:00
Specify the name of a version script to the linker. This is typically
used when creating shared libraries to specify additional information
2003-02-21 11:27:06 +01:00
about the version hierarchy for the library being created. This option
2009-05-04 14:09:30 +02:00
is only fully supported on ELF platforms which support shared libraries;
see @ref{VERSION}. It is partially supported on PE platforms, which can
use version scripts to filter symbol visibility in auto-export mode: any
symbols marked @samp{local} in the version script will not be exported.
@xref{WIN32}.
1999-05-03 09:29:11 +02:00
2001-04-13 04:22:23 +02:00
@kindex --warn-common
1999-05-03 09:29:11 +02:00
@cindex warnings, on combining symbols
@cindex combining symbols, warnings on
@item --warn-common
Warn when a common symbol is combined with another common symbol or with
2003-08-20 10:37:19 +02:00
a symbol definition. Unix linkers allow this somewhat sloppy practise,
1999-05-03 09:29:11 +02:00
but linkers on some other operating systems do not. This option allows
you to find potential problems from combining global symbols.
2003-08-20 10:37:19 +02:00
Unfortunately, some C libraries use this practise, so you may get some
1999-05-03 09:29:11 +02:00
warnings about symbols in the libraries as well as in your programs.
There are three kinds of global symbols, illustrated here by C examples:
@table @samp
@item int i = 1;
A definition, which goes in the initialized data section of the output
file.
@item extern int i;
An undefined reference, which does not allocate space.
There must be either a definition or a common symbol for the
variable somewhere.
@item int i;
A common symbol. If there are only (one or more) common symbols for a
variable, it goes in the uninitialized data area of the output file.
The linker merges multiple common symbols for the same variable into a
single symbol. If they are of different sizes, it picks the largest
size. The linker turns a common symbol into a declaration, if there is
a definition of the same variable.
@end table
The @samp{--warn-common} option can produce five kinds of warnings.
Each warning consists of a pair of lines: the first describes the symbol
just encountered, and the second describes the previous symbol
encountered with the same name. One or both of the two symbols will be
a common symbol.
@enumerate
@item
Turning a common symbol into a reference, because there is already a
definition for the symbol.
@smallexample
@var{file}(@var{section}): warning: common of `@var{symbol}'
overridden by definition
@var{file}(@var{section}): warning: defined here
@end smallexample
@item
Turning a common symbol into a reference, because a later definition for
the symbol is encountered. This is the same as the previous case,
except that the symbols are encountered in a different order.
@smallexample
@var{file}(@var{section}): warning: definition of `@var{symbol}'
overriding common
@var{file}(@var{section}): warning: common is here
@end smallexample
@item
Merging a common symbol with a previous same-sized common symbol.
@smallexample
@var{file}(@var{section}): warning: multiple common
of `@var{symbol}'
@var{file}(@var{section}): warning: previous common is here
@end smallexample
@item
Merging a common symbol with a previous larger common symbol.
@smallexample
@var{file}(@var{section}): warning: common of `@var{symbol}'
overridden by larger common
@var{file}(@var{section}): warning: larger common is here
@end smallexample
@item
Merging a common symbol with a previous smaller common symbol. This is
the same as the previous case, except that the symbols are
encountered in a different order.
@smallexample
@var{file}(@var{section}): warning: common of `@var{symbol}'
overriding smaller common
@var{file}(@var{section}): warning: smaller common is here
@end smallexample
@end enumerate
@kindex --warn-constructors
@item --warn-constructors
Warn if any global constructors are used. This is only useful for a few
object file formats. For formats like COFF or ELF, the linker can not
detect the use of global constructors.
@kindex --warn-multiple-gp
@item --warn-multiple-gp
Warn if multiple global pointer values are required in the output file.
This is only meaningful for certain processors, such as the Alpha.
Specifically, some processors put large-valued constants in a special
section. A special register (the global pointer) points into the middle
of this section, so that constants can be loaded efficiently via a
base-register relative addressing mode. Since the offset in
base-register relative mode is fixed and relatively small (e.g., 16
bits), this limits the maximum size of the constant pool. Thus, in
large programs, it is often necessary to use multiple global pointer
values in order to be able to address all possible constants. This
option causes a warning to be issued whenever this case occurs.
@kindex --warn-once
@cindex warnings, on undefined symbols
@cindex undefined symbols, warnings on
@item --warn-once
Only warn once for each undefined symbol, rather than once per module
which refers to it.
@kindex --warn-section-align
@cindex warnings, on section alignment
@cindex section alignment, warnings on
@item --warn-section-align
Warn if the address of an output section is changed because of
alignment. Typically, the alignment will be set by an input section.
The address will only be changed if it not explicitly specified; that
is, if the @code{SECTIONS} command does not specify a start address for
the section (@pxref{SECTIONS}).
2004-10-07 16:45:24 +02:00
@kindex --warn-shared-textrel
@item --warn-shared-textrel
2006-06-27 10:52:38 +02:00
Warn if the linker adds a DT_TEXTREL to a shared object.
2004-10-07 16:45:24 +02:00
2009-04-08 18:04:50 +02:00
@kindex --warn-alternate-em
@item --warn-alternate-em
Warn if an object has alternate ELF machine code.
2003-08-20 10:37:19 +02:00
@kindex --warn-unresolved-symbols
@item --warn-unresolved-symbols
If the linker is going to report an unresolved symbol (see the option
@option{--unresolved-symbols}) it will normally generate an error.
This option makes it generate a warning instead.
@kindex --error-unresolved-symbols
@item --error-unresolved-symbols
This restores the linker's default behaviour of generating errors when
it is reporting unresolved symbols.
1999-05-03 09:29:11 +02:00
@kindex --whole-archive
@cindex including an entire archive
@item --whole-archive
For each archive mentioned on the command line after the
2001-11-09 21:30:40 +01:00
@option{--whole-archive} option, include every object file in the archive
1999-05-03 09:29:11 +02:00
in the link, rather than searching the archive for the required object
files. This is normally used to turn an archive file into a shared
library, forcing every object to be included in the resulting shared
library. This option may be used more than once.
2000-12-12 23:37:20 +01:00
Two notes when using this option from gcc: First, gcc doesn't know
2001-11-09 21:30:40 +01:00
about this option, so you have to use @option{-Wl,-whole-archive}.
Second, don't forget to use @option{-Wl,-no-whole-archive} after your
2000-12-12 23:37:20 +01:00
list of archives, because gcc will add its own list of archives to
your link and you may not want this flag to affect those as well.
2009-02-24 19:06:27 +01:00
@kindex --wrap=@var{symbol}
@item --wrap=@var{symbol}
1999-05-03 09:29:11 +02:00
Use a wrapper function for @var{symbol}. Any undefined reference to
@var{symbol} will be resolved to @code{__wrap_@var{symbol}}. Any
undefined reference to @code{__real_@var{symbol}} will be resolved to
@var{symbol}.
This can be used to provide a wrapper for a system function. The
wrapper function should be called @code{__wrap_@var{symbol}}. If it
wishes to call the system function, it should call
@code{__real_@var{symbol}}.
Here is a trivial example:
@smallexample
void *
2004-03-01 18:33:36 +01:00
__wrap_malloc (size_t c)
1999-05-03 09:29:11 +02:00
@{
2004-03-01 18:33:36 +01:00
printf ("malloc called with %zu\n", c);
1999-05-03 09:29:11 +02:00
return __real_malloc (c);
@}
@end smallexample
2001-11-09 21:30:40 +01:00
If you link other code with this file using @option{--wrap malloc}, then
1999-05-03 09:29:11 +02:00
all calls to @code{malloc} will call the function @code{__wrap_malloc}
instead. The call to @code{__real_malloc} in @code{__wrap_malloc} will
call the real @code{malloc} function.
You may wish to provide a @code{__real_malloc} function as well, so that
2001-11-09 21:30:40 +01:00
links without the @option{--wrap} option will succeed. If you do this,
1999-05-03 09:29:11 +02:00
you should not put the definition of @code{__real_malloc} in the same
file as @code{__wrap_malloc}; if you do, the assembler may resolve the
call before the linker has a chance to wrap it to @code{malloc}.
2005-09-08 18:03:26 +02:00
@kindex --eh-frame-hdr
@item --eh-frame-hdr
Request creation of @code{.eh_frame_hdr} section and ELF
@code{PT_GNU_EH_FRAME} segment header.
2000-07-20 23:18:23 +02:00
@kindex --enable-new-dtags
@kindex --disable-new-dtags
@item --enable-new-dtags
@itemx --disable-new-dtags
This linker can create the new dynamic tags in ELF. But the older ELF
systems may not understand them. If you specify
2001-11-09 21:30:40 +01:00
@option{--enable-new-dtags}, the dynamic tags will be created as needed.
If you specify @option{--disable-new-dtags}, no new dynamic tags will be
2000-07-20 23:18:23 +02:00
created. By default, the new dynamic tags are not created. Note that
those options are only available for ELF systems.
2004-05-21 17:38:04 +02:00
@kindex --hash-size=@var{number}
2005-06-12 20:38:39 +02:00
@item --hash-size=@var{number}
2004-05-21 17:38:04 +02:00
Set the default size of the linker's hash tables to a prime number
close to @var{number}. Increasing this value can reduce the length of
time it takes the linker to perform its tasks, at the expense of
increasing the linker's memory requirements. Similarly reducing this
value can reduce the memory requirements at the expense of speed.
include/
* bfdlink.h (struct bfd_link_info): Add emit_hash and
emit_gnu_hash bitfields.
include/elf/
* common.h (SHT_GNU_HASH, DT_GNU_HASH): Define.
ld/
* scripttempl/elf.sc: Add .gnu.hash section.
* emultempl/elf32.em (OPTION_HASH_STYLE): Define.
(gld${EMULATION_NAME}_add_options): Register --hash-style option.
(gld${EMULATION_NAME}_handle_option): Handle it.
(gld${EMULATION_NAME}_list_options): Document it.
* ldmain.c (main): Initialize emit_hash and emit_gnu_hash.
* ld.texinfo: Document --hash-style option.
bfd/
* elf.c (_bfd_elf_print_private_bfd_data): Handle DT_GNU_HASH.
(bfd_section_from_shdr, elf_fake_sections, assign_section_numbers):
Handle SHT_GNU_HASH.
(special_sections_g): Include .gnu.hash section.
(bfd_elf_gnu_hash): New function.
* elf-bfd.h (bfd_elf_gnu_hash, _bfd_elf_hash_symbol): New prototypes.
(struct elf_backend_data): Add elf_hash_symbol method.
* elflink.c (_bfd_elf_link_create_dynamic_sections): Create .hash
only if info->emit_hash, create .gnu.hash section if
info->emit_gnu_hash.
(struct collect_gnu_hash_codes): New type.
(elf_collect_gnu_hash_codes, elf_renumber_gnu_hash_syms,
_bfd_elf_hash_symbol): New functions.
(compute_bucket_count): Don't compute HASHCODES array, instead add
that and NSYMS as arguments. Use bed->s->sizeof_hash_entry
instead of bed->s->arch_size / 8. Fix .hash size estimation.
When not optimizing, use the number of hashed symbols rather than
dynsymcount.
(bfd_elf_size_dynamic_sections): Only add DT_HASH if info->emit_hash,
and ADD DT_GNU_HASH if info->emit_gnu_hash.
(bfd_elf_size_dynsym_hash_dynstr): Size .hash only if info->emit_hash,
adjust compute_bucket_count caller. Create and populate .gnu.hash
section if info->emit_gnu_hash.
(elf_link_output_extsym): Only populate .hash section if
finfo->hash_sec != NULL.
(bfd_elf_final_link): Adjust assertion. Handle DT_GNU_HASH.
* elfxx-target.h (elf_backend_hash_symbol): Define if not yet defined.
(elfNN_bed): Add elf_backend_hash_symbol.
* elf64-x86-64.c (elf64_x86_64_hash_symbol): New function.
(elf_backend_hash_symbol): Define.
* elf32-i386.c (elf_i386_hash_symbol): New function.
(elf_backend_hash_symbol): Define.
binutils/
* readelf.c (get_dynamic_type): Handle DT_GNU_HASH.
(get_section_type_name): Handle SHT_GNU_HASH.
(dynamic_info_DT_GNU_HASH): New variable.
(process_dynamic_section): Handle DT_GNU_HASH.
(process_symbol_table): Print also DT_GNU_HASH histogram.
ld/testsuite/
* ld-powerpc/tlsso32.r: Adjust.
* ld-powerpc/tlsso32.d: Adjust.
* ld-powerpc/tlsso32.g: Adjust.
* ld-powerpc/tlsso.r: Adjust.
* ld-powerpc/tlsso.g: Adjust.
* ld-powerpc/tlstocso.g: Adjust.
2006-07-10 23:40:25 +02:00
@kindex --hash-style=@var{style}
@item --hash-style=@var{style}
Set the type of linker's hash table(s). @var{style} can be either
@code{sysv} for classic ELF @code{.hash} section, @code{gnu} for
new style GNU @code{.gnu.hash} section or @code{both} for both
the classic ELF @code{.hash} and new style GNU @code{.gnu.hash}
hash tables. The default is @code{sysv}.
2004-05-19 16:15:55 +02:00
@kindex --reduce-memory-overheads
@item --reduce-memory-overheads
This option reduces memory requirements at ld runtime, at the expense of
2006-01-16 17:07:45 +01:00
linking speed. This was introduced to select the old O(n^2) algorithm
2004-05-19 16:15:55 +02:00
for link map file generation, rather than the new O(n) algorithm which uses
2004-05-21 17:38:04 +02:00
about 40% more memory for symbol storage.
2005-10-25 01:07:12 +02:00
Another effect of the switch is to set the default hash table size to
2004-05-21 17:38:04 +02:00
1021, which again saves memory at the cost of lengthening the linker's
2004-05-23 11:30:31 +02:00
run time. This is not done however if the @option{--hash-size} switch
2004-05-21 17:38:04 +02:00
has been used.
The @option{--reduce-memory-overheads} switch may be also be used to
enable other tradeoffs in future versions of the linker.
2004-05-19 16:15:55 +02:00
2007-07-09 23:25:34 +02:00
@kindex --build-id
@kindex --build-id=@var{style}
@item --build-id
@itemx --build-id=@var{style}
Request creation of @code{.note.gnu.build-id} ELF note section.
The contents of the note are unique bits identifying this linked
file. @var{style} can be @code{uuid} to use 128 random bits,
2007-07-13 12:44:26 +02:00
@code{sha1} to use a 160-bit @sc{SHA1} hash on the normative
parts of the output contents, @code{md5} to use a 128-bit
@sc{MD5} hash on the normative parts of the output contents, or
@code{0x@var{hexstring}} to use a chosen bit string specified as
an even number of hexadecimal digits (@code{-} and @code{:}
characters between digit pairs are ignored). If @var{style} is
omitted, @code{sha1} is used.
The @code{md5} and @code{sha1} styles produces an identifier
that is always the same in an identical output file, but will be
unique among all nonidentical output files. It is not intended
to be compared as a checksum for the file's contents. A linked
file may be changed later by other tools, but the build ID bit
string identifying the original linked file does not change.
2007-07-09 23:25:34 +02:00
Passing @code{none} for @var{style} disables the setting from any
@code{--build-id} options earlier on the command line.
1999-05-03 09:29:11 +02:00
@end table
2001-03-25 22:32:31 +02:00
@c man end
2003-02-21 11:27:06 +01:00
@subsection Options Specific to i386 PE Targets
1999-05-03 09:29:11 +02:00
2001-03-25 22:32:31 +02:00
@c man begin OPTIONS
2001-11-09 21:30:40 +01:00
The i386 PE linker supports the @option{-shared} option, which causes
1999-05-03 09:29:11 +02:00
the output to be a dynamically linked library (DLL) instead of a
normal executable. You should name the output @code{*.dll} when you
use this option. In addition, the linker fully supports the standard
@code{*.def} files, which may be specified on the linker command line
like an object file (in fact, it should precede archives it exports
symbols from, to ensure that they get linked in, just like a normal
object file).
In addition to the options common to all targets, the i386 PE linker
support additional command line options that are specific to the i386
PE target. Options that take values may be separated from their
values by either a space or an equals sign.
2001-11-09 21:30:40 +01:00
@table @gcctabopt
1999-05-03 09:29:11 +02:00
@kindex --add-stdcall-alias
@item --add-stdcall-alias
If given, symbols with a stdcall suffix (@@@var{nn}) will be exported
as-is and also with the suffix stripped.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --base-file
@item --base-file @var{file}
Use @var{file} as the name of a file in which to save the base
addresses of all the relocations needed for generating DLLs with
@file{dlltool}.
2003-04-06 11:38:11 +02:00
[This is an i386 PE specific option]
1999-05-03 09:29:11 +02:00
@kindex --dll
@item --dll
Create a DLL instead of a regular executable. You may also use
2001-11-09 21:30:40 +01:00
@option{-shared} or specify a @code{LIBRARY} in a given @code{.def}
1999-05-03 09:29:11 +02:00
file.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
2009-02-18 19:23:08 +01:00
@kindex --enable-long-section-names
@kindex --disable-long-section-names
@item --enable-long-section-names
@itemx --disable-long-section-names
The PE variants of the Coff object format add an extension that permits
the use of section names longer than eight characters, the normal limit
for Coff. By default, these names are only allowed in object files, as
fully-linked executable images do not carry the Coff string table required
to support the longer names. As a GNU extension, it is possible to
allow their use in executable images as well, or to (probably pointlessly!)
disallow it in object files, by using these two options. Executable images
generated with these long section names are slightly non-standard, carrying
as they do a string table, and may generate confusing output when examined
2009-03-03 19:22:11 +01:00
with non-GNU PE-aware tools, such as file viewers and dumpers. However,
GDB relies on the use of PE long section names to find Dwarf-2 debug
information sections in an executable image at runtime, and so if neither
option is specified on the command-line, @command{ld} will enable long
section names, overriding the default and technically correct behaviour,
when it finds the presence of debug information while linking an executable
image and not stripping symbols.
2009-02-18 19:23:08 +01:00
[This option is valid for all PE targeted ports of the linker]
1999-05-03 09:29:11 +02:00
@kindex --enable-stdcall-fixup
@kindex --disable-stdcall-fixup
@item --enable-stdcall-fixup
@itemx --disable-stdcall-fixup
If the link finds a symbol that it cannot resolve, it will attempt to
2003-02-21 11:27:06 +01:00
do ``fuzzy linking'' by looking for another defined symbol that differs
1999-05-03 09:29:11 +02:00
only in the format of the symbol name (cdecl vs stdcall) and will
resolve that symbol by linking to the match. For example, the
undefined symbol @code{_foo} might be linked to the function
@code{_foo@@12}, or the undefined symbol @code{_bar@@16} might be linked
to the function @code{_bar}. When the linker does this, it prints a
warning, since it normally should have failed to link, but sometimes
import libraries generated from third-party dlls may need this feature
2001-11-09 21:30:40 +01:00
to be usable. If you specify @option{--enable-stdcall-fixup}, this
1999-05-03 09:29:11 +02:00
feature is fully enabled and warnings are not printed. If you specify
2001-11-09 21:30:40 +01:00
@option{--disable-stdcall-fixup}, this feature is disabled and such
1999-05-03 09:29:11 +02:00
mismatches are considered to be errors.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
2010-04-05 11:04:09 +02:00
@kindex --leading-underscore
@kindex --no-leading-underscore
@item --leading-underscore
@itemx --no-leading-underscore
For most targets default symbol-prefix is an underscore and is defined
in target's description. By this option it is possible to
disable/enable the default underscore symbol-prefix.
1999-05-03 09:29:11 +02:00
@cindex DLLs, creating
@kindex --export-all-symbols
@item --export-all-symbols
If given, all global symbols in the objects used to build a DLL will
be exported by the DLL. Note that this is the default if there
otherwise wouldn't be any exported symbols. When symbols are
explicitly exported via DEF files or implicitly exported via function
attributes, the default is to not export anything else unless this
option is given. Note that the symbols @code{DllMain@@12},
2006-06-27 10:52:38 +02:00
@code{DllEntryPoint@@0}, @code{DllMainCRTStartup@@12}, and
2001-08-03 01:12:02 +02:00
@code{impure_ptr} will not be automatically
2006-06-27 10:52:38 +02:00
exported. Also, symbols imported from other DLLs will not be
re-exported, nor will symbols specifying the DLL's internal layout
such as those beginning with @code{_head_} or ending with
@code{_iname}. In addition, no symbols from @code{libgcc},
2001-08-03 01:12:02 +02:00
@code{libstd++}, @code{libmingw32}, or @code{crtX.o} will be exported.
Symbols whose names begin with @code{__rtti_} or @code{__builtin_} will
not be exported, to help with C++ DLLs. Finally, there is an
2006-06-27 10:52:38 +02:00
extensive list of cygwin-private symbols that are not exported
2001-08-03 01:12:02 +02:00
(obviously, this applies on when building DLLs for cygwin targets).
2006-06-27 10:52:38 +02:00
These cygwin-excludes are: @code{_cygwin_dll_entry@@12},
2001-08-03 01:12:02 +02:00
@code{_cygwin_crt0_common@@8}, @code{_cygwin_noncygwin_dll_entry@@12},
2006-06-27 10:52:38 +02:00
@code{_fmode}, @code{_impure_ptr}, @code{cygwin_attach_dll},
2001-08-03 01:12:02 +02:00
@code{cygwin_premain0}, @code{cygwin_premain1}, @code{cygwin_premain2},
2006-06-27 10:52:38 +02:00
@code{cygwin_premain3}, and @code{environ}.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --exclude-symbols
1999-09-09 18:12:28 +02:00
@item --exclude-symbols @var{symbol},@var{symbol},...
1999-05-03 09:29:11 +02:00
Specifies a list of symbols which should not be automatically
exported. The symbol names may be delimited by commas or colons.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
2009-10-16 17:15:39 +02:00
@kindex --exclude-all-symbols
@item --exclude-all-symbols
Specifies no symbols should be automatically exported.
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --file-alignment
@item --file-alignment
Specify the file alignment. Sections in the file will always begin at
file offsets which are multiples of this number. This defaults to
512.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@cindex heap size
@kindex --heap
@item --heap @var{reserve}
@itemx --heap @var{reserve},@var{commit}
2007-07-05 Danny Smith <dannysmith@users.sourceforge.net>
* ld.texinfo (--heap): Replace 'amount' with 'number of bytes'.
(--stack): Likewise.
2007-07-03 Matthias Klose <doko@ubuntu.com>
* emultempl/spuelf.em (base_name): Correct backslash quoting.
2007-07-02 Alan Modra <amodra@bigpond.net.au>
* Makefile.in: Regenerate.
* aclocal.m4: Regenerate.
* config.in: Regenerate.
* po/ld.pot: Regenerate.
2007-06-30 H.J. Lu <hongjiu.lu@intel.com>
* aclocal.m4: Regenerated.
* Makefile.in: Likewise.
2007-06-29 H.J. Lu <hongjiu.lu@intel.com>
* NEWS: Remove a line with '*' only.
2007-06-29 Joseph Myers <joseph@codesourcery.com>
* emulparams/armelf.sh (OTHER_SECTIONS): Remove .ARM.attributes.
(ATTRS_SECTIONS): Define.
* scripttempl/elf.sc, scripttempl/elf32sh-symbian.sc,
scripttempl/elf_chaos.sc, scripttempl/elfi370.sc,
scripttempl/elfxtensa.sc: Handle ATTRS_SECTIONS.
2006-06-29 M R Swami Reddy <MR.Swami.Reddy@nsc.com>
* scripttemp/elf32cr16.sc: Default linker script.
* emulparams/elf32cr16.sh: Emulation script.
* emultempl/cr16elf.em: Emulation script.
* Makefile.am: Add entry to make cr16 target.
* Makefile.in: Regenerate.
* configure.tgt: Specify default and other emulation parameters
for cr16.
* ChangeLog: Added CR16 target entry.
* NEWS: Announce the support for the CR16 new target.
2007-06-27 Alan Modra <amodra@bigpond.net.au>
* pe-dll.c: Rename uses of bfd.next to bfd.archive_next throughout.
2007-06-20 Alan Modra <amodra@bigpond.net.au>
* emulparams/elf32_spu.sh (OTHER_SECTIONS): KEEP .note.spu_name.
2007-06-18 Nathan Sidwell <nathan@codesourcery.com>
* ldlex.l, ldgram.y: Add ALIGNOF.
* ldexp.c (exp_print_token, foldname): Likewise.
* ld.texinfo: Likewise.
2007-06-18 Alan Modra <amodra@bigpond.net.au>
* Makefile.am: Add eelf32_spu.o rule.
* Makefile.in: Regenerate.
* emultempl/spuelf.em: Revert last change. Instead use EMBEDSPU
defined in Makefile for embedspu name.
2007-06-18 Alan Modra <amodra@bigpond.net.au>
* emultempl/spuelf.em (embedded_spu_file): Deduce embedspu program
name prefix from that of ld.
2007-06-14 H.J. Lu <hongjiu.lu@intel.com>
* Makefile.am (ACLOCAL_AMFLAGS): Add -I ../config -I ../bfd.
* acinclude.m4: Removed.
* Makefile.in: Regenerated.
* aclocal.m4: Likewise.
* configure: Likewise.
2007-06-14 Alan Modra <amodra@bigpond.net.au>
* emultempl/spu_ovl.S: Don't trash lr on tail call from one
overlay to another.
* emultempl/spu_ovl.o: Regenerate.
2007-06-11 Bob Wilson <bob.wilson@acm.org>
* emulparams/elf32xtensa.sh (OTHER_READONLY_SECTIONS): Add ONLY_IF_RO
for .xt_except_table.
(OTHER_RELRO_SECTIONS): New.
2007-06-11 Sterling Augustine <sterling@tensilica.com>
Bob Wilson <bob.wilson@acm.org>
* emultempl/xtensaelf.em (replace_insn_sec_with_prop_sec): Use renamed
XTENSA_PROP_NO_TRANSFORM flag instead of XTENSA_PROP_INSN_NO_TRANSFORM.
2007-06-01 Noah Misch <noah@cs.caltech.edu>
Alan Modra <amodra@bigpond.net.au>
* ldlang.c (ldlang_add_file): Use input_bfds_tail.
* ldmain.c (main): Init input_bfds_tail. Sort link_info
initialization.
2007-05-29 Alan Modra <amodra@bigpond.net.au>
* emultempl/spuelf.em (base_name): New function, split out from..
(embedded_spu_file) ..here. Pass -fPIC or -fpie to embedspu
invocation if we deduce a shared lib or position independent
executable build by looking at ctrbegin* linker input files.
2007-05-29 Alan Modra <amodra@bigpond.net.au>
* emultempl/spu_ovl.S (__rv_pattern, __cg_pattern): Set symbol
types and sizes.
* emultempl/spu_ovl.o: Regenerate.
2007-05-24 Steve Ellcey <sje@cup.hp.com>
* Makefile.in: Regnerate.
* configure: Regenerate.
* aclocal.m4: Regenerate.
2007-05-24 Nathan Sidwell <nathan@codesourcery.com>
* ldlex.l: ASSERT is recognized in SCRIPT env. NAMES cannot
contain commas in EXP env.
* ldgram.y (extern_name_list): Push to EXP env, move body to ...
(extern_name_list_body): ... here.
(script_file, ifile_list): Reformat.
(statement): Add ASSERT.
2007-05-22 Nick Clifton <nickc@redhat.com>
* ld.texinfo: Use @copying around the copyright notice.
* ldint.texinfo: Likewise.
2007-05-18 Richard Sandiford <richard@codesourcery.com>
* emulparams/elf32ebmipvxworks.sh (OTHER_READONLY_SECTIONS)
(OTHER_READWRITE_SECTIONS): Define. Add .rdata sections.
2007-05-16 Richard Sandiford <richard@codesourcery.com>
* configure.in: Allow sysroots to be relocated under $prefix as
well as $exec_prefix.
* configure: Regenerate.
2007-05-14 Andreas Schwab <schwab@suse.de>
* emultempl/ppc64elf.em (gld${EMULATION_NAME}_new_vers_pattern):
Handle null pattern.
2007-05-11 Alan Modra <amodra@bigpond.net.au>
* emultempl/ppc32elf.em (plt_style): New variable.
(old_plt): Delete.
(ppc_after_open): Adjust ppc_elf_select_plt_layout call.
(PARSE_AND_LIST_PROLOGUE): Define OPTION_NEW_PLT, renumber
OPTION_OLD_PLT, OPTION_OLD_GOT and OPTION_STUBSYMS.
(PARSE_AND_LIST_LONGOPTS, PARSE_AND_LIST_OPTIONS): Add secure-plt.
(PARSE_AND_LIST_ARGS_CASES): Handle OPTION_NEW_PLT.
* ld.texinfo (--secure-plt): Document.
2007-05-08 Alan Modra <amodra@bigpond.net.au>
* ld.h (args_type, ld_config_type): Reorder fields.
* ldmain.c (main): Don't initialise a bunch of vars we know are
zero already.
2007-05-05 Anatoly Sokolov <aesok@post.ru>
* multempl/avrelf.em (PARSE_AND_LIST_ARGS_CASES): Add new value for
"--pmem-wrap-around".
(PARSE_AND_LIST_OPTIONS): Describe new value for "--pmem-wrap-around".
2007-05-03 Bob Wilson <bob.wilson@acm.org>
* scripttempl/elfxtensa.sc: Merge changes from elf.sc.
2007-05-03 Alan Modra <amodra@bigpond.net.au>
* ld.texinfo (--no-warn-search-mismatch): Document.
* ldfile.c (ldfile_try_open_bfd): Don't warn about skipping
incompatible libraries if --no-warn-search-mismatch.
* ld.h (args_type): Add warn_search_mismatch.
* ldmain.c (main): Init it.
* lexsup.c (enum option_values): Add OPTION_NO_WARN_SEARCH_MISMATCH.
(ld_options): Add entry for --no-warn-search-mismatch.
(parse_args): Handle OPTION_NO_WARN_SEARCH_MISMATCH.
2007-05-03 Alan Modra <amodra@bigpond.net.au>
* scripttempl/elf.sc: Add .debug_pubtypes and .debug_ranges.
2007-05-01 Robert Millan <rmh@aybabtu.com>
* ldlang.c (lang_check): Error on architecture mismatch.
2007-04-30 Alan Modra <amodra@bigpond.net.au>
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-28 Alan Modra <amodra@bigpond.net.au>
* ldcref.c (struct cref_hash_entry): Make "demangled" const.
(cref_fill_array): Adjust for changed demangler.
* ldlang.c (lang_one_common): Likewise.
2007-04-27 Nathan Froyd <froydnj@codesourcery.com>
* emulparams/elf32_sparc.sh: Update comments.
* emulparams/elf32bmip.sh: Likewise.
* emulparams/elf32ppc.sh: Likewise.
* emulparams/vxworks.sh: Likewise.
2007-04-27 Alan Modra <amodra@bigpond.net.au>
Many files: Include sysdep.h first. Remove duplicate headers.
* Makefile.am: Run "make dep-am".
* Makefile.in: Regenerate.
2007-04-24 Alan Modra <amodra@bigpond.net.au>
* Makefile.in: Regenerate.
2007-04-19 Alan Modra <amodra@bigpond.net.au>
* ldcref.c (cref_fill_array): Call bfd_demangle rather than demangle.
* ldlang.c (lang_one_common): Likewise.
* ldmisc.c (vfinfo): Likewise.
(demangle): Delete.
* ldmisc.h (demangle): Delete.
* Makefile.am: Run "make dep-am".
* Makefile.in: Regenerate.
2007-04-18 Alan Modra <amodra@bigpond.net.au>
* ldlang.h (enum section_type): Add overlay_section.
* ldlang.c (lang_add_section): Handle flags for overlay_section
as per normal_section.
(lang_size_sections_1): When setting lma, detect overlays by
os->sectype rather than by looking for overlapping vmas.
(lang_enter_overlay_section): Use overlay_section type.
(lang_leave_overlay): Set first overlay section to normal.
2007-04-14 Steve Ellcey <sje@cup.hp.com>
* Makefile.am: Add ACLOCAL_AMFLAGS.
* Makefile.in: Regenerate.
2007-04-12 Bob Wilson <bob.wilson@acm.org>
* emulparams/elf32xtensa.sh (OTHER_SECTIONS): KEEP property sections.
2007-04-10 Richard Henderson <rth@redhat.com>
* ldlang.c (relax_sections): Initialize and increment
link_info.relax_trip.
2007-04-04 Paul Brook <paul@codesourcery.com>
* configure.tgt: Loosen checks for arm uclinux eabi targets.
2007-04-02 H.J. Lu <hongjiu.lu@intel.com>
PR ld/4090
* ldexp.h (node_type): Add lineno.
* ldexp.c: Include "ldlex.h".
(exp_intop): Set the lineno field from lineno.
(exp_bigintop): Likewise.
(exp_relop): Likewise.
(exp_nameop): Likewise.
(exp_binop): Set the lineno field from lineno of lhs.
(exp_trinop): Likewise.
(exp_unop): Set the lineno field from lineno of child.
(exp_assop): Set the lineno field from lineno of src.
(exp_provide): Likewise.
(exp_assert): Set the lineno field from lineno of exp.
(exp_get_abs_int): Set lineno from lineno of nonconstant
expression when report problem.
2007-03-29 Richard Sandiford <richard@codesourcery.com>
Daniel Jacobowitz <dan@codesourcery.com>
* NEWS: Mention -l:foo.
* ld.texinfo: Document it.
* ldlang.c (new_afile): If a lang_input_file_is_l_enum
entry as a name beginning with a coloh, convert it to a
lang_input_file_is_search_file_enum entry without the colon.
2007-03-28 Richard Sandiford <richard@codesourcery.com>
* ld.h (ld_config_type): Add rpath_separator.
* ldmain.c (main): Initialize it.
* lexsup.c (parse_args): Honor config.rpath_separator.
* emultempl/elf32.em (gld${EMULATION_NAME}_search_needed): Likewise.
(gld${EMULATION_NAME}_add_sysroot): Likewise.
(gld${EMULATION_NAME}_parse_ld_so_conf): Use config.rpath_separator
rather than ':' when building the path.
* emultempl/vxworks.em (vxworks_before_parse): New function.
Override config.rpath_separator.
(LDEMUL_AFTER_OPEN): Do not change if EXTRA_EM_FILE has been
set to gld${EMULATION_NAME}_after_open; #define that identifier
to vxworks_foo instead.
(LDEMUL_BEFORE_PARSE): Override in the same way as LDEMUL_AFTER_OPEN.
2007-03-28 Richard Sandiford <richard@codesourcery.com>
Phil Edwards <phil@codesourcery.com>
* ld.texinfo: Put the contents after the title page rather
than at the end of the document.
2007-03-26 Alan Modra <amodra@bigpond.net.au>
* Makefile.am: Add dependency on ldemul-list.h for powerpc and
spu target emul files.
* configure.in: Check for mkstemp and waitpid.
* Makefile.in: Regenerate.
* configure: Regenerate.
* config.in: Regenerate.
* ldlang.c (input_file_chain): Make global.
(lang_add_input_file): Don't set lang_has_input_file here.
* ldlang.h (input_file_chain): Declare.
* emultempl/ppc32elf.em (ppc_recognized_file): New function.
(LDEMUL_RECOGNIZED_FILE): Define.
* emultempl/ppc64elf.em (ppc64_recognized_file): New function.
(LDEMUL_RECOGNIZED_FILE): Define.
* emultempl/spuelf.em (struct tflist): New.
(tmp_file_list): New var.
(clean_tmp, embedded_spu_file): New functions.
2007-03-24 Alan Modra <amodra@bigpond.net.au>
* ldlang.c (lang_insert_orphan): Provide start/stop loadaddr syms
rather than defining unconditionally.
(lang_leave_overlay_section): Likewise.
* ld.texinfo (Overlay Description): Update description and examples
for start/stop syms.
2007-03-22 Joseph Myers <joseph@codesourcery.com>
* ld.texinfo: Include VERSION_PACKAGE when reporting version.
2007-03-20 Paul Brook <paul@codesourcery.com>
* emultempl/armelf.em (pic_veneer): New variable.
(PARSE_AND_LIST_PROLOGUE): Add OPTION_PIC_VENEER.
(PARSE_AND_LIST_ARGS_CASES): Ditto.
(PARSE_AND_LIST_LONGOPTS): Add "pic-veneer".
(PARSE_AND_LIST_OPTIONS): Ditto.
* ld.texinfo: Document --pic-veneer.
2007-03-18 Mark Shinwell <shinwell@codesourcery.com>
* ld.texinfo: Document --no-enum-size-warning.
* emultempl/armelf.em (no_enum_size_warning): New.
(arm_elf_create_output_section_statements): Correct typo
in comment. Pass no_enum_size_warning to
bfd_elf32_arm_set_target_relocs.
(PARSE_AND_LIST_PROLOGUE): Define OPTION_NO_ENUM_SIZE_WARNING.
(PARSE_AND_LIST_OPTIONS): Document --no-enum-size-warning.
(PARSE_AND_LIST_ARGS_CASES): Add OPTION_NO_ENUM_SIZE_WARNING
case.
2007-03-19 Bernd Schmidt <bernd.schmidt@analog.com>
* configure.tgt (bfin-*-elf, bfin-*-uclinux*): Add targ_extra_libpath.
(bfin-*-linux-uclibc*): New target.
2007-03-16 Kai Tietz <Kai.Tietz@onevision.com>
* pe-dll.c (make_one): Use pc-relative relocation instead of an
absolute relocation for x86_64-pc-mingw32 target.
2007-03-15 H.J. Lu <hongjiu.lu@intel.com>
* Makefile.am (ld_TEXINFOS): Remove ldver.texi.
(AM_MAKEINFOFLAGS): Add -I ../../bfd/doc.
(TEXI2DVI): Likewise.
(REPORT_BUGS_TO): Removed.
(INCLUDES): Remove -DREPORT_BUGS_TO.
(ldver.texi): Likewise.
(ld.1): Don't depend on ldver.texi.
(MOSTLYCLEANFILES): Remove ldver.texi.
* Makefile.in: Regenerated.
* configure.in (--with-bugurl): Removed.
* configure: Regenerated.
* lexsup.c: Include bfdver.h.
* ld.texinfo: Include bfdver.texi instead of ldver.texi.
2007-03-11 Hans-Peter Nilsson <hp@bitrange.com>
* emultempl/mmixelf.em: Remove incorrect '#line' directive.
2007-03-08 Alan Modra <amodra@bigpond.net.au>
* ldlang.c (lang_size_sections_1): Correct backwards dot move
test to not trigger on overlays. Only warn on backwards move
if non-default lma.
2007-03-07 Joseph Myers <joseph@codesourcery.com>
* configure.in (REPORT_BUGS_TEXI): Define to Texinfo version of
bug-reporting URL.
* Makefile.am (ldver.texi): Define BUGURL.
* ld.texinfo: Use BUGURL.
* Makefile.in, configure: Regenerate.
2007-03-07 Nick Clifton <nickc@redhat.com>
PR ld/4023
* emultempl/aix.em (..._before_allocation): Strip sysroot prefix
from any paths being inserted into the output binary's DT_RPATH.
2007-03-02 Nathan Sidwell <nathan@codesourcery.com>
* emulparams/shelf_uclinux.sh: New. Missed in 2007-02-28 commit.
2007-03-01 Joseph Myers <joseph@codesourcery.com>
* ldver.c (ldversion): Remove word "version" from output. Update
copyright date.
2007-02-28 Nathan Sidwell <nathan@codesourcery.com>
* Makefile.am (ALL_EMULATIONS): Add eshelf_uclinux.o
(eshelf_uclinux.c): New target.
* Makefile.in: Rebuilt.
* configure.tgt (sh-*-uclinux* | sh[12]-*-uclinux*): New stanza.
* emulparams/shelf_uclinux.sh: New.
2007-02-28 Alan Modra <amodra@bigpond.net.au>
* configure.tgt: Fix type last change.
* configure.tgt (spu-*-elf*): Delete targ_extra_ofiles.
2007-02-27 Alan Modra <amodra@bigpond.net.au>
* Makefile.am (ALL_EMUL_EXTRA_OFILES): Remove spu_inc.o.
(eelf32_spu.c): Adjust dependencies.
* Makefile.in: Regenerate.
* emultempl/spuelf.em (ovl_mgr): New array. Insert spu_ovl.o
code using bin2c.
(_binary_spu_ovl_o_start, _binary_spu_ovl_o_end): Delete.
(ovl_mgr_stream): Update.
* emultempl/spu_inc.s: Delete.
* emultempl/spu_none.s: Delete.
2007-02-26 Alan Modra <amodra@bigpond.net.au>
* emultempl/spuelf.em (_binary_builtin_ovl_mgr_start): Rename
to _binary_spu_ovl_o_start.
(_binary_builtin_ovl_mgr_end): Rename to _binary_spu_ovl_o_end.
(spu_elf_load_ovl_mgr): Fatal error on missing overlay manager.
* emultempl/spu_inc.s: Rename symbols.
* emultempl/spu_none.s: New file.
* emultempl/spu_ovl.S: Update copyright.
* Makefile.am (spu_inc.o): Try building with ld -r first, then
gas incbin, then build without overlay manager.
* Makefile.in: Regenerate.
2007-02-22 Joseph Myers <joseph@codesourcery.com>
* configure.tgt (mips64*el-*-linux-*, mips64*-*-linux-*,
mips*el-*-linux-*, mips*-*-linux-*): Set
targ_extra_libpath=$targ_extra_emuls.
2007-02-21 Nick Clifton <nickc@redhat.com>
* ldlang.c (ldlang_override_segment_assignment): New function.
* ldlang.h (ldlang_override_segment_assignment): Prototype.
* ldmain.c (link_callbacks): Add
ldlang_override_segment_assignment.
2007-02-20 Alan Modra <amodra@bigpond.net.au>
* ldexp.c (fold_name <LOADADDR>): Ensure result is always absolute.
2007-02-17 Mark Mitchell <mark@codesourcery.com>
Nathan Sidwell <nathan@codesourcery.com>
Vladimir Prus <vladimir@codesourcery.com
Joseph Myers <joseph@codesourcery.com>
* configure.in (--with-bugurl): New option.
* configure: Regenerate.
* Makefile.am (REPORT_BUGS_TO): Define.
(INCLUDES): Define REPORT_BUGS_TO.
Regenerate dependencies.
* Makefile.in: Regenerate.
* ld.h: Remove include of bin-bugs.h.
* lexsup.c (help): Don't print empty REPORT_BUGS_TO.
2007-02-17 Alan Modra <amodra@bigpond.net.au>
* ldcref.c (check_reloc_refs): Compare section for local syms.
2007-02-13 Alan Modra <amodra@bigpond.net.au>
* emultempl/spu_ovl.S (__ovly_return, __ovly_load): Set sym size.
(__ovly_load_event): Define.
(size): Rename to osize.
* emultempl/spu_ovl.o: Regenerate.
2007-02-13 Alan Modra <amodra@bigpond.net.au>
* emulparams/elf64ppc.sh (OTHER_READWRITE_SECTIONS): Add ".branch_lt".
* emultempl/ppc64elf.em (ppc_add_stub_section): Create without
SEC_RELOC flag set.
2007-02-09 H.J. Lu <hongjiu.lu@intel.com>
* configure.in (targ_extra_emuls): Add $targ64_extra_emuls if
want64 is true.
(targ_extra_libpath): Add $targ64_extra_libpath if want64 is
true
* configure: Regenerated.
* configure.tgt (targ_extra_libpath): Initialize.
(targ64_extra_emuls): New. Document. Initialize.
(targ64_extra_libpath): Likewise.
(i[3-7]86-*-linux-*): Set targ64_extra_emuls and
targ64_extra_libpath.
(powerpc*-*-linux*): Likewise.
(s390-*-linux*): Likewise.
2007-02-07 Paul Brook <paul@codesourcery.com>
* configure.tgt: Add arm*-*-uclinux-*eabi.
2007-02-06 H.J. Lu <hongjiu.lu@intel.com>
* ldlang.c (lang_size_sections_1): Add a missing `)'.
2007-02-06 Alan Modra <amodra@bigpond.net.au>
PR ld/3966
* ldlang.c (lang_size_sections_1): Don't warn on backwards dot
move unless section size is non-zero.
2007-02-05 Dave Brolley <brolley@redhat.com>
* Makefile.am (ALL_EMULATIONS): Add support for Toshiba MeP.
* configure.tgt: Likewise.
* scripttempl/mep.sc: New file.
* emulparams/elf32mep.sh: New file.
* Makefile.in: Regenerate.
2006-01-29 Julian Brown <julian@codesourcery.com>
* NEWS: Mention --vfp11-denorm-fix option.
* ld.texinfo: Document above.
* emulparams/armelf_linux.sh (OTHER_TEXT_SECTIONS): Add
.vfp11_veneer section.
* emulparams/armelf.sh (OTHER_TEXT_SECTIONS): Likewise.
* emultempl/armelf.em (vfp11_denorm_fix): New static variable.
(arm_elf_before_allocation): Call bfd_elf32_arm_set_vfp11_fix,
bfd_elf32_arm_init_maps and bfd_elf32_arm_vfp11_erratum_scan.
(arm_elf_after_allocation): New function. Call
bfd_elf32_arm_vfp11_fix_veneer_locations for all input statements.
(arm_elf_create_output_section_statements): Pass vfp11 fix command
line option to BFD.
(OPTION_VFP11_DENORM_FIX): New option.
(PARSE_AND_LIST_LONGOPTS): Handle new option.
(PARSE_AND_LIST_OPTIONS): Likewise.
(PARSE_AND_LIST_ARGS_CASES): Likewise.
(LDEMUL_AFTER_ALLOCATION): Define.
2007-01-24 H.J. Lu <hongjiu.lu@intel.com>
* ldgram.y (SIZEOF_HEADERS): Remove duplicated one.
(DEFSYMEND): Likewise.
(NAME): Likewise.
(LNAME): Likewise.
2007-01-19 Murali Vemulapati <murali.vemulapati@gmail.com>
* pe-dll.c: (make_one) Conditionally include jump stubs.
* emultempl/pe.em (gld_${EMULATION_NAME}_after_open): Identify
redundant jump stubs from import libraries and exclude them from
link.
2007-01-19 H.J. Lu <hongjiu.lu@intel.com>
* ld.h (args_type): Add new symbolic and dynamic_list fields.
* ld.texinfo: Update -Bsymbolic-functions.
* ldmain.c (main): Initialize command_line.symbolic to
symbolic_unset and command_line.dynamic_list to
dynamic_list_unset. Check -Bsymbolic, -Bsymbolic-functions and
--dynamic-list* before setting link_info.symbolic,
link_info.dynamic and link_info.dynamic_data.
* lexsup.c (option_values): Add OPTION_SYMBOLIC_FUNCTIONS.
(ld_options): Use OPTION_SYMBOLIC_FUNCTIONS with
-Bsymbolic-functions.
(parse_args): Handle -Bsymbolic-functions. Don't set
link_info.dynamic, link_info.dynamic_data and link_info.symbolic
here. Set command_line.symbolic for -Bsymbolic. Set
command_line.dynamic_list and command_line.symbolic for
--dynamic-list-data, --dynamic-list-cpp-new,
--dynamic-list-cpp-typeinfo and --dynamic-list.
2007-01-19 Jakub Jelinek <jakub@redhat.com>
H.J. Lu <hongjiu.lu@intel.com>
* emultempl/elf32.em (handle_option): Make sure -z max-page-size
or -z common-page-size argument is a power of 2. Call
bfd_emul_set_maxpagesize and bfd_emul_set_commonpagesize.
2007-01-19 H.J. Lu <hongjiu.lu@intel.com>
* ldmain.c (main): Don't call bfd_emul_set_maxpagesize nor
bfd_emul_set_commonpagesize.
2007-01-19 H.J. Lu <hongjiu.lu@intel.com>
* NEWS: Mention --default-script/-dT.
* ld.h (args_type): Add a default_script field.
* ld.texinfo: Document --default-script/-dT.
* ldmain.c (main): Handle command_line.default_script.
* lexsup.c (option_values): Add OPTION_DEFAULT_SCRIPT.
(ld_options): Add entries for --default-script and -dT.
(parse_args): Handle --default-script/-dT.
2007-01-16 H.J. Lu <hongjiu.lu@intel.com>
PR ld/3831
* NEWS: Mention -Bsymbolic-functions, --dynamic-list-data and
--dynamic-list-cpp-new.
* ld.texinfo: Document -Bsymbolic-functions, --dynamic-list-data
and --dynamic-list-cpp-new.
* ldlang.c (lang_append_dynamic_list_cpp_new): New.
(lang_process): Change link_info.dynamic to
link_info.dynamic_list.
(lang_append_dynamic_list): Likewise.
* ldmain.c (main): Likewise. Initialize link_info.dynamic and
link_info.dynamic_data to FALSE.
* ldlang.h (lang_append_dynamic_list_cpp_new): New.
* lexsup.c (option_values): Add OPTION_DYNAMIC_LIST_DATA and
OPTION_DYNAMIC_LIST_CPP_NEW.
(ld_options): Add entries for -Bsymbolic-functions,
--dynamic-list-data and --dynamic-list-cpp-new. Make
-Bsymbolic-functions an alias of --dynamic-list-data.
(parse_args): Change link_info.dynamic to link_info.dynamic_list.
Set link_info.dynamic to TRUE for --dynamic-list and
--dynamic-list-cpp-typeinfo. Handle --dynamic-list-data and
--dynamic-list-cpp-new.
2007-01-11 Nathan Sidwell <nathan@codesourcery.com>
* emultempl/elf-generic.em (gdl_map_segments): Only allow header
shrinkage for the first few iterations.
2007-01-08 Kai Tietz <kai.tietz@onevision.com>
* configure.tgt: Renamed target x86_64-*-mingw64 to
x86_64-*-mingw*.
2007-01-08 Pedro Alves <pedro_alves@portugalmail.pt>
* configure.host: Add i[3-7]86-*-mingw* case.
2007-01-08 Nick Clifton <nickc@redhat.com>
* pep-dll.h (pep_bfd_is_dll): Add prototype.
2007-01-08 Aurelien Jarno <aurelien@aurel32.net>
PR ld/3843
* configure.tgt (x86_64_[k]freebsd*): Add targ_extra_libpath and
tdir_elf_i386_fbsd.
2007-01-06 Nathan Sidwell <nathan@codesourcery.com>
* ldexp.c (fold_name): Issue error on undefined sections.
2007-01-02 Alan Modra <amodra@bigpond.net.au>
* pe-dll.c: Include pe-dll.h.
* pep-dll.c (pe_bfd_is_dll): Define.
For older changes see ChangeLog-2006
Local Variables:
mode: change-log
left-margin: 8
fill-column: 74
version-control: never
End:
2007-07-05 13:19:55 +02:00
Specify the number of bytes of memory to reserve (and optionally commit)
to be used as heap for this program. The default is 1Mb reserved, 4K
1999-05-03 09:29:11 +02:00
committed.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@cindex image base
@kindex --image-base
@item --image-base @var{value}
Use @var{value} as the base address of your program or dll. This is
the lowest memory location that will be used when your program or dll
is loaded. To reduce the need to relocate and improve performance of
your dlls, each should have a unique base address and not overlap any
other dlls. The default is 0x400000 for executables, and 0x10000000
for dlls.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --kill-at
@item --kill-at
If given, the stdcall suffixes (@@@var{nn}) will be stripped from
symbols before they are exported.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
2004-05-07 17:17:58 +02:00
@kindex --large-address-aware
@item --large-address-aware
2006-07-24 15:49:50 +02:00
If given, the appropriate bit in the ``Characteristics'' field of the COFF
2004-05-07 17:17:58 +02:00
header is set to indicate that this executable supports virtual addresses
2006-07-24 15:49:50 +02:00
greater than 2 gigabytes. This should be used in conjunction with the /3GB
2004-05-07 17:17:58 +02:00
or /USERVA=@var{value} megabytes switch in the ``[operating systems]''
section of the BOOT.INI. Otherwise, this bit has no effect.
[This option is specific to PE targeted ports of the linker]
1999-05-03 09:29:11 +02:00
@kindex --major-image-version
@item --major-image-version @var{value}
2003-02-21 11:27:06 +01:00
Sets the major number of the ``image version''. Defaults to 1.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --major-os-version
@item --major-os-version @var{value}
2003-02-21 11:27:06 +01:00
Sets the major number of the ``os version''. Defaults to 4.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --major-subsystem-version
@item --major-subsystem-version @var{value}
2003-02-21 11:27:06 +01:00
Sets the major number of the ``subsystem version''. Defaults to 4.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --minor-image-version
@item --minor-image-version @var{value}
2003-02-21 11:27:06 +01:00
Sets the minor number of the ``image version''. Defaults to 0.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --minor-os-version
@item --minor-os-version @var{value}
2003-02-21 11:27:06 +01:00
Sets the minor number of the ``os version''. Defaults to 0.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --minor-subsystem-version
@item --minor-subsystem-version @var{value}
2003-02-21 11:27:06 +01:00
Sets the minor number of the ``subsystem version''. Defaults to 0.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@cindex DEF files, creating
@cindex DLLs, creating
@kindex --output-def
@item --output-def @var{file}
The linker will create the file @var{file} which will contain a DEF
file corresponding to the DLL the linker is generating. This DEF file
(which should be called @code{*.def}) may be used to create an import
library with @code{dlltool} or may be used as a reference to
automatically or implicitly exported symbols.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
2001-08-03 01:12:02 +02:00
@cindex DLLs, creating
@kindex --out-implib
@item --out-implib @var{file}
The linker will create the file @var{file} which will contain an
import lib corresponding to the DLL the linker is generating. This
import lib (which should be called @code{*.dll.a} or @code{*.a}
2003-08-20 10:37:19 +02:00
may be used to link clients against the generated DLL; this behaviour
2001-08-03 01:12:02 +02:00
makes it possible to skip a separate @code{dlltool} import library
creation step.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
@kindex --enable-auto-image-base
@item --enable-auto-image-base
Automatically choose the image base for DLLs, unless one is specified
using the @code{--image-base} argument. By using a hash generated
from the dllname to create unique image bases for each DLL, in-memory
collisions and relocations which can delay program execution are
avoided.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
@kindex --disable-auto-image-base
@item --disable-auto-image-base
Do not automatically generate a unique image base. If there is no
user-specified image base (@code{--image-base}) then use the platform
default.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
@cindex DLLs, linking to
@kindex --dll-search-prefix
@item --dll-search-prefix @var{string}
2003-01-23 10:30:44 +01:00
When linking dynamically to a dll without an import library,
2006-06-27 10:52:38 +02:00
search for @code{<string><basename>.dll} in preference to
2003-08-20 10:37:19 +02:00
@code{lib<basename>.dll}. This behaviour allows easy distinction
2001-08-03 01:12:02 +02:00
between DLLs built for the various "subplatforms": native, cygwin,
uwin, pw, etc. For instance, cygwin DLLs typically use
2006-06-27 10:52:38 +02:00
@code{--dll-search-prefix=cyg}.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
@kindex --enable-auto-import
@item --enable-auto-import
2006-06-27 10:52:38 +02:00
Do sophisticated linking of @code{_symbol} to @code{__imp__symbol} for
DATA imports from DLLs, and create the necessary thunking symbols when
2004-01-20 22:08:16 +01:00
building the import libraries with those DATA exports. Note: Use of the
'auto-import' extension will cause the text section of the image file
to be made writable. This does not conform to the PE-COFF format
specification published by Microsoft.
2007-10-01 11:54:58 +02:00
Note - use of the 'auto-import' extension will also cause read only
data which would normally be placed into the .rdata section to be
placed into the .data section instead. This is in order to work
around a problem with consts that is described here:
http://www.cygwin.com/ml/cygwin/2004-09/msg01101.html
2004-01-20 22:08:16 +01:00
Using 'auto-import' generally will 'just work' -- but sometimes you may
see this message:
2001-09-12 17:58:10 +02:00
2006-06-27 10:52:38 +02:00
"variable '<var>' can't be auto-imported. Please read the
2001-09-12 17:58:10 +02:00
documentation for ld's @code{--enable-auto-import} for details."
2006-06-27 10:52:38 +02:00
This message occurs when some (sub)expression accesses an address
ultimately given by the sum of two constants (Win32 import tables only
2007-07-09 23:25:34 +02:00
allow one). Instances where this may occur include accesses to member
fields of struct variables imported from a DLL, as well as using a
constant index into an array variable imported from a DLL. Any
2001-09-24 18:17:46 +02:00
multiword variable (arrays, structs, long long, etc) may trigger
this error condition. However, regardless of the exact data type
of the offending exported variable, ld will always detect it, issue
the warning, and exit.
There are several ways to address this difficulty, regardless of the
data type of the exported variable:
2001-09-12 17:58:10 +02:00
2002-11-14 19:03:17 +01:00
One way is to use --enable-runtime-pseudo-reloc switch. This leaves the task
of adjusting references in your client code for runtime environment, so
2003-08-20 10:37:19 +02:00
this method works only when runtime environment supports this feature.
2002-11-14 19:03:17 +01:00
2007-07-09 23:25:34 +02:00
A second solution is to force one of the 'constants' to be a variable --
that is, unknown and un-optimizable at compile time. For arrays,
there are two possibilities: a) make the indexee (the array's address)
2001-09-12 17:58:10 +02:00
a variable, or b) make the 'constant' index a variable. Thus:
@example
extern type extern_array[];
2007-07-09 23:25:34 +02:00
extern_array[1] -->
2001-09-12 17:58:10 +02:00
@{ volatile type *t=extern_array; t[1] @}
@end example
or
@example
extern type extern_array[];
2007-07-09 23:25:34 +02:00
extern_array[1] -->
2001-09-12 17:58:10 +02:00
@{ volatile int t=1; extern_array[t] @}
@end example
2007-07-09 23:25:34 +02:00
For structs (and most other multiword data types) the only option
2001-09-24 18:17:46 +02:00
is to make the struct itself (or the long long, or the ...) variable:
2001-09-12 17:58:10 +02:00
@example
extern struct s extern_struct;
2007-07-09 23:25:34 +02:00
extern_struct.field -->
2001-09-12 17:58:10 +02:00
@{ volatile struct s *t=&extern_struct; t->field @}
@end example
2001-09-24 20:35:08 +02:00
or
@example
extern long long extern_ll;
extern_ll -->
@{ volatile long long * local_ll=&extern_ll; *local_ll @}
@end example
2002-11-14 19:03:17 +01:00
A third method of dealing with this difficulty is to abandon
2007-07-09 23:25:34 +02:00
'auto-import' for the offending symbol and mark it with
2003-08-20 10:37:19 +02:00
@code{__declspec(dllimport)}. However, in practise that
2001-09-12 17:58:10 +02:00
requires using compile-time #defines to indicate whether you are
2007-07-09 23:25:34 +02:00
building a DLL, building client code that will link to the DLL, or
merely building/linking to a static library. In making the choice
between the various methods of resolving the 'direct address with
2001-09-12 17:58:10 +02:00
constant offset' problem, you should consider typical real-world usage:
Original:
@example
--foo.h
extern int arr[];
--foo.c
#include "foo.h"
void main(int argc, char **argv)@{
printf("%d\n",arr[1]);
@}
@end example
Solution 1:
@example
--foo.h
extern int arr[];
--foo.c
#include "foo.h"
void main(int argc, char **argv)@{
/* This workaround is for win32 and cygwin; do not "optimize" */
volatile int *parr = arr;
printf("%d\n",parr[1]);
@}
@end example
Solution 2:
@example
--foo.h
/* Note: auto-export is assumed (no __declspec(dllexport)) */
#if (defined(_WIN32) || defined(__CYGWIN__)) && \
!(defined(FOO_BUILD_DLL) || defined(FOO_STATIC))
#define FOO_IMPORT __declspec(dllimport)
#else
#define FOO_IMPORT
#endif
extern FOO_IMPORT int arr[];
--foo.c
#include "foo.h"
void main(int argc, char **argv)@{
printf("%d\n",arr[1]);
@}
@end example
2007-07-09 23:25:34 +02:00
A fourth way to avoid this problem is to re-code your
2001-09-12 17:58:10 +02:00
library to use a functional interface rather than a data interface
for the offending variables (e.g. set_foo() and get_foo() accessor
functions).
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
@kindex --disable-auto-import
@item --disable-auto-import
2007-07-09 23:25:34 +02:00
Do not attempt to do sophisticated linking of @code{_symbol} to
2001-08-03 01:12:02 +02:00
@code{__imp__symbol} for DATA imports from DLLs.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
2002-11-14 19:03:17 +01:00
@kindex --enable-runtime-pseudo-reloc
@item --enable-runtime-pseudo-reloc
If your code contains expressions described in --enable-auto-import section,
that is, DATA imports from DLL with non-zero offset, this switch will create
a vector of 'runtime pseudo relocations' which can be used by runtime
2007-07-09 23:25:34 +02:00
environment to adjust references to such data in your client code.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2002-11-14 19:03:17 +01:00
@kindex --disable-runtime-pseudo-reloc
@item --disable-runtime-pseudo-reloc
Do not create pseudo relocations for non-zero offset DATA imports from
DLLs. This is the default.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2002-11-14 19:03:17 +01:00
2001-08-03 01:12:02 +02:00
@kindex --enable-extra-pe-debug
@item --enable-extra-pe-debug
Show additional debug info related to auto-import symbol thunking.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
2001-08-03 01:12:02 +02:00
1999-05-03 09:29:11 +02:00
@kindex --section-alignment
@item --section-alignment
Sets the section alignment. Sections in memory will always begin at
addresses which are a multiple of this number. Defaults to 0x1000.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@cindex stack size
@kindex --stack
@item --stack @var{reserve}
@itemx --stack @var{reserve},@var{commit}
2007-07-05 Danny Smith <dannysmith@users.sourceforge.net>
* ld.texinfo (--heap): Replace 'amount' with 'number of bytes'.
(--stack): Likewise.
2007-07-03 Matthias Klose <doko@ubuntu.com>
* emultempl/spuelf.em (base_name): Correct backslash quoting.
2007-07-02 Alan Modra <amodra@bigpond.net.au>
* Makefile.in: Regenerate.
* aclocal.m4: Regenerate.
* config.in: Regenerate.
* po/ld.pot: Regenerate.
2007-06-30 H.J. Lu <hongjiu.lu@intel.com>
* aclocal.m4: Regenerated.
* Makefile.in: Likewise.
2007-06-29 H.J. Lu <hongjiu.lu@intel.com>
* NEWS: Remove a line with '*' only.
2007-06-29 Joseph Myers <joseph@codesourcery.com>
* emulparams/armelf.sh (OTHER_SECTIONS): Remove .ARM.attributes.
(ATTRS_SECTIONS): Define.
* scripttempl/elf.sc, scripttempl/elf32sh-symbian.sc,
scripttempl/elf_chaos.sc, scripttempl/elfi370.sc,
scripttempl/elfxtensa.sc: Handle ATTRS_SECTIONS.
2006-06-29 M R Swami Reddy <MR.Swami.Reddy@nsc.com>
* scripttemp/elf32cr16.sc: Default linker script.
* emulparams/elf32cr16.sh: Emulation script.
* emultempl/cr16elf.em: Emulation script.
* Makefile.am: Add entry to make cr16 target.
* Makefile.in: Regenerate.
* configure.tgt: Specify default and other emulation parameters
for cr16.
* ChangeLog: Added CR16 target entry.
* NEWS: Announce the support for the CR16 new target.
2007-06-27 Alan Modra <amodra@bigpond.net.au>
* pe-dll.c: Rename uses of bfd.next to bfd.archive_next throughout.
2007-06-20 Alan Modra <amodra@bigpond.net.au>
* emulparams/elf32_spu.sh (OTHER_SECTIONS): KEEP .note.spu_name.
2007-06-18 Nathan Sidwell <nathan@codesourcery.com>
* ldlex.l, ldgram.y: Add ALIGNOF.
* ldexp.c (exp_print_token, foldname): Likewise.
* ld.texinfo: Likewise.
2007-06-18 Alan Modra <amodra@bigpond.net.au>
* Makefile.am: Add eelf32_spu.o rule.
* Makefile.in: Regenerate.
* emultempl/spuelf.em: Revert last change. Instead use EMBEDSPU
defined in Makefile for embedspu name.
2007-06-18 Alan Modra <amodra@bigpond.net.au>
* emultempl/spuelf.em (embedded_spu_file): Deduce embedspu program
name prefix from that of ld.
2007-06-14 H.J. Lu <hongjiu.lu@intel.com>
* Makefile.am (ACLOCAL_AMFLAGS): Add -I ../config -I ../bfd.
* acinclude.m4: Removed.
* Makefile.in: Regenerated.
* aclocal.m4: Likewise.
* configure: Likewise.
2007-06-14 Alan Modra <amodra@bigpond.net.au>
* emultempl/spu_ovl.S: Don't trash lr on tail call from one
overlay to another.
* emultempl/spu_ovl.o: Regenerate.
2007-06-11 Bob Wilson <bob.wilson@acm.org>
* emulparams/elf32xtensa.sh (OTHER_READONLY_SECTIONS): Add ONLY_IF_RO
for .xt_except_table.
(OTHER_RELRO_SECTIONS): New.
2007-06-11 Sterling Augustine <sterling@tensilica.com>
Bob Wilson <bob.wilson@acm.org>
* emultempl/xtensaelf.em (replace_insn_sec_with_prop_sec): Use renamed
XTENSA_PROP_NO_TRANSFORM flag instead of XTENSA_PROP_INSN_NO_TRANSFORM.
2007-06-01 Noah Misch <noah@cs.caltech.edu>
Alan Modra <amodra@bigpond.net.au>
* ldlang.c (ldlang_add_file): Use input_bfds_tail.
* ldmain.c (main): Init input_bfds_tail. Sort link_info
initialization.
2007-05-29 Alan Modra <amodra@bigpond.net.au>
* emultempl/spuelf.em (base_name): New function, split out from..
(embedded_spu_file) ..here. Pass -fPIC or -fpie to embedspu
invocation if we deduce a shared lib or position independent
executable build by looking at ctrbegin* linker input files.
2007-05-29 Alan Modra <amodra@bigpond.net.au>
* emultempl/spu_ovl.S (__rv_pattern, __cg_pattern): Set symbol
types and sizes.
* emultempl/spu_ovl.o: Regenerate.
2007-05-24 Steve Ellcey <sje@cup.hp.com>
* Makefile.in: Regnerate.
* configure: Regenerate.
* aclocal.m4: Regenerate.
2007-05-24 Nathan Sidwell <nathan@codesourcery.com>
* ldlex.l: ASSERT is recognized in SCRIPT env. NAMES cannot
contain commas in EXP env.
* ldgram.y (extern_name_list): Push to EXP env, move body to ...
(extern_name_list_body): ... here.
(script_file, ifile_list): Reformat.
(statement): Add ASSERT.
2007-05-22 Nick Clifton <nickc@redhat.com>
* ld.texinfo: Use @copying around the copyright notice.
* ldint.texinfo: Likewise.
2007-05-18 Richard Sandiford <richard@codesourcery.com>
* emulparams/elf32ebmipvxworks.sh (OTHER_READONLY_SECTIONS)
(OTHER_READWRITE_SECTIONS): Define. Add .rdata sections.
2007-05-16 Richard Sandiford <richard@codesourcery.com>
* configure.in: Allow sysroots to be relocated under $prefix as
well as $exec_prefix.
* configure: Regenerate.
2007-05-14 Andreas Schwab <schwab@suse.de>
* emultempl/ppc64elf.em (gld${EMULATION_NAME}_new_vers_pattern):
Handle null pattern.
2007-05-11 Alan Modra <amodra@bigpond.net.au>
* emultempl/ppc32elf.em (plt_style): New variable.
(old_plt): Delete.
(ppc_after_open): Adjust ppc_elf_select_plt_layout call.
(PARSE_AND_LIST_PROLOGUE): Define OPTION_NEW_PLT, renumber
OPTION_OLD_PLT, OPTION_OLD_GOT and OPTION_STUBSYMS.
(PARSE_AND_LIST_LONGOPTS, PARSE_AND_LIST_OPTIONS): Add secure-plt.
(PARSE_AND_LIST_ARGS_CASES): Handle OPTION_NEW_PLT.
* ld.texinfo (--secure-plt): Document.
2007-05-08 Alan Modra <amodra@bigpond.net.au>
* ld.h (args_type, ld_config_type): Reorder fields.
* ldmain.c (main): Don't initialise a bunch of vars we know are
zero already.
2007-05-05 Anatoly Sokolov <aesok@post.ru>
* multempl/avrelf.em (PARSE_AND_LIST_ARGS_CASES): Add new value for
"--pmem-wrap-around".
(PARSE_AND_LIST_OPTIONS): Describe new value for "--pmem-wrap-around".
2007-05-03 Bob Wilson <bob.wilson@acm.org>
* scripttempl/elfxtensa.sc: Merge changes from elf.sc.
2007-05-03 Alan Modra <amodra@bigpond.net.au>
* ld.texinfo (--no-warn-search-mismatch): Document.
* ldfile.c (ldfile_try_open_bfd): Don't warn about skipping
incompatible libraries if --no-warn-search-mismatch.
* ld.h (args_type): Add warn_search_mismatch.
* ldmain.c (main): Init it.
* lexsup.c (enum option_values): Add OPTION_NO_WARN_SEARCH_MISMATCH.
(ld_options): Add entry for --no-warn-search-mismatch.
(parse_args): Handle OPTION_NO_WARN_SEARCH_MISMATCH.
2007-05-03 Alan Modra <amodra@bigpond.net.au>
* scripttempl/elf.sc: Add .debug_pubtypes and .debug_ranges.
2007-05-01 Robert Millan <rmh@aybabtu.com>
* ldlang.c (lang_check): Error on architecture mismatch.
2007-04-30 Alan Modra <amodra@bigpond.net.au>
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-28 Alan Modra <amodra@bigpond.net.au>
* ldcref.c (struct cref_hash_entry): Make "demangled" const.
(cref_fill_array): Adjust for changed demangler.
* ldlang.c (lang_one_common): Likewise.
2007-04-27 Nathan Froyd <froydnj@codesourcery.com>
* emulparams/elf32_sparc.sh: Update comments.
* emulparams/elf32bmip.sh: Likewise.
* emulparams/elf32ppc.sh: Likewise.
* emulparams/vxworks.sh: Likewise.
2007-04-27 Alan Modra <amodra@bigpond.net.au>
Many files: Include sysdep.h first. Remove duplicate headers.
* Makefile.am: Run "make dep-am".
* Makefile.in: Regenerate.
2007-04-24 Alan Modra <amodra@bigpond.net.au>
* Makefile.in: Regenerate.
2007-04-19 Alan Modra <amodra@bigpond.net.au>
* ldcref.c (cref_fill_array): Call bfd_demangle rather than demangle.
* ldlang.c (lang_one_common): Likewise.
* ldmisc.c (vfinfo): Likewise.
(demangle): Delete.
* ldmisc.h (demangle): Delete.
* Makefile.am: Run "make dep-am".
* Makefile.in: Regenerate.
2007-04-18 Alan Modra <amodra@bigpond.net.au>
* ldlang.h (enum section_type): Add overlay_section.
* ldlang.c (lang_add_section): Handle flags for overlay_section
as per normal_section.
(lang_size_sections_1): When setting lma, detect overlays by
os->sectype rather than by looking for overlapping vmas.
(lang_enter_overlay_section): Use overlay_section type.
(lang_leave_overlay): Set first overlay section to normal.
2007-04-14 Steve Ellcey <sje@cup.hp.com>
* Makefile.am: Add ACLOCAL_AMFLAGS.
* Makefile.in: Regenerate.
2007-04-12 Bob Wilson <bob.wilson@acm.org>
* emulparams/elf32xtensa.sh (OTHER_SECTIONS): KEEP property sections.
2007-04-10 Richard Henderson <rth@redhat.com>
* ldlang.c (relax_sections): Initialize and increment
link_info.relax_trip.
2007-04-04 Paul Brook <paul@codesourcery.com>
* configure.tgt: Loosen checks for arm uclinux eabi targets.
2007-04-02 H.J. Lu <hongjiu.lu@intel.com>
PR ld/4090
* ldexp.h (node_type): Add lineno.
* ldexp.c: Include "ldlex.h".
(exp_intop): Set the lineno field from lineno.
(exp_bigintop): Likewise.
(exp_relop): Likewise.
(exp_nameop): Likewise.
(exp_binop): Set the lineno field from lineno of lhs.
(exp_trinop): Likewise.
(exp_unop): Set the lineno field from lineno of child.
(exp_assop): Set the lineno field from lineno of src.
(exp_provide): Likewise.
(exp_assert): Set the lineno field from lineno of exp.
(exp_get_abs_int): Set lineno from lineno of nonconstant
expression when report problem.
2007-03-29 Richard Sandiford <richard@codesourcery.com>
Daniel Jacobowitz <dan@codesourcery.com>
* NEWS: Mention -l:foo.
* ld.texinfo: Document it.
* ldlang.c (new_afile): If a lang_input_file_is_l_enum
entry as a name beginning with a coloh, convert it to a
lang_input_file_is_search_file_enum entry without the colon.
2007-03-28 Richard Sandiford <richard@codesourcery.com>
* ld.h (ld_config_type): Add rpath_separator.
* ldmain.c (main): Initialize it.
* lexsup.c (parse_args): Honor config.rpath_separator.
* emultempl/elf32.em (gld${EMULATION_NAME}_search_needed): Likewise.
(gld${EMULATION_NAME}_add_sysroot): Likewise.
(gld${EMULATION_NAME}_parse_ld_so_conf): Use config.rpath_separator
rather than ':' when building the path.
* emultempl/vxworks.em (vxworks_before_parse): New function.
Override config.rpath_separator.
(LDEMUL_AFTER_OPEN): Do not change if EXTRA_EM_FILE has been
set to gld${EMULATION_NAME}_after_open; #define that identifier
to vxworks_foo instead.
(LDEMUL_BEFORE_PARSE): Override in the same way as LDEMUL_AFTER_OPEN.
2007-03-28 Richard Sandiford <richard@codesourcery.com>
Phil Edwards <phil@codesourcery.com>
* ld.texinfo: Put the contents after the title page rather
than at the end of the document.
2007-03-26 Alan Modra <amodra@bigpond.net.au>
* Makefile.am: Add dependency on ldemul-list.h for powerpc and
spu target emul files.
* configure.in: Check for mkstemp and waitpid.
* Makefile.in: Regenerate.
* configure: Regenerate.
* config.in: Regenerate.
* ldlang.c (input_file_chain): Make global.
(lang_add_input_file): Don't set lang_has_input_file here.
* ldlang.h (input_file_chain): Declare.
* emultempl/ppc32elf.em (ppc_recognized_file): New function.
(LDEMUL_RECOGNIZED_FILE): Define.
* emultempl/ppc64elf.em (ppc64_recognized_file): New function.
(LDEMUL_RECOGNIZED_FILE): Define.
* emultempl/spuelf.em (struct tflist): New.
(tmp_file_list): New var.
(clean_tmp, embedded_spu_file): New functions.
2007-03-24 Alan Modra <amodra@bigpond.net.au>
* ldlang.c (lang_insert_orphan): Provide start/stop loadaddr syms
rather than defining unconditionally.
(lang_leave_overlay_section): Likewise.
* ld.texinfo (Overlay Description): Update description and examples
for start/stop syms.
2007-03-22 Joseph Myers <joseph@codesourcery.com>
* ld.texinfo: Include VERSION_PACKAGE when reporting version.
2007-03-20 Paul Brook <paul@codesourcery.com>
* emultempl/armelf.em (pic_veneer): New variable.
(PARSE_AND_LIST_PROLOGUE): Add OPTION_PIC_VENEER.
(PARSE_AND_LIST_ARGS_CASES): Ditto.
(PARSE_AND_LIST_LONGOPTS): Add "pic-veneer".
(PARSE_AND_LIST_OPTIONS): Ditto.
* ld.texinfo: Document --pic-veneer.
2007-03-18 Mark Shinwell <shinwell@codesourcery.com>
* ld.texinfo: Document --no-enum-size-warning.
* emultempl/armelf.em (no_enum_size_warning): New.
(arm_elf_create_output_section_statements): Correct typo
in comment. Pass no_enum_size_warning to
bfd_elf32_arm_set_target_relocs.
(PARSE_AND_LIST_PROLOGUE): Define OPTION_NO_ENUM_SIZE_WARNING.
(PARSE_AND_LIST_OPTIONS): Document --no-enum-size-warning.
(PARSE_AND_LIST_ARGS_CASES): Add OPTION_NO_ENUM_SIZE_WARNING
case.
2007-03-19 Bernd Schmidt <bernd.schmidt@analog.com>
* configure.tgt (bfin-*-elf, bfin-*-uclinux*): Add targ_extra_libpath.
(bfin-*-linux-uclibc*): New target.
2007-03-16 Kai Tietz <Kai.Tietz@onevision.com>
* pe-dll.c (make_one): Use pc-relative relocation instead of an
absolute relocation for x86_64-pc-mingw32 target.
2007-03-15 H.J. Lu <hongjiu.lu@intel.com>
* Makefile.am (ld_TEXINFOS): Remove ldver.texi.
(AM_MAKEINFOFLAGS): Add -I ../../bfd/doc.
(TEXI2DVI): Likewise.
(REPORT_BUGS_TO): Removed.
(INCLUDES): Remove -DREPORT_BUGS_TO.
(ldver.texi): Likewise.
(ld.1): Don't depend on ldver.texi.
(MOSTLYCLEANFILES): Remove ldver.texi.
* Makefile.in: Regenerated.
* configure.in (--with-bugurl): Removed.
* configure: Regenerated.
* lexsup.c: Include bfdver.h.
* ld.texinfo: Include bfdver.texi instead of ldver.texi.
2007-03-11 Hans-Peter Nilsson <hp@bitrange.com>
* emultempl/mmixelf.em: Remove incorrect '#line' directive.
2007-03-08 Alan Modra <amodra@bigpond.net.au>
* ldlang.c (lang_size_sections_1): Correct backwards dot move
test to not trigger on overlays. Only warn on backwards move
if non-default lma.
2007-03-07 Joseph Myers <joseph@codesourcery.com>
* configure.in (REPORT_BUGS_TEXI): Define to Texinfo version of
bug-reporting URL.
* Makefile.am (ldver.texi): Define BUGURL.
* ld.texinfo: Use BUGURL.
* Makefile.in, configure: Regenerate.
2007-03-07 Nick Clifton <nickc@redhat.com>
PR ld/4023
* emultempl/aix.em (..._before_allocation): Strip sysroot prefix
from any paths being inserted into the output binary's DT_RPATH.
2007-03-02 Nathan Sidwell <nathan@codesourcery.com>
* emulparams/shelf_uclinux.sh: New. Missed in 2007-02-28 commit.
2007-03-01 Joseph Myers <joseph@codesourcery.com>
* ldver.c (ldversion): Remove word "version" from output. Update
copyright date.
2007-02-28 Nathan Sidwell <nathan@codesourcery.com>
* Makefile.am (ALL_EMULATIONS): Add eshelf_uclinux.o
(eshelf_uclinux.c): New target.
* Makefile.in: Rebuilt.
* configure.tgt (sh-*-uclinux* | sh[12]-*-uclinux*): New stanza.
* emulparams/shelf_uclinux.sh: New.
2007-02-28 Alan Modra <amodra@bigpond.net.au>
* configure.tgt: Fix type last change.
* configure.tgt (spu-*-elf*): Delete targ_extra_ofiles.
2007-02-27 Alan Modra <amodra@bigpond.net.au>
* Makefile.am (ALL_EMUL_EXTRA_OFILES): Remove spu_inc.o.
(eelf32_spu.c): Adjust dependencies.
* Makefile.in: Regenerate.
* emultempl/spuelf.em (ovl_mgr): New array. Insert spu_ovl.o
code using bin2c.
(_binary_spu_ovl_o_start, _binary_spu_ovl_o_end): Delete.
(ovl_mgr_stream): Update.
* emultempl/spu_inc.s: Delete.
* emultempl/spu_none.s: Delete.
2007-02-26 Alan Modra <amodra@bigpond.net.au>
* emultempl/spuelf.em (_binary_builtin_ovl_mgr_start): Rename
to _binary_spu_ovl_o_start.
(_binary_builtin_ovl_mgr_end): Rename to _binary_spu_ovl_o_end.
(spu_elf_load_ovl_mgr): Fatal error on missing overlay manager.
* emultempl/spu_inc.s: Rename symbols.
* emultempl/spu_none.s: New file.
* emultempl/spu_ovl.S: Update copyright.
* Makefile.am (spu_inc.o): Try building with ld -r first, then
gas incbin, then build without overlay manager.
* Makefile.in: Regenerate.
2007-02-22 Joseph Myers <joseph@codesourcery.com>
* configure.tgt (mips64*el-*-linux-*, mips64*-*-linux-*,
mips*el-*-linux-*, mips*-*-linux-*): Set
targ_extra_libpath=$targ_extra_emuls.
2007-02-21 Nick Clifton <nickc@redhat.com>
* ldlang.c (ldlang_override_segment_assignment): New function.
* ldlang.h (ldlang_override_segment_assignment): Prototype.
* ldmain.c (link_callbacks): Add
ldlang_override_segment_assignment.
2007-02-20 Alan Modra <amodra@bigpond.net.au>
* ldexp.c (fold_name <LOADADDR>): Ensure result is always absolute.
2007-02-17 Mark Mitchell <mark@codesourcery.com>
Nathan Sidwell <nathan@codesourcery.com>
Vladimir Prus <vladimir@codesourcery.com
Joseph Myers <joseph@codesourcery.com>
* configure.in (--with-bugurl): New option.
* configure: Regenerate.
* Makefile.am (REPORT_BUGS_TO): Define.
(INCLUDES): Define REPORT_BUGS_TO.
Regenerate dependencies.
* Makefile.in: Regenerate.
* ld.h: Remove include of bin-bugs.h.
* lexsup.c (help): Don't print empty REPORT_BUGS_TO.
2007-02-17 Alan Modra <amodra@bigpond.net.au>
* ldcref.c (check_reloc_refs): Compare section for local syms.
2007-02-13 Alan Modra <amodra@bigpond.net.au>
* emultempl/spu_ovl.S (__ovly_return, __ovly_load): Set sym size.
(__ovly_load_event): Define.
(size): Rename to osize.
* emultempl/spu_ovl.o: Regenerate.
2007-02-13 Alan Modra <amodra@bigpond.net.au>
* emulparams/elf64ppc.sh (OTHER_READWRITE_SECTIONS): Add ".branch_lt".
* emultempl/ppc64elf.em (ppc_add_stub_section): Create without
SEC_RELOC flag set.
2007-02-09 H.J. Lu <hongjiu.lu@intel.com>
* configure.in (targ_extra_emuls): Add $targ64_extra_emuls if
want64 is true.
(targ_extra_libpath): Add $targ64_extra_libpath if want64 is
true
* configure: Regenerated.
* configure.tgt (targ_extra_libpath): Initialize.
(targ64_extra_emuls): New. Document. Initialize.
(targ64_extra_libpath): Likewise.
(i[3-7]86-*-linux-*): Set targ64_extra_emuls and
targ64_extra_libpath.
(powerpc*-*-linux*): Likewise.
(s390-*-linux*): Likewise.
2007-02-07 Paul Brook <paul@codesourcery.com>
* configure.tgt: Add arm*-*-uclinux-*eabi.
2007-02-06 H.J. Lu <hongjiu.lu@intel.com>
* ldlang.c (lang_size_sections_1): Add a missing `)'.
2007-02-06 Alan Modra <amodra@bigpond.net.au>
PR ld/3966
* ldlang.c (lang_size_sections_1): Don't warn on backwards dot
move unless section size is non-zero.
2007-02-05 Dave Brolley <brolley@redhat.com>
* Makefile.am (ALL_EMULATIONS): Add support for Toshiba MeP.
* configure.tgt: Likewise.
* scripttempl/mep.sc: New file.
* emulparams/elf32mep.sh: New file.
* Makefile.in: Regenerate.
2006-01-29 Julian Brown <julian@codesourcery.com>
* NEWS: Mention --vfp11-denorm-fix option.
* ld.texinfo: Document above.
* emulparams/armelf_linux.sh (OTHER_TEXT_SECTIONS): Add
.vfp11_veneer section.
* emulparams/armelf.sh (OTHER_TEXT_SECTIONS): Likewise.
* emultempl/armelf.em (vfp11_denorm_fix): New static variable.
(arm_elf_before_allocation): Call bfd_elf32_arm_set_vfp11_fix,
bfd_elf32_arm_init_maps and bfd_elf32_arm_vfp11_erratum_scan.
(arm_elf_after_allocation): New function. Call
bfd_elf32_arm_vfp11_fix_veneer_locations for all input statements.
(arm_elf_create_output_section_statements): Pass vfp11 fix command
line option to BFD.
(OPTION_VFP11_DENORM_FIX): New option.
(PARSE_AND_LIST_LONGOPTS): Handle new option.
(PARSE_AND_LIST_OPTIONS): Likewise.
(PARSE_AND_LIST_ARGS_CASES): Likewise.
(LDEMUL_AFTER_ALLOCATION): Define.
2007-01-24 H.J. Lu <hongjiu.lu@intel.com>
* ldgram.y (SIZEOF_HEADERS): Remove duplicated one.
(DEFSYMEND): Likewise.
(NAME): Likewise.
(LNAME): Likewise.
2007-01-19 Murali Vemulapati <murali.vemulapati@gmail.com>
* pe-dll.c: (make_one) Conditionally include jump stubs.
* emultempl/pe.em (gld_${EMULATION_NAME}_after_open): Identify
redundant jump stubs from import libraries and exclude them from
link.
2007-01-19 H.J. Lu <hongjiu.lu@intel.com>
* ld.h (args_type): Add new symbolic and dynamic_list fields.
* ld.texinfo: Update -Bsymbolic-functions.
* ldmain.c (main): Initialize command_line.symbolic to
symbolic_unset and command_line.dynamic_list to
dynamic_list_unset. Check -Bsymbolic, -Bsymbolic-functions and
--dynamic-list* before setting link_info.symbolic,
link_info.dynamic and link_info.dynamic_data.
* lexsup.c (option_values): Add OPTION_SYMBOLIC_FUNCTIONS.
(ld_options): Use OPTION_SYMBOLIC_FUNCTIONS with
-Bsymbolic-functions.
(parse_args): Handle -Bsymbolic-functions. Don't set
link_info.dynamic, link_info.dynamic_data and link_info.symbolic
here. Set command_line.symbolic for -Bsymbolic. Set
command_line.dynamic_list and command_line.symbolic for
--dynamic-list-data, --dynamic-list-cpp-new,
--dynamic-list-cpp-typeinfo and --dynamic-list.
2007-01-19 Jakub Jelinek <jakub@redhat.com>
H.J. Lu <hongjiu.lu@intel.com>
* emultempl/elf32.em (handle_option): Make sure -z max-page-size
or -z common-page-size argument is a power of 2. Call
bfd_emul_set_maxpagesize and bfd_emul_set_commonpagesize.
2007-01-19 H.J. Lu <hongjiu.lu@intel.com>
* ldmain.c (main): Don't call bfd_emul_set_maxpagesize nor
bfd_emul_set_commonpagesize.
2007-01-19 H.J. Lu <hongjiu.lu@intel.com>
* NEWS: Mention --default-script/-dT.
* ld.h (args_type): Add a default_script field.
* ld.texinfo: Document --default-script/-dT.
* ldmain.c (main): Handle command_line.default_script.
* lexsup.c (option_values): Add OPTION_DEFAULT_SCRIPT.
(ld_options): Add entries for --default-script and -dT.
(parse_args): Handle --default-script/-dT.
2007-01-16 H.J. Lu <hongjiu.lu@intel.com>
PR ld/3831
* NEWS: Mention -Bsymbolic-functions, --dynamic-list-data and
--dynamic-list-cpp-new.
* ld.texinfo: Document -Bsymbolic-functions, --dynamic-list-data
and --dynamic-list-cpp-new.
* ldlang.c (lang_append_dynamic_list_cpp_new): New.
(lang_process): Change link_info.dynamic to
link_info.dynamic_list.
(lang_append_dynamic_list): Likewise.
* ldmain.c (main): Likewise. Initialize link_info.dynamic and
link_info.dynamic_data to FALSE.
* ldlang.h (lang_append_dynamic_list_cpp_new): New.
* lexsup.c (option_values): Add OPTION_DYNAMIC_LIST_DATA and
OPTION_DYNAMIC_LIST_CPP_NEW.
(ld_options): Add entries for -Bsymbolic-functions,
--dynamic-list-data and --dynamic-list-cpp-new. Make
-Bsymbolic-functions an alias of --dynamic-list-data.
(parse_args): Change link_info.dynamic to link_info.dynamic_list.
Set link_info.dynamic to TRUE for --dynamic-list and
--dynamic-list-cpp-typeinfo. Handle --dynamic-list-data and
--dynamic-list-cpp-new.
2007-01-11 Nathan Sidwell <nathan@codesourcery.com>
* emultempl/elf-generic.em (gdl_map_segments): Only allow header
shrinkage for the first few iterations.
2007-01-08 Kai Tietz <kai.tietz@onevision.com>
* configure.tgt: Renamed target x86_64-*-mingw64 to
x86_64-*-mingw*.
2007-01-08 Pedro Alves <pedro_alves@portugalmail.pt>
* configure.host: Add i[3-7]86-*-mingw* case.
2007-01-08 Nick Clifton <nickc@redhat.com>
* pep-dll.h (pep_bfd_is_dll): Add prototype.
2007-01-08 Aurelien Jarno <aurelien@aurel32.net>
PR ld/3843
* configure.tgt (x86_64_[k]freebsd*): Add targ_extra_libpath and
tdir_elf_i386_fbsd.
2007-01-06 Nathan Sidwell <nathan@codesourcery.com>
* ldexp.c (fold_name): Issue error on undefined sections.
2007-01-02 Alan Modra <amodra@bigpond.net.au>
* pe-dll.c: Include pe-dll.h.
* pep-dll.c (pe_bfd_is_dll): Define.
For older changes see ChangeLog-2006
Local Variables:
mode: change-log
left-margin: 8
fill-column: 74
version-control: never
End:
2007-07-05 13:19:55 +02:00
Specify the number of bytes of memory to reserve (and optionally commit)
to be used as stack for this program. The default is 2Mb reserved, 4K
1999-05-03 09:29:11 +02:00
committed.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
@kindex --subsystem
@item --subsystem @var{which}
@itemx --subsystem @var{which}:@var{major}
@itemx --subsystem @var{which}:@var{major}.@var{minor}
Specifies the subsystem under which your program will execute. The
legal values for @var{which} are @code{native}, @code{windows},
2004-11-26 10:42:04 +01:00
@code{console}, @code{posix}, and @code{xbox}. You may optionally set
the subsystem version also. Numeric values are also accepted for
@var{which}.
2003-04-06 11:38:11 +02:00
[This option is specific to the i386 PE targeted port of the linker]
1999-05-03 09:29:11 +02:00
include/ChangeLog
2009-03-12 Dave Korn <dave.korn.cygwin@gmail.com>
* coff/internal.h (struct internal_extra_pe_aouthdr): Correct type
of DllCharacteristics flags field to unsigned.
* coff/pe.h (IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE,
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE,
IMAGE_DLL_CHARACTERISTICS_NX_COMPAT,
IMAGE_DLLCHARACTERISTICS_NO_ISOLATION,
IMAGE_DLLCHARACTERISTICS_NO_SEH,
IMAGE_DLLCHARACTERISTICS_NO_BIND,
IMAGE_DLLCHARACTERISTICS_WDM_DRIVER,
IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE): New macros to
define flag bit values for DllCharacteristics field of PEAOUTHDR,
PEPAOUTHDR.
ld/ChangeLog
2009-03-12 Dave Korn <dave.korn.cygwin@gmail.com>
Danny Smith <dannysmith@users.sourceforge.net>
* emultmpl/pe.em (pe_dll_characteristics): New variable.
(OPTION_DYNAMIC_BASE, OPTION_FORCE_INTEGRITY, OPTION_NX_COMPAT,
OPTION_NO_ISOLATION. OPTION_NO_SEH, OPTION_NO_BIND,
OPTION_WDM_DRIVER, OPTION_TERMINAL_SERVER_AWARE):
New macros for options to set DllCharacteristics flag bits.
(gld${EMULATION_NAME}_add_options): Add dynamicbase, forceinteg,
nxcompat, no-isolation, no-seh, no-bind, wdmdriver, tsaware options.
(init): Add DllCharacteristics field.
(gld_${EMULATION_NAME}_list_options): List new options.
(gld${EMULATION_NAME}_handle_option): Handle new options.
* emultmpl/pep.em (pe_dll_characteristics): New variable.
(OPTION_DYNAMIC_BASE, OPTION_FORCE_INTEGRITY, OPTION_NX_COMPAT,
OPTION_NO_ISOLATION. OPTION_NO_SEH, OPTION_NO_BIND,
OPTION_WDM_DRIVER, OPTION_TERMINAL_SERVER_AWARE):
New macros for options to set DllCharacteristics flags.
(gld${EMULATION_NAME}_add_options): Add dynamicbase, forceinteg,
nxcompat,no-isolation, no-seh, no-bind, wdmdriver, tsaware options.
(init): Add DllCharacteristics field.
(gld_${EMULATION_NAME}_list_options): List new options.
(gld${EMULATION_NAME}_handle_option): Handle new options.
* ldtexinfo : Document dynamicbase, forceinteg, nxcompat,
no-isolation, no-seh, no-bind, wdmdriver, tsaware options.
2009-03-14 04:30:26 +01:00
The following options set flags in the @code{DllCharacteristics} field
of the PE file header:
[These options are specific to PE targeted ports of the linker]
@kindex --dynamicbase
@item --dynamicbase
The image base address may be relocated using address space layout
randomization (ASLR). This feature was introduced with MS Windows
Vista for i386 PE targets.
@kindex --forceinteg
@item --forceinteg
Code integrity checks are enforced.
@kindex --nxcompat
@item --nxcompat
The image is compatible with the Data Execution Prevention.
This feature was introduced with MS Windows XP SP2 for i386 PE targets.
@kindex --no-isolation
@item --no-isolation
Although the image understands isolation, do not isolate the image.
@kindex --no-seh
@item --no-seh
The image does not use SEH. No SE handler may be called from
this image.
@kindex --no-bind
@item --no-bind
Do not bind this image.
@kindex --wdmdriver
@item --wdmdriver
The driver uses the MS Windows Driver Model.
@kindex --tsaware
@item --tsaware
The image is Terminal Server aware.
1999-05-03 09:29:11 +02:00
@end table
2001-03-25 22:32:31 +02:00
@c man end
2004-08-02 22:03:41 +02:00
@ifset M68HC11
@subsection Options specific to Motorola 68HC11 and 68HC12 targets
@c man begin OPTIONS
The 68HC11 and 68HC12 linkers support specific options to control the
memory bank switching mapping and trampoline code generation.
@table @gcctabopt
@kindex --no-trampoline
@item --no-trampoline
This option disables the generation of trampoline. By default a trampoline
is generated for each far function which is called using a @code{jsr}
instruction (this happens when a pointer to a far function is taken).
@kindex --bank-window
@item --bank-window @var{name}
This option indicates to the linker the name of the memory region in
the @samp{MEMORY} specification that describes the memory bank window.
The definition of such region is then used by the linker to compute
paging and addresses within the memory window.
@end table
@c man end
@end ifset
Multi-GOT support for m68k.
bfd/
* elf32-m68k.c (struct elf_m68k_link_hash_entry: got_entry_key,
glist): New fields.
(struct elf_m68k_got_entry_key, struct elf_m68k_got_entry,
struct elf_m68k_got, struct elf_m68k_bfd2got_entry,
struct elf_m68k_multi_got): New data structures.
(struct elf_m68k_link_hash_table: local_gp_p, use_neg_got_offsets_p,
allow_multigot_p, multi_got_): New fields.
(elf_m68k_multi_got): New macro.
(elf_m68k_link_hash_newfunc): Initialize new fields of
struct elf_m68k_link_hash_entry.
(elf_m68k_link_hash_table_create): Initialize new fields of
struct elf_m68k_link_hash_table.
(elf_m68k_link_hash_table_free): New static function implementing hook.
(elf_m68k_init_got, elf_m68k_clear_got, elf_m68k_create_empty_got): New
static functions for struct elf_m68k_got.
(elf_m68k_init_got_entry_key, elf_m68k_got_entry_hash,
elf_m68k_got_entry_eq): New static functions for
struct elf_m68k_got_entry.
(ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT,
ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT): New macros.
(enum elf_m68k_get_entry_howto): New enum.
(elf_m68k_get_got_entry, elf_m68k_update_got_entry_type,
elf_m68k_remove_got_entry_type): New static functions for
struct elf_m68k_got_entry.
(elf_m68k_add_entry_to_got): New static function.
(elf_m68k_bfd2got_entry_hash, elf_m68k_bfd2got_entry_eq,
elf_m68k_bfd2got_entry_del, elf_m68k_get_bfd2got_entry): New static
functions for struct elf_m68k_bfd2got_entry.
(struct elf_m68k_can_merge_gots_arg, elf_m68k_can_merge_gots_1,
elf_m68k_can_merge_gots): New traversal.
(struct elf_m68k_merge_gots_arg, elf_m68k_merge_gots_1,
elf_m68k_merge_gots): Ditto.
(struct elf_m68k_finalize_got_offsets_arg,
elf_m68k_finalize_got_offsets_1, elf_m68k_finalize_got_offsets): Ditto.
(struct elf_m68k_partition_multi_got_arg,
elf_m68k_partition_multi_got_1, elf_m68k_init_symndx2h_1,
elf_m68k_partition_multi_got): Ditto.
(elf_m68k_find_got_entry_ptr, elf_m68k_remove_got_entry): New static
functions.
(elf_m68k_copy_indirect_symbol): New static function implementing
a hook.
(elf_m68k_check_relocs): Update to add entries to multi-GOT.
(elf_m68k_gc_sweep_hook): Update to remove entries from multi-GOT.
(elf_m68k_always_size_sections): Assign BFDs to GOTs.
(elf_m68k_relocate_section): Update to properly handle GOT relocations.
(elf_m68k_finish_dynamic_symbol): Update to traverse all GOT entries
of a global symbol.
(bfd_elf_m68k_set_target_options): New function.
(bfd_elf32_bfd_link_hash_table_free): Define hook.
(bfd_elf32_bfd_final_link): Change expansion to bfd_elf_final_link
to skip generic calculation of GOT offsets.
(elf_backend_copy_indirect_symbol): Define hook.
* bfd-in.h (bfd_elf_m68k_set_target_options): Declare function.
* bfd-in2.h: Regenerate.
ld/
* configure.in (--enable-got): New option. Handle it.
* configure: Regenerate.
* config.in: Regenerate.
* emultempl/m68kelf.em: (got_handling_target_default): New shell
variable.
(GOT_HANDLING_TARGET_DEFAULT): New macro.
(GOT_HANDLING_DEFAULT): New macro. Initialize it from configure
option if one was given.
(got_handling): New static variable.
(elf_m68k_create_output_section_statements): New static function
implementing hook.
(PARSE_AND_LIST_PROLOGUE): Define shell variable.
(OPTION_GOT): New macro.
(PARSE_AND_LIST_LONGOPTS): Define shell variable. Specify
--got option.
(got): New linker option.
(PARSE_AND_LIST_OPTIONS): Define shell variable. Print help string
for --got option.
(PARSE_AND_LIST_ARGS_CASES): Define shell variable. Handle --got
option.
* ld.texinfo: Document --got=<type> option.
* gen-doc.texi: Add M68K.
* NEWS: Mention the new feature.
ld/testsuite/
* ld-m68k/got-12.s: New file.
* ld-m68k/got-13.s: New file.
* ld-m68k/got-14.s: New file.
* ld-m68k/got-15.s: New file.
* ld-m68k/got-34.s: New file.
* ld-m68k/got-35.s: New file.
* ld-m68k/got-single-12-ok.d: New dump test.
* ld-m68k/got-single-13-er.d: New dump test.
* ld-m68k/got-negative-14-ok.d: New dump test.
* ld-m68k/got-negative-15-er.d: New dump test.
* ld-m68k/got-negative-12-13-14-34-ok.d: New dump test.
* ld-m68k/got-negative-12-13-14-35-er.d: New dump test.
* ld-m68k/got-multigot-14-ok.d: New dump test.
* ld-m68k/got-multigot-15-er.d: New dump test.
* ld-m68k/got-multigot-12-13-14-34-35-ok.d: New dump test.
* ld-m68k/xgot-15.s: New source.
* ld-m68k/got-xgot-15-ok.d: New test.
* ld-m68k/got-xgot-12-13-14-15-34-35-ok.d: New test.
* ld-m68k/m68k.exp: Run new tests.
2008-05-21 14:01:37 +02:00
@ifset M68K
@subsection Options specific to Motorola 68K target
@c man begin OPTIONS
The following options are supported to control handling of GOT generation
when linking for 68K targets.
@table @gcctabopt
@kindex --got
@item --got=@var{type}
This option tells the linker which GOT generation scheme to use.
@var{type} should be one of @samp{single}, @samp{negative},
@samp{multigot} or @samp{target}. For more information refer to the
Info entry for @file{ld}.
@end table
@c man end
@end ifset
1999-05-03 09:29:11 +02:00
@ifset UsesEnvVars
@node Environment
@section Environment Variables
2001-03-25 22:32:31 +02:00
@c man begin ENVIRONMENT
2003-08-20 10:37:19 +02:00
You can change the behaviour of @command{ld} with the environment variables
2003-02-21 11:27:06 +01:00
@ifclear SingleFormat
@code{GNUTARGET},
@end ifclear
@code{LDEMULATION} and @code{COLLECT_NO_DEMANGLE}.
1999-05-03 09:29:11 +02:00
2003-02-21 11:27:06 +01:00
@ifclear SingleFormat
1999-05-03 09:29:11 +02:00
@kindex GNUTARGET
@cindex default input format
@code{GNUTARGET} determines the input-file object format if you don't
use @samp{-b} (or its synonym @samp{--format}). Its value should be one
of the BFD names for an input format (@pxref{BFD}). If there is no
2001-11-09 21:30:40 +01:00
@code{GNUTARGET} in the environment, @command{ld} uses the natural format
1999-05-03 09:29:11 +02:00
of the target. If @code{GNUTARGET} is set to @code{default} then BFD
attempts to discover the input format by examining binary input files;
this method often succeeds, but there are potential ambiguities, since
there is no method of ensuring that the magic number used to specify
object-file formats is unique. However, the configuration procedure for
BFD on each system places the conventional format for that system first
in the search-list, so ambiguities are resolved in favor of convention.
2003-02-21 11:27:06 +01:00
@end ifclear
1999-05-03 09:29:11 +02:00
@kindex LDEMULATION
@cindex default emulation
@cindex emulation, default
@code{LDEMULATION} determines the default emulation if you don't use the
@samp{-m} option. The emulation can affect various aspects of linker
behaviour, particularly the default linker script. You can list the
available emulations with the @samp{--verbose} or @samp{-V} options. If
the @samp{-m} option is not used, and the @code{LDEMULATION} environment
variable is not defined, the default emulation depends upon how the
linker was configured.
@kindex COLLECT_NO_DEMANGLE
@cindex demangling, default
Normally, the linker will default to demangling symbols. However, if
@code{COLLECT_NO_DEMANGLE} is set in the environment, then it will
default to not demangling symbols. This environment variable is used in
a similar fashion by the @code{gcc} linker wrapper program. The default
may be overridden by the @samp{--demangle} and @samp{--no-demangle}
options.
2001-03-25 22:32:31 +02:00
@c man end
@end ifset
1999-05-03 09:29:11 +02:00
@node Scripts
@chapter Linker Scripts
@cindex scripts
@cindex linker scripts
@cindex command files
Every link is controlled by a @dfn{linker script}. This script is
written in the linker command language.
The main purpose of the linker script is to describe how the sections in
the input files should be mapped into the output file, and to control
the memory layout of the output file. Most linker scripts do nothing
more than this. However, when necessary, the linker script can also
direct the linker to perform many other operations, using the commands
described below.
The linker always uses a linker script. If you do not supply one
yourself, the linker will use a default script that is compiled into the
linker executable. You can use the @samp{--verbose} command line option
to display the default linker script. Certain command line options,
such as @samp{-r} or @samp{-N}, will affect the default linker script.
You may supply your own linker script by using the @samp{-T} command
line option. When you do this, your linker script will replace the
default linker script.
You may also use linker scripts implicitly by naming them as input files
to the linker, as though they were files to be linked. @xref{Implicit
Linker Scripts}.
@menu
* Basic Script Concepts:: Basic Linker Script Concepts
* Script Format:: Linker Script Format
* Simple Example:: Simple Linker Script Example
* Simple Commands:: Simple Linker Script Commands
* Assignments:: Assigning Values to Symbols
* SECTIONS:: SECTIONS Command
* MEMORY:: MEMORY Command
* PHDRS:: PHDRS Command
* VERSION:: VERSION Command
* Expressions:: Expressions in Linker Scripts
* Implicit Linker Scripts:: Implicit Linker Scripts
@end menu
@node Basic Script Concepts
@section Basic Linker Script Concepts
@cindex linker script concepts
We need to define some basic concepts and vocabulary in order to
describe the linker script language.
The linker combines input files into a single output file. The output
file and each input file are in a special data format known as an
@dfn{object file format}. Each file is called an @dfn{object file}.
The output file is often called an @dfn{executable}, but for our
purposes we will also call it an object file. Each object file has,
among other things, a list of @dfn{sections}. We sometimes refer to a
section in an input file as an @dfn{input section}; similarly, a section
in the output file is an @dfn{output section}.
Each section in an object file has a name and a size. Most sections
also have an associated block of data, known as the @dfn{section
contents}. A section may be marked as @dfn{loadable}, which mean that
the contents should be loaded into memory when the output file is run.
A section with no contents may be @dfn{allocatable}, which means that an
area in memory should be set aside, but nothing in particular should be
loaded there (in some cases this memory must be zeroed out). A section
which is neither loadable nor allocatable typically contains some sort
of debugging information.
Every loadable or allocatable output section has two addresses. The
first is the @dfn{VMA}, or virtual memory address. This is the address
the section will have when the output file is run. The second is the
@dfn{LMA}, or load memory address. This is the address at which the
section will be loaded. In most cases the two addresses will be the
same. An example of when they might be different is when a data section
is loaded into ROM, and then copied into RAM when the program starts up
(this technique is often used to initialize global variables in a ROM
based system). In this case the ROM address would be the LMA, and the
RAM address would be the VMA.
You can see the sections in an object file by using the @code{objdump}
program with the @samp{-h} option.
Every object file also has a list of @dfn{symbols}, known as the
@dfn{symbol table}. A symbol may be defined or undefined. Each symbol
has a name, and each defined symbol has an address, among other
information. If you compile a C or C++ program into an object file, you
will get a defined symbol for every defined function and global or
static variable. Every undefined function or global variable which is
referenced in the input file will become an undefined symbol.
You can see the symbols in an object file by using the @code{nm}
program, or by using the @code{objdump} program with the @samp{-t}
option.
@node Script Format
@section Linker Script Format
@cindex linker script format
Linker scripts are text files.
You write a linker script as a series of commands. Each command is
either a keyword, possibly followed by arguments, or an assignment to a
symbol. You may separate commands using semicolons. Whitespace is
generally ignored.
Strings such as file or format names can normally be entered directly.
If the file name contains a character such as a comma which would
otherwise serve to separate file names, you may put the file name in
double quotes. There is no way to use a double quote character in a
file name.
You may include comments in linker scripts just as in C, delimited by
@samp{/*} and @samp{*/}. As in C, comments are syntactically equivalent
to whitespace.
@node Simple Example
@section Simple Linker Script Example
@cindex linker script example
@cindex example of linker script
Many linker scripts are fairly simple.
The simplest possible linker script has just one command:
@samp{SECTIONS}. You use the @samp{SECTIONS} command to describe the
memory layout of the output file.
The @samp{SECTIONS} command is a powerful command. Here we will
describe a simple use of it. Let's assume your program consists only of
code, initialized data, and uninitialized data. These will be in the
@samp{.text}, @samp{.data}, and @samp{.bss} sections, respectively.
Let's assume further that these are the only sections which appear in
your input files.
For this example, let's say that the code should be loaded at address
0x10000, and that the data should start at address 0x8000000. Here is a
linker script which will do that:
@smallexample
SECTIONS
@{
. = 0x10000;
.text : @{ *(.text) @}
. = 0x8000000;
.data : @{ *(.data) @}
.bss : @{ *(.bss) @}
@}
@end smallexample
You write the @samp{SECTIONS} command as the keyword @samp{SECTIONS},
followed by a series of symbol assignments and output section
descriptions enclosed in curly braces.
The first line inside the @samp{SECTIONS} command of the above example
sets the value of the special symbol @samp{.}, which is the location
counter. If you do not specify the address of an output section in some
other way (other ways are described later), the address is set from the
current value of the location counter. The location counter is then
incremented by the size of the output section. At the start of the
@samp{SECTIONS} command, the location counter has the value @samp{0}.
The second line defines an output section, @samp{.text}. The colon is
required syntax which may be ignored for now. Within the curly braces
after the output section name, you list the names of the input sections
which should be placed into this output section. The @samp{*} is a
wildcard which matches any file name. The expression @samp{*(.text)}
means all @samp{.text} input sections in all input files.
Since the location counter is @samp{0x10000} when the output section
@samp{.text} is defined, the linker will set the address of the
@samp{.text} section in the output file to be @samp{0x10000}.
The remaining lines define the @samp{.data} and @samp{.bss} sections in
the output file. The linker will place the @samp{.data} output section
at address @samp{0x8000000}. After the linker places the @samp{.data}
output section, the value of the location counter will be
@samp{0x8000000} plus the size of the @samp{.data} output section. The
effect is that the linker will place the @samp{.bss} output section
2004-04-21 08:08:47 +02:00
immediately after the @samp{.data} output section in memory.
1999-05-03 09:29:11 +02:00
The linker will ensure that each output section has the required
alignment, by increasing the location counter if necessary. In this
example, the specified addresses for the @samp{.text} and @samp{.data}
sections will probably satisfy any alignment constraints, but the linker
may have to create a small gap between the @samp{.data} and @samp{.bss}
sections.
That's it! That's a simple and complete linker script.
@node Simple Commands
@section Simple Linker Script Commands
@cindex linker script simple commands
In this section we describe the simple linker script commands.
@menu
* Entry Point:: Setting the entry point
* File Commands:: Commands dealing with files
@ifclear SingleFormat
* Format Commands:: Commands dealing with object file formats
@end ifclear
2009-03-02 18:27:36 +01:00
* REGION_ALIAS:: Assign alias names to memory regions
1999-05-03 09:29:11 +02:00
* Miscellaneous Commands:: Other linker script commands
@end menu
@node Entry Point
2003-02-21 11:27:06 +01:00
@subsection Setting the Entry Point
1999-05-03 09:29:11 +02:00
@kindex ENTRY(@var{symbol})
@cindex start of execution
@cindex first instruction
@cindex entry point
The first instruction to execute in a program is called the @dfn{entry
point}. You can use the @code{ENTRY} linker script command to set the
entry point. The argument is a symbol name:
@smallexample
ENTRY(@var{symbol})
@end smallexample
There are several ways to set the entry point. The linker will set the
entry point by trying each of the following methods in order, and
stopping when one of them succeeds:
@itemize @bullet
2001-03-17 22:24:26 +01:00
@item
1999-05-03 09:29:11 +02:00
the @samp{-e} @var{entry} command-line option;
2001-03-17 22:24:26 +01:00
@item
1999-05-03 09:29:11 +02:00
the @code{ENTRY(@var{symbol})} command in a linker script;
2001-03-17 22:24:26 +01:00
@item
2009-11-10 17:34:53 +01:00
the value of a target specific symbol, if it is defined; For many
targets this is @code{start}, but PE and BeOS based systems for example
check a list of possible entry symbols, matching the first one found.
2001-03-17 22:24:26 +01:00
@item
1999-05-03 09:29:11 +02:00
the address of the first byte of the @samp{.text} section, if present;
2001-03-17 22:24:26 +01:00
@item
1999-05-03 09:29:11 +02:00
The address @code{0}.
@end itemize
@node File Commands
2003-02-21 11:27:06 +01:00
@subsection Commands Dealing with Files
1999-05-03 09:29:11 +02:00
@cindex linker script file commands
Several linker script commands deal with files.
@table @code
@item INCLUDE @var{filename}
@kindex INCLUDE @var{filename}
@cindex including a linker script
Include the linker script @var{filename} at this point. The file will
be searched for in the current directory, and in any directory specified
2001-11-09 21:30:40 +01:00
with the @option{-L} option. You can nest calls to @code{INCLUDE} up to
1999-05-03 09:29:11 +02:00
10 levels deep.
2008-07-06 15:38:37 +02:00
You can place @code{INCLUDE} directives at the top level, in @code{MEMORY} or
@code{SECTIONS} commands, or in output section descriptions.
1999-05-03 09:29:11 +02:00
@item INPUT(@var{file}, @var{file}, @dots{})
@itemx INPUT(@var{file} @var{file} @dots{})
@kindex INPUT(@var{files})
@cindex input files in linker scripts
@cindex input object files in linker scripts
@cindex linker script input object files
The @code{INPUT} command directs the linker to include the named files
in the link, as though they were named on the command line.
For example, if you always want to include @file{subr.o} any time you do
a link, but you can't be bothered to put it on every link command line,
then you can put @samp{INPUT (subr.o)} in your linker script.
In fact, if you like, you can list all of your input files in the linker
script, and then invoke the linker with nothing but a @samp{-T} option.
2003-03-03 21:00:35 +01:00
In case a @dfn{sysroot prefix} is configured, and the filename starts
with the @samp{/} character, and the script being processed was
located inside the @dfn{sysroot prefix}, the filename will be looked
for in the @dfn{sysroot prefix}. Otherwise, the linker will try to
open the file in the current directory. If it is not found, the
linker will search through the archive library search path. See the
description of @samp{-L} in @ref{Options,,Command Line Options}.
1999-05-03 09:29:11 +02:00
2001-11-09 21:30:40 +01:00
If you use @samp{INPUT (-l@var{file})}, @command{ld} will transform the
1999-05-03 09:29:11 +02:00
name to @code{lib@var{file}.a}, as with the command line argument
@samp{-l}.
When you use the @code{INPUT} command in an implicit linker script, the
files will be included in the link at the point at which the linker
script file is included. This can affect archive searching.
@item GROUP(@var{file}, @var{file}, @dots{})
@itemx GROUP(@var{file} @var{file} @dots{})
@kindex GROUP(@var{files})
@cindex grouping input files
The @code{GROUP} command is like @code{INPUT}, except that the named
files should all be archives, and they are searched repeatedly until no
new undefined references are created. See the description of @samp{-(}
in @ref{Options,,Command Line Options}.
2005-01-21 13:04:25 +01:00
@item AS_NEEDED(@var{file}, @var{file}, @dots{})
@itemx AS_NEEDED(@var{file} @var{file} @dots{})
@kindex AS_NEEDED(@var{files})
This construct can appear only inside of the @code{INPUT} or @code{GROUP}
commands, among other filenames. The files listed will be handled
as if they appear directly in the @code{INPUT} or @code{GROUP} commands,
with the exception of ELF shared libraries, that will be added only
when they are actually needed. This construct essentially enables
@option{--as-needed} option for all the files listed inside of it
and restores previous @option{--as-needed} resp. @option{--no-as-needed}
setting afterwards.
1999-05-03 09:29:11 +02:00
@item OUTPUT(@var{filename})
@kindex OUTPUT(@var{filename})
2006-07-24 15:49:50 +02:00
@cindex output file name in linker script
1999-05-03 09:29:11 +02:00
The @code{OUTPUT} command names the output file. Using
@code{OUTPUT(@var{filename})} in the linker script is exactly like using
@samp{-o @var{filename}} on the command line (@pxref{Options,,Command
Line Options}). If both are used, the command line option takes
precedence.
You can use the @code{OUTPUT} command to define a default name for the
output file other than the usual default of @file{a.out}.
@item SEARCH_DIR(@var{path})
@kindex SEARCH_DIR(@var{path})
@cindex library search path in linker script
@cindex archive search path in linker script
@cindex search path in linker script
The @code{SEARCH_DIR} command adds @var{path} to the list of paths where
2001-11-09 21:30:40 +01:00
@command{ld} looks for archive libraries. Using
1999-05-03 09:29:11 +02:00
@code{SEARCH_DIR(@var{path})} is exactly like using @samp{-L @var{path}}
on the command line (@pxref{Options,,Command Line Options}). If both
are used, then the linker will search both paths. Paths specified using
the command line option are searched first.
@item STARTUP(@var{filename})
@kindex STARTUP(@var{filename})
@cindex first input file
The @code{STARTUP} command is just like the @code{INPUT} command, except
that @var{filename} will become the first input file to be linked, as
though it were specified first on the command line. This may be useful
when using a system in which the entry point is always the start of the
first file.
@end table
@ifclear SingleFormat
@node Format Commands
2003-02-21 11:27:06 +01:00
@subsection Commands Dealing with Object File Formats
1999-05-03 09:29:11 +02:00
A couple of linker script commands deal with object file formats.
@table @code
@item OUTPUT_FORMAT(@var{bfdname})
@itemx OUTPUT_FORMAT(@var{default}, @var{big}, @var{little})
@kindex OUTPUT_FORMAT(@var{bfdname})
@cindex output file format in linker script
The @code{OUTPUT_FORMAT} command names the BFD format to use for the
output file (@pxref{BFD}). Using @code{OUTPUT_FORMAT(@var{bfdname})} is
2002-04-08 02:24:02 +02:00
exactly like using @samp{--oformat @var{bfdname}} on the command line
1999-05-03 09:29:11 +02:00
(@pxref{Options,,Command Line Options}). If both are used, the command
line option takes precedence.
You can use @code{OUTPUT_FORMAT} with three arguments to use different
formats based on the @samp{-EB} and @samp{-EL} command line options.
This permits the linker script to set the output format based on the
desired endianness.
If neither @samp{-EB} nor @samp{-EL} are used, then the output format
will be the first argument, @var{default}. If @samp{-EB} is used, the
output format will be the second argument, @var{big}. If @samp{-EL} is
used, the output format will be the third argument, @var{little}.
For example, the default linker script for the MIPS ELF target uses this
command:
@smallexample
OUTPUT_FORMAT(elf32-bigmips, elf32-bigmips, elf32-littlemips)
@end smallexample
This says that the default format for the output file is
@samp{elf32-bigmips}, but if the user uses the @samp{-EL} command line
option, the output file will be created in the @samp{elf32-littlemips}
format.
@item TARGET(@var{bfdname})
@kindex TARGET(@var{bfdname})
@cindex input file format in linker script
The @code{TARGET} command names the BFD format to use when reading input
files. It affects subsequent @code{INPUT} and @code{GROUP} commands.
This command is like using @samp{-b @var{bfdname}} on the command line
(@pxref{Options,,Command Line Options}). If the @code{TARGET} command
is used but @code{OUTPUT_FORMAT} is not, then the last @code{TARGET}
command is also used to set the format for the output file. @xref{BFD}.
@end table
@end ifclear
2009-03-02 18:27:36 +01:00
@node REGION_ALIAS
@subsection Assign alias names to memory regions
@kindex REGION_ALIAS(@var{alias}, @var{region})
@cindex region alias
@cindex region names
Alias names can be added to existing memory regions created with the
@ref{MEMORY} command. Each name corresponds to at most one memory region.
@smallexample
REGION_ALIAS(@var{alias}, @var{region})
@end smallexample
The @code{REGION_ALIAS} function creates an alias name @var{alias} for the
memory region @var{region}. This allows a flexible mapping of output sections
to memory regions. An example follows.
Suppose we have an application for embedded systems which come with various
memory storage devices. All have a general purpose, volatile memory @code{RAM}
that allows code execution or data storage. Some may have a read-only,
non-volatile memory @code{ROM} that allows code execution and read-only data
access. The last variant is a read-only, non-volatile memory @code{ROM2} with
read-only data access and no code execution capability. We have four output
sections:
@itemize @bullet
@item
@code{.text} program code;
@item
@code{.rodata} read-only data;
@item
@code{.data} read-write initialized data;
@item
@code{.bss} read-write zero initialized data.
@end itemize
The goal is to provide a linker command file that contains a system independent
part defining the output sections and a system dependent part mapping the
output sections to the memory regions available on the system. Our embedded
systems come with three different memory setups @code{A}, @code{B} and
@code{C}:
@multitable @columnfractions .25 .25 .25 .25
@item Section @tab Variant A @tab Variant B @tab Variant C
@item .text @tab RAM @tab ROM @tab ROM
@item .rodata @tab RAM @tab ROM @tab ROM2
@item .data @tab RAM @tab RAM/ROM @tab RAM/ROM2
@item .bss @tab RAM @tab RAM @tab RAM
@end multitable
The notation @code{RAM/ROM} or @code{RAM/ROM2} means that this section is
loaded into region @code{ROM} or @code{ROM2} respectively. Please note that
the load address of the @code{.data} section starts in all three variants at
the end of the @code{.rodata} section.
The base linker script that deals with the output sections follows. It
includes the system dependent @code{linkcmds.memory} file that describes the
memory layout:
@smallexample
INCLUDE linkcmds.memory
SECTIONS
@{
.text :
@{
*(.text)
@} > REGION_TEXT
.rodata :
@{
*(.rodata)
rodata_end = .;
@} > REGION_RODATA
.data : AT (rodata_end)
@{
data_start = .;
*(.data)
@} > REGION_DATA
data_size = SIZEOF(.data);
data_load_start = LOADADDR(.data);
.bss :
@{
*(.bss)
@} > REGION_BSS
@}
@end smallexample
Now we need three different @code{linkcmds.memory} files to define memory
regions and alias names. The content of @code{linkcmds.memory} for the three
variants @code{A}, @code{B} and @code{C}:
@table @code
@item A
Here everything goes into the @code{RAM}.
@smallexample
MEMORY
@{
RAM : ORIGIN = 0, LENGTH = 4M
@}
REGION_ALIAS("REGION_TEXT", RAM);
REGION_ALIAS("REGION_RODATA", RAM);
REGION_ALIAS("REGION_DATA", RAM);
REGION_ALIAS("REGION_BSS", RAM);
@end smallexample
@item B
Program code and read-only data go into the @code{ROM}. Read-write data goes
into the @code{RAM}. An image of the initialized data is loaded into the
@code{ROM} and will be copied during system start into the @code{RAM}.
@smallexample
MEMORY
@{
ROM : ORIGIN = 0, LENGTH = 3M
RAM : ORIGIN = 0x10000000, LENGTH = 1M
@}
REGION_ALIAS("REGION_TEXT", ROM);
REGION_ALIAS("REGION_RODATA", ROM);
REGION_ALIAS("REGION_DATA", RAM);
REGION_ALIAS("REGION_BSS", RAM);
@end smallexample
@item C
Program code goes into the @code{ROM}. Read-only data goes into the
@code{ROM2}. Read-write data goes into the @code{RAM}. An image of the
initialized data is loaded into the @code{ROM2} and will be copied during
system start into the @code{RAM}.
@smallexample
MEMORY
@{
ROM : ORIGIN = 0, LENGTH = 2M
ROM2 : ORIGIN = 0x10000000, LENGTH = 1M
RAM : ORIGIN = 0x20000000, LENGTH = 1M
@}
REGION_ALIAS("REGION_TEXT", ROM);
REGION_ALIAS("REGION_RODATA", ROM2);
REGION_ALIAS("REGION_DATA", RAM);
REGION_ALIAS("REGION_BSS", RAM);
@end smallexample
@end table
It is possible to write a common system initialization routine to copy the
@code{.data} section from @code{ROM} or @code{ROM2} into the @code{RAM} if
necessary:
@smallexample
#include <string.h>
extern char data_start [];
extern char data_size [];
extern char data_load_start [];
void copy_data(void)
@{
if (data_start != data_load_start)
@{
memcpy(data_start, data_load_start, (size_t) data_size);
@}
@}
@end smallexample
1999-05-03 09:29:11 +02:00
@node Miscellaneous Commands
2003-02-21 11:27:06 +01:00
@subsection Other Linker Script Commands
1999-05-03 09:29:11 +02:00
There are a few other linker scripts commands.
@table @code
@item ASSERT(@var{exp}, @var{message})
@kindex ASSERT
@cindex assertion in linker script
Ensure that @var{exp} is non-zero. If it is zero, then exit the linker
with an error code, and print @var{message}.
@item EXTERN(@var{symbol} @var{symbol} @dots{})
@kindex EXTERN
@cindex undefined symbol in linker script
Force @var{symbol} to be entered in the output file as an undefined
symbol. Doing this may, for example, trigger linking of additional
modules from standard libraries. You may list several @var{symbol}s for
each @code{EXTERN}, and you may use @code{EXTERN} multiple times. This
command has the same effect as the @samp{-u} command-line option.
@item FORCE_COMMON_ALLOCATION
@kindex FORCE_COMMON_ALLOCATION
@cindex common allocation in linker script
This command has the same effect as the @samp{-d} command-line option:
2001-11-09 21:30:40 +01:00
to make @command{ld} assign space to common symbols even if a relocatable
1999-05-03 09:29:11 +02:00
output file is specified (@samp{-r}).
2001-09-29 14:57:54 +02:00
@item INHIBIT_COMMON_ALLOCATION
@kindex INHIBIT_COMMON_ALLOCATION
@cindex common allocation in linker script
This command has the same effect as the @samp{--no-define-common}
command-line option: to make @code{ld} omit the assignment of addresses
to common symbols even for a non-relocatable output file.
ld/
* ld.texinfo (INSERT): Describe.
* ldgram.y (ldgram_in_script, ldgram_had_equals): Delete.
(INSERT_K, AFTER, BEFORE): Add as tokens.
(ifile_p1): Handle INSERT statements.
(saved_script_handle, force_make_executable): Move to..
* ldmain.c: ..here.
(previous_script_handle): New global var.
* ldmain.h (saved_script_handle, force_make_executable): Declare.
(previous_script_handle): Likewise.
* ldlex.l (INSERT_K, AFTER, BEFORE): Add tokens.
* lexsup.c (parge_args <-T>): Set previous_script_handle.
* ldlang.c (lang_for_each_statement_worker): Handle insert statement.
(map_input_to_output_sections, print_statement): Likewise.
(lang_size_sections_1, lang_do_assignments_1): Likewise.
(insert_os_after): New function, extracted from..
(lang_insert_orphan): ..here.
(process_insert_statements): New function.
(lang_process): Call it.
(lang_add_insert): New function.
* ldlang.h (lang_insert_statement_enum): New.
(lang_insert_statement_type): New.
(lang_statement_union_type): Add insert_statement.
(lang_add_insert): Declare.
ld/testsuite/
* ld-spu/ovl.lnk: Delete overlay.
* ld-spu/ovl1.lnk: New file.
* ld-spu/ovl2.lnk: New file.
* ld-spu/ovl.d: Update.
* ld-spu/ovl2.d: Update.
2008-01-25 13:03:37 +01:00
@item INSERT [ AFTER | BEFORE ] @var{output_section}
@kindex INSERT
@cindex insert user script into default script
This command is typically used in a script specified by @samp{-T} to
augment the default @code{SECTIONS} with, for example, overlays. It
inserts all prior linker script statements after (or before)
@var{output_section}, and also causes @samp{-T} to not override the
default linker script. The exact insertion point is as for orphan
sections. @xref{Location Counter}. The insertion happens after the
linker has mapped input sections to output sections. Prior to the
insertion, since @samp{-T} scripts are parsed before the default
linker script, statements in the @samp{-T} script occur before the
default linker script statements in the internal linker representation
of the script. In particular, input section assignments will be made
to @samp{-T} output sections before those in the default script. Here
is an example of how a @samp{-T} script using @code{INSERT} might look:
@smallexample
SECTIONS
@{
OVERLAY :
@{
.ov1 @{ ov1*(.text) @}
.ov2 @{ ov2*(.text) @}
@}
@}
INSERT AFTER .text;
@end smallexample
1999-05-03 09:29:11 +02:00
@item NOCROSSREFS(@var{section} @var{section} @dots{})
@kindex NOCROSSREFS(@var{sections})
@cindex cross references
2001-11-09 21:30:40 +01:00
This command may be used to tell @command{ld} to issue an error about any
1999-05-03 09:29:11 +02:00
references among certain output sections.
In certain types of programs, particularly on embedded systems when
using overlays, when one section is loaded into memory, another section
will not be. Any direct references between the two sections would be
errors. For example, it would be an error if code in one section called
a function defined in the other section.
The @code{NOCROSSREFS} command takes a list of output section names. If
2001-11-09 21:30:40 +01:00
@command{ld} detects any cross references between the sections, it reports
1999-05-03 09:29:11 +02:00
an error and returns a non-zero exit status. Note that the
@code{NOCROSSREFS} command uses output section names, not input section
names.
@ifclear SingleFormat
@item OUTPUT_ARCH(@var{bfdarch})
@kindex OUTPUT_ARCH(@var{bfdarch})
@cindex machine architecture
@cindex architecture
Specify a particular output machine architecture. The argument is one
of the names used by the BFD library (@pxref{BFD}). You can see the
architecture of an object file by using the @code{objdump} program with
the @samp{-f} option.
@end ifclear
@end table
@node Assignments
@section Assigning Values to Symbols
@cindex assignment in scripts
@cindex symbol definition, scripts
@cindex variables, defining
You may assign a value to a symbol in a linker script. This will define
2005-02-01 18:31:01 +01:00
the symbol and place it into the symbol table with a global scope.
1999-05-03 09:29:11 +02:00
@menu
* Simple Assignments:: Simple Assignments
* PROVIDE:: PROVIDE
2005-08-05 15:52:13 +02:00
* PROVIDE_HIDDEN:: PROVIDE_HIDDEN
2005-02-01 18:31:01 +01:00
* Source Code Reference:: How to use a linker script defined symbol in source code
1999-05-03 09:29:11 +02:00
@end menu
@node Simple Assignments
@subsection Simple Assignments
You may assign to a symbol using any of the C assignment operators:
@table @code
@item @var{symbol} = @var{expression} ;
@itemx @var{symbol} += @var{expression} ;
@itemx @var{symbol} -= @var{expression} ;
@itemx @var{symbol} *= @var{expression} ;
@itemx @var{symbol} /= @var{expression} ;
@itemx @var{symbol} <<= @var{expression} ;
@itemx @var{symbol} >>= @var{expression} ;
@itemx @var{symbol} &= @var{expression} ;
@itemx @var{symbol} |= @var{expression} ;
@end table
The first case will define @var{symbol} to the value of
@var{expression}. In the other cases, @var{symbol} must already be
defined, and the value will be adjusted accordingly.
The special symbol name @samp{.} indicates the location counter. You
2005-01-23 06:36:37 +01:00
may only use this within a @code{SECTIONS} command. @xref{Location Counter}.
1999-05-03 09:29:11 +02:00
The semicolon after @var{expression} is required.
Expressions are defined below; see @ref{Expressions}.
You may write symbol assignments as commands in their own right, or as
statements within a @code{SECTIONS} command, or as part of an output
section description in a @code{SECTIONS} command.
The section of the symbol will be set from the section of the
expression; for more information, see @ref{Expression Section}.
Here is an example showing the three different places that symbol
assignments may be used:
@smallexample
floating_point = 0;
SECTIONS
@{
.text :
@{
*(.text)
_etext = .;
@}
2001-07-30 20:12:07 +02:00
_bdata = (. + 3) & ~ 3;
1999-05-03 09:29:11 +02:00
.data : @{ *(.data) @}
@}
@end smallexample
@noindent
In this example, the symbol @samp{floating_point} will be defined as
zero. The symbol @samp{_etext} will be defined as the address following
the last @samp{.text} input section. The symbol @samp{_bdata} will be
defined as the address following the @samp{.text} output section aligned
upward to a 4 byte boundary.
@node PROVIDE
@subsection PROVIDE
@cindex PROVIDE
In some cases, it is desirable for a linker script to define a symbol
only if it is referenced and is not defined by any object included in
the link. For example, traditional linkers defined the symbol
@samp{etext}. However, ANSI C requires that the user be able to use
@samp{etext} as a function name without encountering an error. The
@code{PROVIDE} keyword may be used to define a symbol, such as
@samp{etext}, only if it is referenced but not defined. The syntax is
@code{PROVIDE(@var{symbol} = @var{expression})}.
Here is an example of using @code{PROVIDE} to define @samp{etext}:
@smallexample
SECTIONS
@{
.text :
@{
*(.text)
_etext = .;
PROVIDE(etext = .);
@}
@}
@end smallexample
In this example, if the program defines @samp{_etext} (with a leading
underscore), the linker will give a multiple definition error. If, on
the other hand, the program defines @samp{etext} (with no leading
underscore), the linker will silently use the definition in the program.
If the program references @samp{etext} but does not define it, the
linker will use the definition in the linker script.
2005-08-05 15:52:13 +02:00
@node PROVIDE_HIDDEN
@subsection PROVIDE_HIDDEN
@cindex PROVIDE_HIDDEN
Similar to @code{PROVIDE}. For ELF targeted ports, the symbol will be
hidden and won't be exported.
2005-02-01 18:31:01 +01:00
@node Source Code Reference
@subsection Source Code Reference
Accessing a linker script defined variable from source code is not
intuitive. In particular a linker script symbol is not equivalent to
a variable declaration in a high level language, it is instead a
symbol that does not have a value.
Before going further, it is important to note that compilers often
transform names in the source code into different names when they are
stored in the symbol table. For example, Fortran compilers commonly
prepend or append an underscore, and C++ performs extensive @samp{name
mangling}. Therefore there might be a discrepancy between the name
of a variable as it is used in source code and the name of the same
variable as it is defined in a linker script. For example in C a
linker script variable might be referred to as:
@smallexample
extern int foo;
@end smallexample
But in the linker script it might be defined as:
@smallexample
_foo = 1000;
@end smallexample
In the remaining examples however it is assumed that no name
transformation has taken place.
When a symbol is declared in a high level language such as C, two
things happen. The first is that the compiler reserves enough space
in the program's memory to hold the @emph{value} of the symbol. The
second is that the compiler creates an entry in the program's symbol
table which holds the symbol's @emph{address}. ie the symbol table
contains the address of the block of memory holding the symbol's
value. So for example the following C declaration, at file scope:
@smallexample
int foo = 1000;
@end smallexample
creates a entry called @samp{foo} in the symbol table. This entry
holds the address of an @samp{int} sized block of memory where the
number 1000 is initially stored.
When a program references a symbol the compiler generates code that
first accesses the symbol table to find the address of the symbol's
memory block and then code to read the value from that memory block.
So:
@smallexample
foo = 1;
@end smallexample
looks up the symbol @samp{foo} in the symbol table, gets the address
associated with this symbol and then writes the value 1 into that
address. Whereas:
@smallexample
int * a = & foo;
@end smallexample
looks up the symbol @samp{foo} in the symbol table, gets it address
and then copies this address into the block of memory associated with
the variable @samp{a}.
Linker scripts symbol declarations, by contrast, create an entry in
the symbol table but do not assign any memory to them. Thus they are
an address without a value. So for example the linker script definition:
@smallexample
foo = 1000;
@end smallexample
creates an entry in the symbol table called @samp{foo} which holds
the address of memory location 1000, but nothing special is stored at
address 1000. This means that you cannot access the @emph{value} of a
linker script defined symbol - it has no value - all you can do is
access the @emph{address} of a linker script defined symbol.
Hence when you are using a linker script defined symbol in source code
you should always take the address of the symbol, and never attempt to
use its value. For example suppose you want to copy the contents of a
section of memory called .ROM into a section called .FLASH and the
linker script contains these declarations:
@smallexample
@group
start_of_ROM = .ROM;
end_of_ROM = .ROM + sizeof (.ROM) - 1;
start_of_FLASH = .FLASH;
@end group
@end smallexample
Then the C source code to perform the copy would be:
@smallexample
@group
extern char start_of_ROM, end_of_ROM, start_of_FLASH;
2007-07-09 23:25:34 +02:00
2005-02-01 18:31:01 +01:00
memcpy (& start_of_FLASH, & start_of_ROM, & end_of_ROM - & start_of_ROM);
@end group
@end smallexample
Note the use of the @samp{&} operators. These are correct.
1999-05-03 09:29:11 +02:00
@node SECTIONS
2003-02-21 11:27:06 +01:00
@section SECTIONS Command
1999-05-03 09:29:11 +02:00
@kindex SECTIONS
The @code{SECTIONS} command tells the linker how to map input sections
into output sections, and how to place the output sections in memory.
The format of the @code{SECTIONS} command is:
@smallexample
SECTIONS
@{
@var{sections-command}
@var{sections-command}
@dots{}
@}
@end smallexample
Each @var{sections-command} may of be one of the following:
@itemize @bullet
@item
an @code{ENTRY} command (@pxref{Entry Point,,Entry command})
@item
a symbol assignment (@pxref{Assignments})
@item
an output section description
@item
an overlay description
@end itemize
The @code{ENTRY} command and symbol assignments are permitted inside the
@code{SECTIONS} command for convenience in using the location counter in
those commands. This can also make the linker script easier to
understand because you can use those commands at meaningful points in
the layout of the output file.
Output section descriptions and overlay descriptions are described
below.
If you do not use a @code{SECTIONS} command in your linker script, the
linker will place each input section into an identically named output
section in the order that the sections are first encountered in the
input files. If all input sections are present in the first file, for
example, the order of sections in the output file will match the order
in the first input file. The first section will be at address zero.
@menu
* Output Section Description:: Output section description
* Output Section Name:: Output section name
* Output Section Address:: Output section address
* Input Section:: Input section description
* Output Section Data:: Output section data
* Output Section Keywords:: Output section keywords
* Output Section Discarding:: Output section discarding
* Output Section Attributes:: Output section attributes
* Overlay Description:: Overlay description
@end menu
@node Output Section Description
2003-02-21 11:27:06 +01:00
@subsection Output Section Description
1999-05-03 09:29:11 +02:00
The full description of an output section looks like this:
@smallexample
2001-03-17 22:24:26 +01:00
@group
2003-07-27 13:58:28 +02:00
@var{section} [@var{address}] [(@var{type})] :
2009-04-09 18:06:48 +02:00
[AT(@var{lma})]
[ALIGN(@var{section_align})]
[SUBALIGN(@var{subsection_align})]
[@var{constraint}]
1999-05-03 09:29:11 +02:00
@{
@var{output-section-command}
@var{output-section-command}
@dots{}
2000-02-16 19:53:32 +01:00
@} [>@var{region}] [AT>@var{lma_region}] [:@var{phdr} :@var{phdr} @dots{}] [=@var{fillexp}]
1999-05-03 09:29:11 +02:00
@end group
@end smallexample
Most output sections do not use most of the optional section attributes.
The whitespace around @var{section} is required, so that the section
name is unambiguous. The colon and the curly braces are also required.
The line breaks and other white space are optional.
Each @var{output-section-command} may be one of the following:
@itemize @bullet
@item
a symbol assignment (@pxref{Assignments})
@item
an input section description (@pxref{Input Section})
@item
data values to include directly (@pxref{Output Section Data})
@item
a special output section keyword (@pxref{Output Section Keywords})
@end itemize
@node Output Section Name
2003-02-21 11:27:06 +01:00
@subsection Output Section Name
1999-05-03 09:29:11 +02:00
@cindex name, section
@cindex section name
The name of the output section is @var{section}. @var{section} must
meet the constraints of your output format. In formats which only
support a limited number of sections, such as @code{a.out}, the name
must be one of the names supported by the format (@code{a.out}, for
example, allows only @samp{.text}, @samp{.data} or @samp{.bss}). If the
output format supports any number of sections, but with numbers and not
names (as is the case for Oasys), the name should be supplied as a
quoted numeric string. A section name may consist of any sequence of
characters, but a name which contains any unusual characters such as
commas must be quoted.
The output section name @samp{/DISCARD/} is special; @ref{Output Section
Discarding}.
@node Output Section Address
2004-05-18 00:48:55 +02:00
@subsection Output Section Address
1999-05-03 09:29:11 +02:00
@cindex address, section
@cindex section address
The @var{address} is an expression for the VMA (the virtual memory
address) of the output section. If you do not provide @var{address},
the linker will set it based on @var{region} if present, or otherwise
based on the current value of the location counter.
If you provide @var{address}, the address of the output section will be
set to precisely that. If you provide neither @var{address} nor
@var{region}, then the address of the output section will be set to the
current value of the location counter aligned to the alignment
requirements of the output section. The alignment requirement of the
output section is the strictest alignment of any input section contained
within the output section.
For example,
@smallexample
.text . : @{ *(.text) @}
@end smallexample
@noindent
and
@smallexample
.text : @{ *(.text) @}
@end smallexample
@noindent
are subtly different. The first will set the address of the
@samp{.text} output section to the current value of the location
counter. The second will set it to the current value of the location
counter aligned to the strictest alignment of a @samp{.text} input
section.
The @var{address} may be an arbitrary expression; @ref{Expressions}.
For example, if you want to align the section on a 0x10 byte boundary,
so that the lowest four bits of the section address are zero, you could
do something like this:
@smallexample
.text ALIGN(0x10) : @{ *(.text) @}
@end smallexample
@noindent
This works because @code{ALIGN} returns the current location counter
aligned upward to the specified value.
Specifying @var{address} for a section will change the value of the
2009-04-07 10:07:08 +02:00
location counter, provided that the section is non-empty. (Empty
sections are ignored).
1999-05-03 09:29:11 +02:00
@node Input Section
2003-02-21 11:27:06 +01:00
@subsection Input Section Description
1999-05-03 09:29:11 +02:00
@cindex input sections
@cindex mapping input sections to output sections
The most common output section command is an input section description.
The input section description is the most basic linker script operation.
You use output sections to tell the linker how to lay out your program
in memory. You use input section descriptions to tell the linker how to
map the input files into your memory layout.
@menu
* Input Section Basics:: Input section basics
* Input Section Wildcards:: Input section wildcard patterns
* Input Section Common:: Input section for common symbols
* Input Section Keep:: Input section and garbage collection
* Input Section Example:: Input section example
@end menu
@node Input Section Basics
2003-02-21 11:27:06 +01:00
@subsubsection Input Section Basics
1999-05-03 09:29:11 +02:00
@cindex input section basics
An input section description consists of a file name optionally followed
by a list of section names in parentheses.
The file name and the section name may be wildcard patterns, which we
describe further below (@pxref{Input Section Wildcards}).
The most common input section description is to include all input
sections with a particular name in the output section. For example, to
include all input @samp{.text} sections, you would write:
@smallexample
*(.text)
@end smallexample
@noindent
2000-01-05 15:12:23 +01:00
Here the @samp{*} is a wildcard which matches any file name. To exclude a list
of files from matching the file name wildcard, EXCLUDE_FILE may be used to
match all files except the ones specified in the EXCLUDE_FILE list. For
example:
1999-05-03 09:29:11 +02:00
@smallexample
2007-08-18 03:36:57 +02:00
*(EXCLUDE_FILE (*crtend.o *otherfile.o) .ctors)
1999-05-03 09:29:11 +02:00
@end smallexample
2000-02-29 04:28:57 +01:00
will cause all .ctors sections from all files except @file{crtend.o} and
@file{otherfile.o} to be included.
1999-05-03 09:29:11 +02:00
There are two ways to include more than one section:
@smallexample
*(.text .rdata)
*(.text) *(.rdata)
@end smallexample
@noindent
The difference between these is the order in which the @samp{.text} and
@samp{.rdata} input sections will appear in the output section. In the
2001-08-03 03:11:21 +02:00
first example, they will be intermingled, appearing in the same order as
they are found in the linker input. In the second example, all
1999-05-03 09:29:11 +02:00
@samp{.text} input sections will appear first, followed by all
@samp{.rdata} input sections.
You can specify a file name to include sections from a particular file.
You would do this if one or more of your files contain special data that
needs to be at a particular location in memory. For example:
@smallexample
data.o(.data)
@end smallexample
2008-06-07 13:35:46 +02:00
You can also specify files within archives by writing a pattern
matching the archive, a colon, then the pattern matching the file,
with no whitespace around the colon.
@table @samp
@item archive:file
matches file within archive
@item archive:
matches the whole archive
@item :file
matches file but not one in an archive
@end table
Either one or both of @samp{archive} and @samp{file} can contain shell
wildcards. On DOS based file systems, the linker will assume that a
single letter followed by a colon is a drive specifier, so
@samp{c:myfile.o} is a simple file specification, not @samp{myfile.o}
within an archive called @samp{c}. @samp{archive:file} filespecs may
also be used within an @code{EXCLUDE_FILE} list, but may not appear in
other linker script contexts. For instance, you cannot extract a file
from an archive by using @samp{archive:file} in an @code{INPUT}
command.
1999-05-03 09:29:11 +02:00
If you use a file name without a list of sections, then all sections in
the input file will be included in the output section. This is not
commonly done, but it may by useful on occasion. For example:
@smallexample
data.o
@end smallexample
2008-06-07 13:35:46 +02:00
When you use a file name which is not an @samp{archive:file} specifier
and does not contain any wild card
1999-05-03 09:29:11 +02:00
characters, the linker will first see if you also specified the file
name on the linker command line or in an @code{INPUT} command. If you
did not, the linker will attempt to open the file as an input file, as
though it appeared on the command line. Note that this differs from an
@code{INPUT} command, because the linker will not search for the file in
the archive search path.
@node Input Section Wildcards
2003-02-21 11:27:06 +01:00
@subsubsection Input Section Wildcard Patterns
1999-05-03 09:29:11 +02:00
@cindex input section wildcards
@cindex wildcard file name patterns
@cindex file name wildcard patterns
@cindex section name wildcard patterns
In an input section description, either the file name or the section
name or both may be wildcard patterns.
The file name of @samp{*} seen in many examples is a simple wildcard
pattern for the file name.
The wildcard patterns are like those used by the Unix shell.
@table @samp
@item *
matches any number of characters
@item ?
matches any single character
@item [@var{chars}]
matches a single instance of any of the @var{chars}; the @samp{-}
character may be used to specify a range of characters, as in
@samp{[a-z]} to match any lower case letter
@item \
quotes the following character
@end table
When a file name is matched with a wildcard, the wildcard characters
will not match a @samp{/} character (used to separate directory names on
Unix). A pattern consisting of a single @samp{*} character is an
exception; it will always match any file name, whether it contains a
@samp{/} or not. In a section name, the wildcard characters will match
a @samp{/} character.
File name wildcard patterns only match files which are explicitly
specified on the command line or in an @code{INPUT} command. The linker
does not search directories to expand wildcards.
If a file name matches more than one wildcard pattern, or if a file name
appears explicitly and is also matched by a wildcard pattern, the linker
will use the first match in the linker script. For example, this
sequence of input section descriptions is probably in error, because the
@file{data.o} rule will not be used:
@smallexample
.data : @{ *(.data) @}
.data1 : @{ data.o(.data) @}
@end smallexample
2004-10-04 18:45:51 +02:00
@cindex SORT_BY_NAME
1999-05-03 09:29:11 +02:00
Normally, the linker will place files and sections matched by wildcards
in the order in which they are seen during the link. You can change
2004-10-04 18:45:51 +02:00
this by using the @code{SORT_BY_NAME} keyword, which appears before a wildcard
pattern in parentheses (e.g., @code{SORT_BY_NAME(.text*)}). When the
@code{SORT_BY_NAME} keyword is used, the linker will sort the files or sections
1999-05-03 09:29:11 +02:00
into ascending order by name before placing them in the output file.
2004-10-04 18:45:51 +02:00
@cindex SORT_BY_ALIGNMENT
@code{SORT_BY_ALIGNMENT} is very similar to @code{SORT_BY_NAME}. The
difference is @code{SORT_BY_ALIGNMENT} will sort sections into
ascending order by alignment before placing them in the output file.
@cindex SORT
@code{SORT} is an alias for @code{SORT_BY_NAME}.
When there are nested section sorting commands in linker script, there
can be at most 1 level of nesting for section sorting commands.
@enumerate
@item
@code{SORT_BY_NAME} (@code{SORT_BY_ALIGNMENT} (wildcard section pattern)).
It will sort the input sections by name first, then by alignment if 2
sections have the same name.
@item
@code{SORT_BY_ALIGNMENT} (@code{SORT_BY_NAME} (wildcard section pattern)).
It will sort the input sections by alignment first, then by name if 2
sections have the same alignment.
@item
2007-07-09 23:25:34 +02:00
@code{SORT_BY_NAME} (@code{SORT_BY_NAME} (wildcard section pattern)) is
2004-10-04 18:45:51 +02:00
treated the same as @code{SORT_BY_NAME} (wildcard section pattern).
@item
@code{SORT_BY_ALIGNMENT} (@code{SORT_BY_ALIGNMENT} (wildcard section pattern))
is treated the same as @code{SORT_BY_ALIGNMENT} (wildcard section pattern).
@item
All other nested section sorting commands are invalid.
@end enumerate
When both command line section sorting option and linker script
section sorting command are used, section sorting command always
takes precedence over the command line option.
If the section sorting command in linker script isn't nested, the
command line option will make the section sorting command to be
treated as nested sorting command.
@enumerate
@item
@code{SORT_BY_NAME} (wildcard section pattern ) with
@option{--sort-sections alignment} is equivalent to
@code{SORT_BY_NAME} (@code{SORT_BY_ALIGNMENT} (wildcard section pattern)).
@item
@code{SORT_BY_ALIGNMENT} (wildcard section pattern) with
@option{--sort-section name} is equivalent to
@code{SORT_BY_ALIGNMENT} (@code{SORT_BY_NAME} (wildcard section pattern)).
@end enumerate
If the section sorting command in linker script is nested, the
command line option will be ignored.
1999-05-03 09:29:11 +02:00
If you ever get confused about where input sections are going, use the
@samp{-M} linker option to generate a map file. The map file shows
precisely how input sections are mapped to output sections.
This example shows how wildcard patterns might be used to partition
files. This linker script directs the linker to place all @samp{.text}
sections in @samp{.text} and all @samp{.bss} sections in @samp{.bss}.
The linker will place the @samp{.data} section from all files beginning
with an upper case character in @samp{.DATA}; for all other files, the
linker will place the @samp{.data} section in @samp{.data}.
@smallexample
@group
SECTIONS @{
.text : @{ *(.text) @}
.DATA : @{ [A-Z]*(.data) @}
.data : @{ *(.data) @}
.bss : @{ *(.bss) @}
@}
@end group
@end smallexample
@node Input Section Common
2003-02-21 11:27:06 +01:00
@subsubsection Input Section for Common Symbols
1999-05-03 09:29:11 +02:00
@cindex common symbol placement
@cindex uninitialized data placement
A special notation is needed for common symbols, because in many object
file formats common symbols do not have a particular input section. The
linker treats common symbols as though they are in an input section
named @samp{COMMON}.
You may use file names with the @samp{COMMON} section just as with any
other input sections. You can use this to place common symbols from a
particular input file in one section while common symbols from other
input files are placed in another section.
In most cases, common symbols in input files will be placed in the
@samp{.bss} section in the output file. For example:
@smallexample
.bss @{ *(.bss) *(COMMON) @}
@end smallexample
@cindex scommon section
@cindex small common symbols
Some object file formats have more than one type of common symbol. For
example, the MIPS ELF object file format distinguishes standard common
symbols and small common symbols. In this case, the linker will use a
different special section name for other types of common symbols. In
the case of MIPS ELF, the linker uses @samp{COMMON} for standard common
symbols and @samp{.scommon} for small common symbols. This permits you
to map the different types of common symbols into memory at different
locations.
@cindex [COMMON]
You will sometimes see @samp{[COMMON]} in old linker scripts. This
notation is now considered obsolete. It is equivalent to
@samp{*(COMMON)}.
@node Input Section Keep
2003-02-21 11:27:06 +01:00
@subsubsection Input Section and Garbage Collection
1999-05-03 09:29:11 +02:00
@cindex KEEP
@cindex garbage collection
When link-time garbage collection is in use (@samp{--gc-sections}),
2001-03-17 22:24:26 +01:00
it is often useful to mark sections that should not be eliminated.
1999-05-03 09:29:11 +02:00
This is accomplished by surrounding an input section's wildcard entry
with @code{KEEP()}, as in @code{KEEP(*(.init))} or
2004-10-04 18:45:51 +02:00
@code{KEEP(SORT_BY_NAME(*)(.ctors))}.
1999-05-03 09:29:11 +02:00
@node Input Section Example
2003-02-21 11:27:06 +01:00
@subsubsection Input Section Example
1999-05-03 09:29:11 +02:00
The following example is a complete linker script. It tells the linker
to read all of the sections from file @file{all.o} and place them at the
start of output section @samp{outputa} which starts at location
@samp{0x10000}. All of section @samp{.input1} from file @file{foo.o}
follows immediately, in the same output section. All of section
@samp{.input2} from @file{foo.o} goes into output section
@samp{outputb}, followed by section @samp{.input1} from @file{foo1.o}.
All of the remaining @samp{.input1} and @samp{.input2} sections from any
files are written to output section @samp{outputc}.
@smallexample
@group
SECTIONS @{
outputa 0x10000 :
@{
all.o
foo.o (.input1)
@}
2003-02-21 11:27:06 +01:00
@end group
@group
1999-05-03 09:29:11 +02:00
outputb :
@{
foo.o (.input2)
foo1.o (.input1)
@}
2003-02-21 11:27:06 +01:00
@end group
@group
1999-05-03 09:29:11 +02:00
outputc :
@{
*(.input1)
*(.input2)
@}
@}
@end group
2001-03-17 22:24:26 +01:00
@end smallexample
1999-05-03 09:29:11 +02:00
@node Output Section Data
2003-02-21 11:27:06 +01:00
@subsection Output Section Data
1999-05-03 09:29:11 +02:00
@cindex data
@cindex section data
@cindex output section data
@kindex BYTE(@var{expression})
@kindex SHORT(@var{expression})
@kindex LONG(@var{expression})
@kindex QUAD(@var{expression})
@kindex SQUAD(@var{expression})
You can include explicit bytes of data in an output section by using
@code{BYTE}, @code{SHORT}, @code{LONG}, @code{QUAD}, or @code{SQUAD} as
an output section command. Each keyword is followed by an expression in
parentheses providing the value to store (@pxref{Expressions}). The
value of the expression is stored at the current value of the location
counter.
The @code{BYTE}, @code{SHORT}, @code{LONG}, and @code{QUAD} commands
store one, two, four, and eight bytes (respectively). After storing the
bytes, the location counter is incremented by the number of bytes
stored.
For example, this will store the byte 1 followed by the four byte value
of the symbol @samp{addr}:
@smallexample
BYTE(1)
LONG(addr)
@end smallexample
When using a 64 bit host or target, @code{QUAD} and @code{SQUAD} are the
same; they both store an 8 byte, or 64 bit, value. When both host and
target are 32 bits, an expression is computed as 32 bits. In this case
@code{QUAD} stores a 32 bit value zero extended to 64 bits, and
@code{SQUAD} stores a 32 bit value sign extended to 64 bits.
If the object file format of the output file has an explicit endianness,
which is the normal case, the value will be stored in that endianness.
When the object file format does not have an explicit endianness, as is
true of, for example, S-records, the value will be stored in the
endianness of the first input object file.
2003-02-21 11:27:06 +01:00
Note---these commands only work inside a section description and not
2000-04-25 02:27:24 +02:00
between them, so the following will produce an error from the linker:
@smallexample
SECTIONS @{@ .text : @{@ *(.text) @}@ LONG(1) .data : @{@ *(.data) @}@ @}@
@end smallexample
whereas this will work:
@smallexample
SECTIONS @{@ .text : @{@ *(.text) ; LONG(1) @}@ .data : @{@ *(.data) @}@ @}@
@end smallexample
1999-05-03 09:29:11 +02:00
@kindex FILL(@var{expression})
@cindex holes, filling
@cindex unspecified memory
You may use the @code{FILL} command to set the fill pattern for the
current section. It is followed by an expression in parentheses. Any
otherwise unspecified regions of memory within the section (for example,
gaps left due to the required alignment of input sections) are filled
2002-02-15 04:34:47 +01:00
with the value of the expression, repeated as
1999-05-03 09:29:11 +02:00
necessary. A @code{FILL} statement covers memory locations after the
point at which it occurs in the section definition; by including more
than one @code{FILL} statement, you can have different fill patterns in
different parts of an output section.
This example shows how to fill unspecified regions of memory with the
2001-08-17 11:51:08 +02:00
value @samp{0x90}:
1999-05-03 09:29:11 +02:00
@smallexample
2001-08-17 11:51:08 +02:00
FILL(0x90909090)
1999-05-03 09:29:11 +02:00
@end smallexample
The @code{FILL} command is similar to the @samp{=@var{fillexp}} output
2002-02-17 23:15:40 +01:00
section attribute, but it only affects the
1999-05-03 09:29:11 +02:00
part of the section following the @code{FILL} command, rather than the
entire section. If both are used, the @code{FILL} command takes
2002-02-17 23:15:40 +01:00
precedence. @xref{Output Section Fill}, for details on the fill
2002-02-15 04:34:47 +01:00
expression.
1999-05-03 09:29:11 +02:00
@node Output Section Keywords
2003-02-21 11:27:06 +01:00
@subsection Output Section Keywords
1999-05-03 09:29:11 +02:00
There are a couple of keywords which can appear as output section
commands.
@table @code
@kindex CREATE_OBJECT_SYMBOLS
@cindex input filename symbols
@cindex filename symbols
@item CREATE_OBJECT_SYMBOLS
The command tells the linker to create a symbol for each input file.
The name of each symbol will be the name of the corresponding input
file. The section of each symbol will be the output section in which
the @code{CREATE_OBJECT_SYMBOLS} command appears.
This is conventional for the a.out object file format. It is not
normally used for any other object file format.
@kindex CONSTRUCTORS
@cindex C++ constructors, arranging in link
@cindex constructors, arranging in link
@item CONSTRUCTORS
When linking using the a.out object file format, the linker uses an
unusual set construct to support C++ global constructors and
destructors. When linking object file formats which do not support
arbitrary sections, such as ECOFF and XCOFF, the linker will
automatically recognize C++ global constructors and destructors by name.
For these object file formats, the @code{CONSTRUCTORS} command tells the
linker to place constructor information in the output section where the
@code{CONSTRUCTORS} command appears. The @code{CONSTRUCTORS} command is
ignored for other object file formats.
The symbol @w{@code{__CTOR_LIST__}} marks the start of the global
2005-01-23 08:43:52 +01:00
constructors, and the symbol @w{@code{__CTOR_END__}} marks the end.
Similarly, @w{@code{__DTOR_LIST__}} and @w{@code{__DTOR_END__}} mark
the start and end of the global destructors. The
1999-05-03 09:29:11 +02:00
first word in the list is the number of entries, followed by the address
of each constructor or destructor, followed by a zero word. The
compiler must arrange to actually run the code. For these object file
formats @sc{gnu} C++ normally calls constructors from a subroutine
@code{__main}; a call to @code{__main} is automatically inserted into
the startup code for @code{main}. @sc{gnu} C++ normally runs
destructors either by using @code{atexit}, or directly from the function
@code{exit}.
For object file formats such as @code{COFF} or @code{ELF} which support
arbitrary section names, @sc{gnu} C++ will normally arrange to put the
addresses of global constructors and destructors into the @code{.ctors}
and @code{.dtors} sections. Placing the following sequence into your
linker script will build the sort of table which the @sc{gnu} C++
runtime code expects to see.
@smallexample
__CTOR_LIST__ = .;
LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
*(.ctors)
LONG(0)
__CTOR_END__ = .;
__DTOR_LIST__ = .;
LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
*(.dtors)
LONG(0)
__DTOR_END__ = .;
@end smallexample
If you are using the @sc{gnu} C++ support for initialization priority,
which provides some control over the order in which global constructors
are run, you must sort the constructors at link time to ensure that they
are executed in the correct order. When using the @code{CONSTRUCTORS}
2004-10-04 18:45:51 +02:00
command, use @samp{SORT_BY_NAME(CONSTRUCTORS)} instead. When using the
@code{.ctors} and @code{.dtors} sections, use @samp{*(SORT_BY_NAME(.ctors))} and
@samp{*(SORT_BY_NAME(.dtors))} instead of just @samp{*(.ctors)} and
1999-05-03 09:29:11 +02:00
@samp{*(.dtors)}.
Normally the compiler and linker will handle these issues automatically,
and you will not need to concern yourself with them. However, you may
need to consider this if you are using C++ and writing your own linker
scripts.
@end table
@node Output Section Discarding
2003-02-21 11:27:06 +01:00
@subsection Output Section Discarding
1999-05-03 09:29:11 +02:00
@cindex discarding sections
@cindex sections, discarding
@cindex removing sections
2006-10-17 15:41:49 +02:00
The linker will not create output sections with no contents. This is
for convenience when referring to input sections that may or may not
be present in any of the input files. For example:
1999-05-03 09:29:11 +02:00
@smallexample
2006-09-27 06:18:16 +02:00
.foo : @{ *(.foo) @}
1999-05-03 09:29:11 +02:00
@end smallexample
@noindent
will only create a @samp{.foo} section in the output file if there is a
2006-10-17 15:41:49 +02:00
@samp{.foo} section in at least one input file, and if the input
sections are not all empty. Other link script directives that allocate
space in an output section will also create the output section.
2006-10-23 05:09:35 +02:00
The linker will ignore address assignments (@pxref{Output Section Address})
2006-10-17 15:41:49 +02:00
on discarded output sections, except when the linker script defines
symbols in the output section. In that case the linker will obey
2006-10-23 05:09:35 +02:00
the address assignments, possibly advancing dot even though the
section is discarded.
1999-05-03 09:29:11 +02:00
@cindex /DISCARD/
The special output section name @samp{/DISCARD/} may be used to discard
input sections. Any input sections which are assigned to an output
section named @samp{/DISCARD/} are not included in the output file.
@node Output Section Attributes
2003-02-21 11:27:06 +01:00
@subsection Output Section Attributes
1999-05-03 09:29:11 +02:00
@cindex output section attributes
We showed above that the full description of an output section looked
like this:
2009-04-09 18:06:48 +02:00
1999-05-03 09:29:11 +02:00
@smallexample
2001-03-17 22:24:26 +01:00
@group
2003-07-27 13:58:28 +02:00
@var{section} [@var{address}] [(@var{type})] :
2009-04-09 18:06:48 +02:00
[AT(@var{lma})]
[ALIGN(@var{section_align})]
[SUBALIGN(@var{subsection_align})]
[@var{constraint}]
1999-05-03 09:29:11 +02:00
@{
@var{output-section-command}
@var{output-section-command}
@dots{}
2000-02-16 19:53:32 +01:00
@} [>@var{region}] [AT>@var{lma_region}] [:@var{phdr} :@var{phdr} @dots{}] [=@var{fillexp}]
1999-05-03 09:29:11 +02:00
@end group
@end smallexample
2009-04-09 18:06:48 +02:00
1999-05-03 09:29:11 +02:00
We've already described @var{section}, @var{address}, and
@var{output-section-command}. In this section we will describe the
remaining section attributes.
2001-03-17 22:24:26 +01:00
@menu
1999-05-03 09:29:11 +02:00
* Output Section Type:: Output section type
* Output Section LMA:: Output section LMA
2005-09-28 02:34:21 +02:00
* Forced Output Alignment:: Forced Output Alignment
2003-07-27 13:58:28 +02:00
* Forced Input Alignment:: Forced Input Alignment
2009-04-09 18:06:48 +02:00
* Output Section Constraint:: Output section constraint
1999-05-03 09:29:11 +02:00
* Output Section Region:: Output section region
* Output Section Phdr:: Output section phdr
* Output Section Fill:: Output section fill
@end menu
@node Output Section Type
2003-02-21 11:27:06 +01:00
@subsubsection Output Section Type
1999-05-03 09:29:11 +02:00
Each output section may have a type. The type is a keyword in
parentheses. The following types are defined:
@table @code
@item NOLOAD
The section should be marked as not loadable, so that it will not be
loaded into memory when the program is run.
@item DSECT
@itemx COPY
@itemx INFO
@itemx OVERLAY
These type names are supported for backward compatibility, and are
rarely used. They all have the same effect: the section should be
marked as not allocatable, so that no memory is allocated for the
section when the program is run.
@end table
@kindex NOLOAD
@cindex prevent unnecessary loading
@cindex loading, preventing
The linker normally sets the attributes of an output section based on
the input sections which map into it. You can override this by using
the section type. For example, in the script sample below, the
@samp{ROM} section is addressed at memory location @samp{0} and does not
need to be loaded when the program is run. The contents of the
@samp{ROM} section will appear in the linker output file as usual.
@smallexample
@group
SECTIONS @{
ROM 0 (NOLOAD) : @{ @dots{} @}
@dots{}
@}
@end group
@end smallexample
@node Output Section LMA
2003-02-21 11:27:06 +01:00
@subsubsection Output Section LMA
2000-02-16 19:53:32 +01:00
@kindex AT>@var{lma_region}
1999-05-03 09:29:11 +02:00
@kindex AT(@var{lma})
@cindex load address
@cindex section load address
Every section has a virtual address (VMA) and a load address (LMA); see
@ref{Basic Script Concepts}. The address expression which may appear in
an output section description sets the VMA (@pxref{Output Section
Address}).
2006-08-22 09:41:05 +02:00
The expression @var{lma} that follows the @code{AT} keyword specifies
the load address of the section.
2004-01-13 12:10:53 +01:00
Alternatively, with @samp{AT>@var{lma_region}} expression, you may
specify a memory region for the section's load address. @xref{MEMORY}.
Note that if the section has not had a VMA assigned to it then the
linker will use the @var{lma_region} as the VMA region as well.
2006-08-22 09:41:05 +02:00
If neither @code{AT} nor @code{AT>} is specified for an allocatable
section, the linker will set the LMA such that the difference between
VMA and LMA for the section is the same as the preceding output
section in the same region. If there is no preceding output section
or the section is not allocatable, the linker will set the LMA equal
to the VMA.
2004-01-13 12:10:53 +01:00
@xref{Output Section Region}.
1999-05-03 09:29:11 +02:00
@cindex ROM initialized data
@cindex initialized data in ROM
This feature is designed to make it easy to build a ROM image. For
example, the following linker script creates three output sections: one
called @samp{.text}, which starts at @code{0x1000}, one called
@samp{.mdata}, which is loaded at the end of the @samp{.text} section
even though its VMA is @code{0x2000}, and one called @samp{.bss} to hold
uninitialized data at address @code{0x3000}. The symbol @code{_data} is
defined with the value @code{0x2000}, which shows that the location
counter holds the VMA value, not the LMA value.
@smallexample
@group
SECTIONS
@{
.text 0x1000 : @{ *(.text) _etext = . ; @}
2001-03-17 22:24:26 +01:00
.mdata 0x2000 :
1999-05-03 09:29:11 +02:00
AT ( ADDR (.text) + SIZEOF (.text) )
@{ _data = . ; *(.data); _edata = . ; @}
.bss 0x3000 :
@{ _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;@}
@}
@end group
@end smallexample
The run-time initialization code for use with a program generated with
this linker script would include something like the following, to copy
the initialized data from the ROM image to its runtime address. Notice
how this code takes advantage of the symbols defined by the linker
script.
@smallexample
@group
extern char _etext, _data, _edata, _bstart, _bend;
char *src = &_etext;
char *dst = &_data;
/* ROM has data at end of text; copy it. */
while (dst < &_edata) @{
*dst++ = *src++;
@}
/* Zero bss */
for (dst = &_bstart; dst< &_bend; dst++)
*dst = 0;
@end group
@end smallexample
2005-09-28 02:34:21 +02:00
@node Forced Output Alignment
@subsubsection Forced Output Alignment
@kindex ALIGN(@var{section_align})
@cindex forcing output section alignment
@cindex output section alignment
2005-11-16 08:17:20 +01:00
You can increase an output section's alignment by using ALIGN.
2005-09-28 02:34:21 +02:00
2003-07-27 13:58:28 +02:00
@node Forced Input Alignment
@subsubsection Forced Input Alignment
@kindex SUBALIGN(@var{subsection_align})
@cindex forcing input section alignment
@cindex input section alignment
You can force input section alignment within an output section by using
SUBALIGN. The value specified overrides any alignment given by input
sections, whether larger or smaller.
2009-04-09 18:06:48 +02:00
@node Output Section Constraint
@subsubsection Output Section Constraint
@kindex ONLY_IF_RO
@kindex ONLY_IF_RW
@cindex constraints on output sections
You can specify that an output section should only be created if all
of its input sections are read-only or all of its input sections are
read-write by using the keyword @code{ONLY_IF_RO} and
@code{ONLY_IF_RW} respectively.
1999-05-03 09:29:11 +02:00
@node Output Section Region
2003-02-21 11:27:06 +01:00
@subsubsection Output Section Region
1999-05-03 09:29:11 +02:00
@kindex >@var{region}
@cindex section, assigning to memory region
@cindex memory regions and sections
You can assign a section to a previously defined region of memory by
using @samp{>@var{region}}. @xref{MEMORY}.
Here is a simple example:
@smallexample
@group
MEMORY @{ rom : ORIGIN = 0x1000, LENGTH = 0x1000 @}
SECTIONS @{ ROM : @{ *(.text) @} >rom @}
@end group
@end smallexample
@node Output Section Phdr
2003-02-21 11:27:06 +01:00
@subsubsection Output Section Phdr
1999-05-03 09:29:11 +02:00
@kindex :@var{phdr}
@cindex section, assigning to program header
@cindex program headers and sections
You can assign a section to a previously defined program segment by
using @samp{:@var{phdr}}. @xref{PHDRS}. If a section is assigned to
one or more segments, then all subsequent allocated sections will be
assigned to those segments as well, unless they use an explicitly
@code{:@var{phdr}} modifier. You can use @code{:NONE} to tell the
linker to not put the section in any segment at all.
Here is a simple example:
@smallexample
@group
PHDRS @{ text PT_LOAD ; @}
SECTIONS @{ .text : @{ *(.text) @} :text @}
@end group
@end smallexample
@node Output Section Fill
2003-02-21 11:27:06 +01:00
@subsubsection Output Section Fill
1999-05-03 09:29:11 +02:00
@kindex =@var{fillexp}
@cindex section fill pattern
@cindex fill pattern, entire section
You can set the fill pattern for an entire section by using
@samp{=@var{fillexp}}. @var{fillexp} is an expression
(@pxref{Expressions}). Any otherwise unspecified regions of memory
within the output section (for example, gaps left due to the required
2002-02-15 04:34:47 +01:00
alignment of input sections) will be filled with the value, repeated as
necessary. If the fill expression is a simple hex number, ie. a string
2002-02-17 23:15:40 +01:00
of hex digit starting with @samp{0x} and without a trailing @samp{k} or @samp{M}, then
2002-02-15 04:34:47 +01:00
an arbitrarily long sequence of hex digits can be used to specify the
fill pattern; Leading zeros become part of the pattern too. For all
2002-02-17 23:15:40 +01:00
other cases, including extra parentheses or a unary @code{+}, the fill
2002-02-15 04:34:47 +01:00
pattern is the four least significant bytes of the value of the
expression. In all cases, the number is big-endian.
1999-05-03 09:29:11 +02:00
You can also change the fill value with a @code{FILL} command in the
2002-02-17 23:15:40 +01:00
output section commands; (@pxref{Output Section Data}).
1999-05-03 09:29:11 +02:00
Here is a simple example:
@smallexample
@group
2001-08-17 11:51:08 +02:00
SECTIONS @{ .text : @{ *(.text) @} =0x90909090 @}
1999-05-03 09:29:11 +02:00
@end group
@end smallexample
@node Overlay Description
2003-02-21 11:27:06 +01:00
@subsection Overlay Description
1999-05-03 09:29:11 +02:00
@kindex OVERLAY
@cindex overlays
An overlay description provides an easy way to describe sections which
are to be loaded as part of a single memory image but are to be run at
the same memory address. At run time, some sort of overlay manager will
copy the overlaid sections in and out of the runtime memory address as
required, perhaps by simply manipulating addressing bits. This approach
can be useful, for example, when a certain region of memory is faster
than another.
Overlays are described using the @code{OVERLAY} command. The
@code{OVERLAY} command is used within a @code{SECTIONS} command, like an
output section description. The full syntax of the @code{OVERLAY}
command is as follows:
@smallexample
@group
OVERLAY [@var{start}] : [NOCROSSREFS] [AT ( @var{ldaddr} )]
@{
@var{secname1}
@{
@var{output-section-command}
@var{output-section-command}
@dots{}
@} [:@var{phdr}@dots{}] [=@var{fill}]
@var{secname2}
@{
@var{output-section-command}
@var{output-section-command}
@dots{}
@} [:@var{phdr}@dots{}] [=@var{fill}]
@dots{}
@} [>@var{region}] [:@var{phdr}@dots{}] [=@var{fill}]
@end group
@end smallexample
Everything is optional except @code{OVERLAY} (a keyword), and each
section must have a name (@var{secname1} and @var{secname2} above). The
section definitions within the @code{OVERLAY} construct are identical to
those within the general @code{SECTIONS} contruct (@pxref{SECTIONS}),
except that no addresses and no memory regions may be defined for
sections within an @code{OVERLAY}.
The sections are all defined with the same starting address. The load
addresses of the sections are arranged such that they are consecutive in
memory starting at the load address used for the @code{OVERLAY} as a
whole (as with normal section definitions, the load address is optional,
and defaults to the start address; the start address is also optional,
and defaults to the current value of the location counter).
If the @code{NOCROSSREFS} keyword is used, and there any references
among the sections, the linker will report an error. Since the sections
all run at the same address, it normally does not make sense for one
section to refer directly to another. @xref{Miscellaneous Commands,
NOCROSSREFS}.
For each section within the @code{OVERLAY}, the linker automatically
2007-03-24 07:49:03 +01:00
provides two symbols. The symbol @code{__load_start_@var{secname}} is
1999-05-03 09:29:11 +02:00
defined as the starting load address of the section. The symbol
@code{__load_stop_@var{secname}} is defined as the final load address of
the section. Any characters within @var{secname} which are not legal
within C identifiers are removed. C (or assembler) code may use these
symbols to move the overlaid sections around as necessary.
At the end of the overlay, the value of the location counter is set to
the start address of the overlay plus the size of the largest section.
Here is an example. Remember that this would appear inside a
@code{SECTIONS} construct.
@smallexample
@group
OVERLAY 0x1000 : AT (0x4000)
@{
.text0 @{ o1/*.o(.text) @}
.text1 @{ o2/*.o(.text) @}
@}
@end group
@end smallexample
@noindent
This will define both @samp{.text0} and @samp{.text1} to start at
address 0x1000. @samp{.text0} will be loaded at address 0x4000, and
@samp{.text1} will be loaded immediately after @samp{.text0}. The
2007-03-24 07:49:03 +01:00
following symbols will be defined if referenced: @code{__load_start_text0},
1999-05-03 09:29:11 +02:00
@code{__load_stop_text0}, @code{__load_start_text1},
@code{__load_stop_text1}.
C code to copy overlay @code{.text1} into the overlay area might look
like the following.
@smallexample
@group
extern char __load_start_text1, __load_stop_text1;
memcpy ((char *) 0x1000, &__load_start_text1,
&__load_stop_text1 - &__load_start_text1);
@end group
@end smallexample
Note that the @code{OVERLAY} command is just syntactic sugar, since
everything it does can be done using the more basic commands. The above
example could have been written identically as follows.
@smallexample
@group
.text0 0x1000 : AT (0x4000) @{ o1/*.o(.text) @}
2007-03-24 07:49:03 +01:00
PROVIDE (__load_start_text0 = LOADADDR (.text0));
PROVIDE (__load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0));
1999-05-03 09:29:11 +02:00
.text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) @{ o2/*.o(.text) @}
2007-03-24 07:49:03 +01:00
PROVIDE (__load_start_text1 = LOADADDR (.text1));
PROVIDE (__load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1));
1999-05-03 09:29:11 +02:00
. = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));
@end group
@end smallexample
@node MEMORY
2003-02-21 11:27:06 +01:00
@section MEMORY Command
1999-05-03 09:29:11 +02:00
@kindex MEMORY
@cindex memory regions
@cindex regions of memory
@cindex allocating memory
@cindex discontinuous memory
The linker's default configuration permits allocation of all available
memory. You can override this by using the @code{MEMORY} command.
The @code{MEMORY} command describes the location and size of blocks of
memory in the target. You can use it to describe which memory regions
may be used by the linker, and which memory regions it must avoid. You
can then assign sections to particular memory regions. The linker will
set section addresses based on the memory regions, and will warn about
regions that become too full. The linker will not shuffle sections
around to fit into the available regions.
A linker script may contain at most one use of the @code{MEMORY}
command. However, you can define as many blocks of memory within it as
you wish. The syntax is:
@smallexample
@group
2001-03-17 22:24:26 +01:00
MEMORY
1999-05-03 09:29:11 +02:00
@{
@var{name} [(@var{attr})] : ORIGIN = @var{origin}, LENGTH = @var{len}
@dots{}
@}
@end group
@end smallexample
The @var{name} is a name used in the linker script to refer to the
region. The region name has no meaning outside of the linker script.
Region names are stored in a separate name space, and will not conflict
with symbol names, file names, or section names. Each memory region
2009-03-02 18:27:36 +01:00
must have a distinct name within the @code{MEMORY} command. However you can
add later alias names to existing memory regions with the @ref{REGION_ALIAS}
command.
1999-05-03 09:29:11 +02:00
@cindex memory region attributes
The @var{attr} string is an optional list of attributes that specify
whether to use a particular memory region for an input section which is
not explicitly mapped in the linker script. As described in
@ref{SECTIONS}, if you do not specify an output section for some input
section, the linker will create an output section with the same name as
the input section. If you define region attributes, the linker will use
them to select the memory region for the output section that it creates.
The @var{attr} string must consist only of the following characters:
@table @samp
@item R
Read-only section
@item W
Read/write section
@item X
Executable section
@item A
Allocatable section
@item I
Initialized section
@item L
Same as @samp{I}
@item !
Invert the sense of any of the preceding attributes
@end table
If a unmapped section matches any of the listed attributes other than
@samp{!}, it will be placed in the memory region. The @samp{!}
attribute reverses this test, so that an unmapped section will be placed
in the memory region only if it does not match any of the listed
attributes.
@kindex ORIGIN =
@kindex o =
@kindex org =
2004-11-19 10:38:04 +01:00
The @var{origin} is an numerical expression for the start address of
the memory region. The expression must evaluate to a constant and it
cannot involve any symbols. The keyword @code{ORIGIN} may be
abbreviated to @code{org} or @code{o} (but not, for example,
@code{ORG}).
1999-05-03 09:29:11 +02:00
@kindex LENGTH =
@kindex len =
@kindex l =
The @var{len} is an expression for the size in bytes of the memory
region. As with the @var{origin} expression, the expression must
2004-11-19 10:38:04 +01:00
be numerical only and must evaluate to a constant. The keyword
@code{LENGTH} may be abbreviated to @code{len} or @code{l}.
1999-05-03 09:29:11 +02:00
In the following example, we specify that there are two memory regions
available for allocation: one starting at @samp{0} for 256 kilobytes,
and the other starting at @samp{0x40000000} for four megabytes. The
linker will place into the @samp{rom} memory region every section which
is not explicitly mapped into a memory region, and is either read-only
or executable. The linker will place other sections which are not
explicitly mapped into a memory region into the @samp{ram} memory
region.
@smallexample
@group
2001-03-17 22:24:26 +01:00
MEMORY
1999-05-03 09:29:11 +02:00
@{
rom (rx) : ORIGIN = 0, LENGTH = 256K
ram (!rx) : org = 0x40000000, l = 4M
@}
@end group
@end smallexample
Once you define a memory region, you can direct the linker to place
specific output sections into that memory region by using the
@samp{>@var{region}} output section attribute. For example, if you have
a memory region named @samp{mem}, you would use @samp{>mem} in the
output section definition. @xref{Output Section Region}. If no address
was specified for the output section, the linker will set the address to
the next available address within the memory region. If the combined
output sections directed to a memory region are too large for the
region, the linker will issue an error message.
2004-11-19 10:31:55 +01:00
It is possible to access the origin and length of a memory in an
2007-07-09 23:25:34 +02:00
expression via the @code{ORIGIN(@var{memory})} and
2004-11-19 10:31:55 +01:00
@code{LENGTH(@var{memory})} functions:
@smallexample
@group
2007-07-09 23:25:34 +02:00
_fstack = ORIGIN(ram) + LENGTH(ram) - 4;
2004-11-19 10:31:55 +01:00
@end group
@end smallexample
1999-05-03 09:29:11 +02:00
@node PHDRS
@section PHDRS Command
@kindex PHDRS
@cindex program headers
@cindex ELF program headers
@cindex program segments
@cindex segments, ELF
The ELF object file format uses @dfn{program headers}, also knows as
@dfn{segments}. The program headers describe how the program should be
loaded into memory. You can print them out by using the @code{objdump}
program with the @samp{-p} option.
When you run an ELF program on a native ELF system, the system loader
reads the program headers in order to figure out how to load the
program. This will only work if the program headers are set correctly.
This manual does not describe the details of how the system loader
interprets program headers; for more information, see the ELF ABI.
The linker will create reasonable program headers by default. However,
in some cases, you may need to specify the program headers more
precisely. You may use the @code{PHDRS} command for this purpose. When
the linker sees the @code{PHDRS} command in the linker script, it will
not create any program headers other than the ones specified.
The linker only pays attention to the @code{PHDRS} command when
generating an ELF output file. In other cases, the linker will simply
ignore @code{PHDRS}.
This is the syntax of the @code{PHDRS} command. The words @code{PHDRS},
@code{FILEHDR}, @code{AT}, and @code{FLAGS} are keywords.
@smallexample
@group
PHDRS
@{
@var{name} @var{type} [ FILEHDR ] [ PHDRS ] [ AT ( @var{address} ) ]
[ FLAGS ( @var{flags} ) ] ;
@}
@end group
@end smallexample
The @var{name} is used only for reference in the @code{SECTIONS} command
of the linker script. It is not put into the output file. Program
header names are stored in a separate name space, and will not conflict
with symbol names, file names, or section names. Each program header
2009-10-07 09:25:36 +02:00
must have a distinct name. The headers are processed in order and it
is usual for them to map to sections in ascending load address order.
1999-05-03 09:29:11 +02:00
Certain program header types describe segments of memory which the
system loader will load from the file. In the linker script, you
specify the contents of these segments by placing allocatable output
sections in the segments. You use the @samp{:@var{phdr}} output section
attribute to place a section in a particular segment. @xref{Output
Section Phdr}.
It is normal to put certain sections in more than one segment. This
merely implies that one segment of memory contains another. You may
repeat @samp{:@var{phdr}}, using it once for each segment which should
contain the section.
If you place a section in one or more segments using @samp{:@var{phdr}},
then the linker will place all subsequent allocatable sections which do
not specify @samp{:@var{phdr}} in the same segments. This is for
convenience, since generally a whole set of contiguous sections will be
placed in a single segment. You can use @code{:NONE} to override the
default segment and tell the linker to not put the section in any
segment at all.
@kindex FILEHDR
@kindex PHDRS
2009-10-07 09:25:36 +02:00
You may use the @code{FILEHDR} and @code{PHDRS} keywords after
1999-05-03 09:29:11 +02:00
the program header type to further describe the contents of the segment.
The @code{FILEHDR} keyword means that the segment should include the ELF
file header. The @code{PHDRS} keyword means that the segment should
2009-10-07 09:25:36 +02:00
include the ELF program headers themselves. If applied to a loadable
2009-10-08 03:00:27 +02:00
segment (@code{PT_LOAD}), all prior loadable segments must have one of
these keywords.
1999-05-03 09:29:11 +02:00
The @var{type} may be one of the following. The numbers indicate the
value of the keyword.
@table @asis
@item @code{PT_NULL} (0)
Indicates an unused program header.
@item @code{PT_LOAD} (1)
Indicates that this program header describes a segment to be loaded from
the file.
@item @code{PT_DYNAMIC} (2)
Indicates a segment where dynamic linking information can be found.
@item @code{PT_INTERP} (3)
Indicates a segment where the name of the program interpreter may be
found.
@item @code{PT_NOTE} (4)
Indicates a segment holding note information.
@item @code{PT_SHLIB} (5)
A reserved program header type, defined but not specified by the ELF
ABI.
@item @code{PT_PHDR} (6)
Indicates a segment where the program headers may be found.
@item @var{expression}
An expression giving the numeric type of the program header. This may
be used for types not defined above.
@end table
You can specify that a segment should be loaded at a particular address
in memory by using an @code{AT} expression. This is identical to the
@code{AT} command used as an output section attribute (@pxref{Output
Section LMA}). The @code{AT} command for a program header overrides the
output section attribute.
The linker will normally set the segment flags based on the sections
which comprise the segment. You may use the @code{FLAGS} keyword to
explicitly specify the segment flags. The value of @var{flags} must be
an integer. It is used to set the @code{p_flags} field of the program
header.
Here is an example of @code{PHDRS}. This shows a typical set of program
headers used on a native ELF system.
@example
@group
PHDRS
@{
headers PT_PHDR PHDRS ;
interp PT_INTERP ;
text PT_LOAD FILEHDR PHDRS ;
data PT_LOAD ;
dynamic PT_DYNAMIC ;
@}
SECTIONS
@{
. = SIZEOF_HEADERS;
.interp : @{ *(.interp) @} :text :interp
.text : @{ *(.text) @} :text
.rodata : @{ *(.rodata) @} /* defaults to :text */
@dots{}
. = . + 0x1000; /* move to a new page in memory */
.data : @{ *(.data) @} :data
.dynamic : @{ *(.dynamic) @} :data :dynamic
@dots{}
@}
@end group
@end example
@node VERSION
@section VERSION Command
@kindex VERSION @{script text@}
@cindex symbol versions
@cindex version script
@cindex versions of symbols
The linker supports symbol versions when using ELF. Symbol versions are
only useful when using shared libraries. The dynamic linker can use
symbol versions to select a specific version of a function when it runs
a program that may have been linked against an earlier version of the
shared library.
You can include a version script directly in the main linker script, or
you can supply the version script as an implicit linker script. You can
also use the @samp{--version-script} linker option.
The syntax of the @code{VERSION} command is simply
@smallexample
VERSION @{ version-script-commands @}
@end smallexample
The format of the version script commands is identical to that used by
Sun's linker in Solaris 2.5. The version script defines a tree of
version nodes. You specify the node names and interdependencies in the
version script. You can specify which symbols are bound to which
version nodes, and you can reduce a specified set of symbols to local
scope so that they are not globally visible outside of the shared
library.
The easiest way to demonstrate the version script language is with a few
examples.
@smallexample
VERS_1.1 @{
global:
foo1;
local:
2001-03-17 22:24:26 +01:00
old*;
original*;
new*;
1999-05-03 09:29:11 +02:00
@};
VERS_1.2 @{
foo2;
@} VERS_1.1;
VERS_2.0 @{
bar1; bar2;
2007-07-09 23:25:34 +02:00
extern "C++" @{
2005-10-13 19:29:57 +02:00
ns::*;
"int f(int, double)";
2007-07-09 23:25:34 +02:00
@}
1999-05-03 09:29:11 +02:00
@} VERS_1.2;
@end smallexample
This example version script defines three version nodes. The first
version node defined is @samp{VERS_1.1}; it has no other dependencies.
The script binds the symbol @samp{foo1} to @samp{VERS_1.1}. It reduces
a number of symbols to local scope so that they are not visible outside
2002-02-14 05:24:33 +01:00
of the shared library; this is done using wildcard patterns, so that any
symbol whose name begins with @samp{old}, @samp{original}, or @samp{new}
is matched. The wildcard patterns available are the same as those used
in the shell when matching filenames (also known as ``globbing'').
2005-10-13 19:29:57 +02:00
However, if you specify the symbol name inside double quotes, then the
name is treated as literal, rather than as a glob pattern.
1999-05-03 09:29:11 +02:00
Next, the version script defines node @samp{VERS_1.2}. This node
depends upon @samp{VERS_1.1}. The script binds the symbol @samp{foo2}
to the version node @samp{VERS_1.2}.
Finally, the version script defines node @samp{VERS_2.0}. This node
depends upon @samp{VERS_1.2}. The scripts binds the symbols @samp{bar1}
and @samp{bar2} are bound to the version node @samp{VERS_2.0}.
When the linker finds a symbol defined in a library which is not
specifically bound to a version node, it will effectively bind it to an
unspecified base version of the library. You can bind all otherwise
2002-12-02 01:40:28 +01:00
unspecified symbols to a given version node by using @samp{global: *;}
2008-11-26 02:04:17 +01:00
somewhere in the version script. Note that it's slightly crazy to use
wildcards in a global spec except on the last version node. Global
wildcards elsewhere run the risk of accidentally adding symbols to the
set exported for an old version. That's wrong since older versions
ought to have a fixed set of symbols.
1999-05-03 09:29:11 +02:00
The names of the version nodes have no specific meaning other than what
they might suggest to the person reading them. The @samp{2.0} version
could just as well have appeared in between @samp{1.1} and @samp{1.2}.
However, this would be a confusing way to write a version script.
2006-11-20 21:07:51 +01:00
Node name can be omitted, provided it is the only version node
2001-12-18 13:15:35 +01:00
in the version script. Such version script doesn't assign any versions to
symbols, only selects which symbols will be globally visible out and which
won't.
@smallexample
2002-11-27 20:42:10 +01:00
@{ global: foo; bar; local: *; @};
2001-12-19 10:20:22 +01:00
@end smallexample
2001-12-18 13:15:35 +01:00
1999-05-03 09:29:11 +02:00
When you link an application against a shared library that has versioned
symbols, the application itself knows which version of each symbol it
requires, and it also knows which version nodes it needs from each
shared library it is linked against. Thus at runtime, the dynamic
loader can make a quick check to make sure that the libraries you have
linked against do in fact supply all of the version nodes that the
application will need to resolve all of the dynamic symbols. In this
way it is possible for the dynamic linker to know with certainty that
all external symbols that it needs will be resolvable without having to
search for each symbol reference.
The symbol versioning is in effect a much more sophisticated way of
doing minor version checking that SunOS does. The fundamental problem
that is being addressed here is that typically references to external
functions are bound on an as-needed basis, and are not all bound when
the application starts up. If a shared library is out of date, a
required interface may be missing; when the application tries to use
that interface, it may suddenly and unexpectedly fail. With symbol
versioning, the user will get a warning when they start their program if
the libraries being used with the application are too old.
There are several GNU extensions to Sun's versioning approach. The
first of these is the ability to bind a symbol to a version node in the
source file where the symbol is defined instead of in the versioning
script. This was done mainly to reduce the burden on the library
maintainer. You can do this by putting something like:
@smallexample
__asm__(".symver original_foo,foo@@VERS_1.1");
@end smallexample
@noindent
in the C source file. This renames the function @samp{original_foo} to
be an alias for @samp{foo} bound to the version node @samp{VERS_1.1}.
The @samp{local:} directive can be used to prevent the symbol
2002-07-15 04:23:26 +02:00
@samp{original_foo} from being exported. A @samp{.symver} directive
takes precedence over a version script.
1999-05-03 09:29:11 +02:00
The second GNU extension is to allow multiple versions of the same
function to appear in a given shared library. In this way you can make
an incompatible change to an interface without increasing the major
version number of the shared library, while still allowing applications
linked against the old interface to continue to function.
To do this, you must use multiple @samp{.symver} directives in the
source file. Here is an example:
@smallexample
__asm__(".symver original_foo,foo@@");
__asm__(".symver old_foo,foo@@VERS_1.1");
__asm__(".symver old_foo1,foo@@VERS_1.2");
__asm__(".symver new_foo,foo@@@@VERS_2.0");
@end smallexample
In this example, @samp{foo@@} represents the symbol @samp{foo} bound to the
unspecified base version of the symbol. The source file that contains this
example would define 4 C functions: @samp{original_foo}, @samp{old_foo},
@samp{old_foo1}, and @samp{new_foo}.
When you have multiple definitions of a given symbol, there needs to be
some way to specify a default version to which external references to
this symbol will be bound. You can do this with the
@samp{foo@@@@VERS_2.0} type of @samp{.symver} directive. You can only
declare one version of a symbol as the default in this manner; otherwise
you would effectively have multiple definitions of the same symbol.
If you wish to bind a reference to a specific version of the symbol
within the shared library, you can use the aliases of convenience
2003-02-21 11:27:06 +01:00
(i.e., @samp{old_foo}), or you can use the @samp{.symver} directive to
1999-05-03 09:29:11 +02:00
specifically bind to an external version of the function in question.
2001-06-19 17:22:39 +02:00
You can also specify the language in the version script:
@smallexample
VERSION extern "lang" @{ version-script-commands @}
@end smallexample
2007-07-09 23:25:34 +02:00
The supported @samp{lang}s are @samp{C}, @samp{C++}, and @samp{Java}.
2001-06-19 17:22:39 +02:00
The linker will iterate over the list of symbols at the link time and
demangle them according to @samp{lang} before matching them to the
patterns specified in @samp{version-script-commands}.
2005-10-13 19:29:57 +02:00
Demangled names may contains spaces and other special characters. As
described above, you can use a glob pattern to match demangled names,
or you can use a double-quoted string to match the string exactly. In
the latter case, be aware that minor differences (such as differing
whitespace) between the version script and the demangler output will
cause a mismatch. As the exact string generated by the demangler
might change in the future, even if the mangled name does not, you
should check that all of your version directives are behaving as you
expect when you upgrade.
1999-05-03 09:29:11 +02:00
@node Expressions
@section Expressions in Linker Scripts
@cindex expressions
@cindex arithmetic
The syntax for expressions in the linker script language is identical to
that of C expressions. All expressions are evaluated as integers. All
expressions are evaluated in the same size, which is 32 bits if both the
host and target are 32 bits, and is otherwise 64 bits.
You can use and set symbol values in expressions.
The linker defines several special purpose builtin functions for use in
expressions.
@menu
* Constants:: Constants
2009-04-09 18:06:48 +02:00
* Symbolic Constants:: Symbolic constants
1999-05-03 09:29:11 +02:00
* Symbols:: Symbol Names
2005-10-15 16:57:55 +02:00
* Orphan Sections:: Orphan Sections
1999-05-03 09:29:11 +02:00
* Location Counter:: The Location Counter
* Operators:: Operators
* Evaluation:: Evaluation
* Expression Section:: The Section of an Expression
* Builtin Functions:: Builtin Functions
@end menu
@node Constants
@subsection Constants
@cindex integer notation
@cindex constants in linker scripts
All constants are integers.
As in C, the linker considers an integer beginning with @samp{0} to be
octal, and an integer beginning with @samp{0x} or @samp{0X} to be
2009-02-03 18:04:53 +01:00
hexadecimal. Alternatively the linker accepts suffixes of @samp{h} or
@samp{H} for hexadeciaml, @samp{o} or @samp{O} for octal, @samp{b} or
@samp{B} for binary and @samp{d} or @samp{D} for decimal. Any integer
value without a prefix or a suffix is considered to be decimal.
1999-05-03 09:29:11 +02:00
@cindex scaled integers
@cindex K and M integer suffixes
@cindex M and K integer suffixes
@cindex suffixes for integers
@cindex integer suffixes
In addition, you can use the suffixes @code{K} and @code{M} to scale a
constant by
@c TEXI2ROFF-KILL
2003-02-21 11:27:06 +01:00
@ifnottex
1999-05-03 09:29:11 +02:00
@c END TEXI2ROFF-KILL
@code{1024} or @code{1024*1024}
@c TEXI2ROFF-KILL
2003-02-21 11:27:06 +01:00
@end ifnottex
1999-05-03 09:29:11 +02:00
@tex
${\rm 1024}$ or ${\rm 1024}^2$
@end tex
@c END TEXI2ROFF-KILL
2009-02-03 18:04:53 +01:00
respectively. For example, the following
all refer to the same quantity:
1999-05-03 09:29:11 +02:00
@smallexample
2003-02-21 11:27:06 +01:00
_fourk_1 = 4K;
_fourk_2 = 4096;
_fourk_3 = 0x1000;
2009-02-03 18:04:53 +01:00
_fourk_4 = 10000o;
1999-05-03 09:29:11 +02:00
@end smallexample
2009-02-03 18:04:53 +01:00
Note - the @code{K} and @code{M} suffixes cannot be used in
conjunction with the base suffixes mentioned above.
2009-04-09 18:06:48 +02:00
@node Symbolic Constants
@subsection Symbolic Constants
@cindex symbolic constants
@kindex CONSTANT
It is possible to refer to target specific constants via the use of
the @code{CONSTANT(@var{name})} operator, where @var{name} is one of:
@table @code
@item MAXPAGESIZE
@kindex MAXPAGESIZE
The target's maximum page size.
@item COMMONPAGESIZE
@kindex COMMONPAGESIZE
The target's default page size.
@end table
So for example:
@smallexample
.text ALIGN (CONSTANT (MAXPAGESIZE)) : @{ *(.text) @}
@end smallexample
will create a text section aligned to the largest page boundary
supported by the target.
1999-05-03 09:29:11 +02:00
@node Symbols
@subsection Symbol Names
@cindex symbol names
@cindex names
@cindex quoted symbol names
@kindex "
Unless quoted, symbol names start with a letter, underscore, or period
and may include letters, digits, underscores, periods, and hyphens.
Unquoted symbol names must not conflict with any keywords. You can
specify a symbol which contains odd characters or has the same name as a
keyword by surrounding the symbol name in double quotes:
@smallexample
2003-02-21 11:27:06 +01:00
"SECTION" = 9;
"with a space" = "also with a space" + 10;
1999-05-03 09:29:11 +02:00
@end smallexample
Since symbols can contain many non-alphabetic characters, it is safest
to delimit symbols with spaces. For example, @samp{A-B} is one symbol,
whereas @samp{A - B} is an expression involving subtraction.
2005-10-15 16:57:55 +02:00
@node Orphan Sections
@subsection Orphan Sections
@cindex orphan
Orphan sections are sections present in the input files which
are not explicitly placed into the output file by the linker
script. The linker will still copy these sections into the
output file, but it has to guess as to where they should be
placed. The linker uses a simple heuristic to do this. It
attempts to place orphan sections after non-orphan sections of the
same attribute, such as code vs data, loadable vs non-loadable, etc.
If there is not enough room to do this then it places
at the end of the file.
For ELF targets, the attribute of the section includes section type as
well as section flag.
2008-05-21 12:59:12 +02:00
If an orphaned section's name is representable as a C identifier then
2008-06-04 12:07:22 +02:00
the linker will automatically @pxref{PROVIDE} two symbols:
2008-05-21 12:59:12 +02:00
__start_SECNAME and __end_SECNAME, where SECNAME is the name of the
section. These indicate the start address and end address of the
orphaned section respectively. Note: most section names are not
representable as C identifiers because they contain a @samp{.}
character.
1999-05-03 09:29:11 +02:00
@node Location Counter
@subsection The Location Counter
@kindex .
@cindex dot
@cindex location counter
@cindex current output location
The special linker variable @dfn{dot} @samp{.} always contains the
current output location counter. Since the @code{.} always refers to a
location in an output section, it may only appear in an expression
within a @code{SECTIONS} command. The @code{.} symbol may appear
anywhere that an ordinary symbol is allowed in an expression.
@cindex holes
Assigning a value to @code{.} will cause the location counter to be
moved. This may be used to create holes in the output section. The
2006-08-22 09:41:05 +02:00
location counter may not be moved backwards inside an output section,
and may not be moved backwards outside of an output section if so
doing creates areas with overlapping LMAs.
1999-05-03 09:29:11 +02:00
@smallexample
SECTIONS
@{
output :
@{
file1(.text)
. = . + 1000;
file2(.text)
. += 1000;
file3(.text)
2001-08-17 11:51:08 +02:00
@} = 0x12345678;
1999-05-03 09:29:11 +02:00
@}
@end smallexample
@noindent
In the previous example, the @samp{.text} section from @file{file1} is
located at the beginning of the output section @samp{output}. It is
followed by a 1000 byte gap. Then the @samp{.text} section from
@file{file2} appears, also with a 1000 byte gap following before the
2001-08-17 11:51:08 +02:00
@samp{.text} section from @file{file3}. The notation @samp{= 0x12345678}
1999-05-03 09:29:11 +02:00
specifies what data to write in the gaps (@pxref{Output Section Fill}).
1999-06-22 13:23:06 +02:00
@cindex dot inside sections
Note: @code{.} actually refers to the byte offset from the start of the
current containing object. Normally this is the @code{SECTIONS}
2002-12-19 18:25:02 +01:00
statement, whose start address is 0, hence @code{.} can be used as an
1999-06-22 13:23:06 +02:00
absolute address. If @code{.} is used inside a section description
however, it refers to the byte offset from the start of that section,
not an absolute address. Thus in a script like this:
@smallexample
SECTIONS
@{
. = 0x100
.text: @{
*(.text)
. = 0x200
@}
. = 0x500
.data: @{
*(.data)
. += 0x600
@}
@}
@end smallexample
The @samp{.text} section will be assigned a starting address of 0x100
and a size of exactly 0x200 bytes, even if there is not enough data in
the @samp{.text} input sections to fill this area. (If there is too
much data, an error will be produced because this would be an attempt to
move @code{.} backwards). The @samp{.data} section will start at 0x500
and it will have an extra 0x600 bytes worth of space after the end of
the values from the @samp{.data} input sections and before the end of
the @samp{.data} output section itself.
2005-01-23 06:36:37 +01:00
@cindex dot outside sections
Setting symbols to the value of the location counter outside of an
output section statement can result in unexpected values if the linker
needs to place orphan sections. For example, given the following:
@smallexample
SECTIONS
@{
start_of_text = . ;
.text: @{ *(.text) @}
end_of_text = . ;
start_of_data = . ;
.data: @{ *(.data) @}
end_of_data = . ;
@}
@end smallexample
If the linker needs to place some input section, e.g. @code{.rodata},
not mentioned in the script, it might choose to place that section
between @code{.text} and @code{.data}. You might think the linker
should place @code{.rodata} on the blank line in the above script, but
blank lines are of no particular significance to the linker. As well,
the linker doesn't associate the above symbol names with their
sections. Instead, it assumes that all assignments or other
statements belong to the previous output section, except for the
special case of an assignment to @code{.}. I.e., the linker will
place the orphan @code{.rodata} section as if the script was written
as follows:
@smallexample
SECTIONS
@{
start_of_text = . ;
.text: @{ *(.text) @}
end_of_text = . ;
start_of_data = . ;
.rodata: @{ *(.rodata) @}
.data: @{ *(.data) @}
end_of_data = . ;
@}
@end smallexample
This may or may not be the script author's intention for the value of
@code{start_of_data}. One way to influence the orphan section
placement is to assign the location counter to itself, as the linker
assumes that an assignment to @code{.} is setting the start address of
a following output section and thus should be grouped with that
section. So you could write:
@smallexample
SECTIONS
@{
start_of_text = . ;
.text: @{ *(.text) @}
end_of_text = . ;
. = . ;
start_of_data = . ;
.data: @{ *(.data) @}
end_of_data = . ;
@}
@end smallexample
Now, the orphan @code{.rodata} section will be placed between
@code{end_of_text} and @code{start_of_data}.
1999-05-03 09:29:11 +02:00
@need 2000
@node Operators
@subsection Operators
@cindex operators for arithmetic
@cindex arithmetic operators
@cindex precedence in expressions
The linker recognizes the standard C set of arithmetic operators, with
the standard bindings and precedence levels:
@c TEXI2ROFF-KILL
2003-02-21 11:27:06 +01:00
@ifnottex
1999-05-03 09:29:11 +02:00
@c END TEXI2ROFF-KILL
@smallexample
precedence associativity Operators Notes
(highest)
1 left ! - ~ (1)
2 left * / %
3 left + -
4 left >> <<
5 left == != > < <= >=
6 left &
7 left |
8 left &&
9 left ||
10 right ? :
11 right &= += -= *= /= (2)
(lowest)
@end smallexample
Notes:
2001-03-17 22:24:26 +01:00
(1) Prefix operators
1999-05-03 09:29:11 +02:00
(2) @xref{Assignments}.
@c TEXI2ROFF-KILL
2003-02-21 11:27:06 +01:00
@end ifnottex
1999-05-03 09:29:11 +02:00
@tex
\vskip \baselineskip
%"lispnarrowing" is the extra indent used generally for smallexample
\hskip\lispnarrowing\vbox{\offinterlineskip
\hrule
\halign
{\vrule#&\strut\hfil\ #\ \hfil&\vrule#&\strut\hfil\ #\ \hfil&\vrule#&\strut\hfil\ {\tt #}\ \hfil&\vrule#\cr
height2pt&\omit&&\omit&&\omit&\cr
&Precedence&& Associativity &&{\rm Operators}&\cr
height2pt&\omit&&\omit&&\omit&\cr
\noalign{\hrule}
height2pt&\omit&&\omit&&\omit&\cr
&highest&&&&&\cr
% '176 is tilde, '~' in tt font
2001-03-17 22:24:26 +01:00
&1&&left&&\qquad- \char'176\ !\qquad\dag&\cr
1999-05-03 09:29:11 +02:00
&2&&left&&* / \%&\cr
&3&&left&&+ -&\cr
&4&&left&&>> <<&\cr
&5&&left&&== != > < <= >=&\cr
&6&&left&&\&&\cr
&7&&left&&|&\cr
&8&&left&&{\&\&}&\cr
&9&&left&&||&\cr
&10&&right&&? :&\cr
&11&&right&&\qquad\&= += -= *= /=\qquad\ddag&\cr
&lowest&&&&&\cr
height2pt&\omit&&\omit&&\omit&\cr}
\hrule}
@end tex
@iftex
{
@obeylines@parskip=0pt@parindent=0pt
@dag@quad Prefix operators.
@ddag@quad @xref{Assignments}.
}
@end iftex
@c END TEXI2ROFF-KILL
@node Evaluation
@subsection Evaluation
@cindex lazy evaluation
@cindex expression evaluation order
The linker evaluates expressions lazily. It only computes the value of
an expression when absolutely necessary.
The linker needs some information, such as the value of the start
address of the first section, and the origins and lengths of memory
regions, in order to do any linking at all. These values are computed
as soon as possible when the linker reads in the linker script.
However, other values (such as symbol values) are not known or needed
until after storage allocation. Such values are evaluated later, when
other information (such as the sizes of output sections) is available
for use in the symbol assignment expression.
The sizes of sections cannot be known until after allocation, so
assignments dependent upon these are not performed until after
allocation.
Some expressions, such as those depending upon the location counter
@samp{.}, must be evaluated during section allocation.
If the result of an expression is required, but the value is not
available, then an error results. For example, a script like the
following
@smallexample
@group
SECTIONS
@{
2001-03-17 22:24:26 +01:00
.text 9+this_isnt_constant :
1999-05-03 09:29:11 +02:00
@{ *(.text) @}
@}
@end group
@end smallexample
@noindent
will cause the error message @samp{non constant expression for initial
address}.
@node Expression Section
@subsection The Section of an Expression
@cindex expression sections
@cindex absolute expressions
@cindex relative expressions
@cindex absolute and relocatable symbols
@cindex relocatable and absolute symbols
@cindex symbols, relocatable and absolute
When the linker evaluates an expression, the result is either absolute
or relative to some section. A relative expression is expressed as a
fixed offset from the base of a section.
The position of the expression within the linker script determines
whether it is absolute or relative. An expression which appears within
an output section definition is relative to the base of the output
section. An expression which appears elsewhere will be absolute.
A symbol set to a relative expression will be relocatable if you request
relocatable output using the @samp{-r} option. That means that a
further link operation may change the value of the symbol. The symbol's
section will be the section of the relative expression.
A symbol set to an absolute expression will retain the same value
through any further link operation. The symbol will be absolute, and
will not have any particular associated section.
You can use the builtin function @code{ABSOLUTE} to force an expression
to be absolute when it would otherwise be relative. For example, to
create an absolute symbol set to the address of the end of the output
section @samp{.data}:
@smallexample
SECTIONS
@{
.data : @{ *(.data) _edata = ABSOLUTE(.); @}
@}
@end smallexample
@noindent
If @samp{ABSOLUTE} were not used, @samp{_edata} would be relative to the
@samp{.data} section.
@node Builtin Functions
@subsection Builtin Functions
@cindex functions in expressions
The linker script language includes a number of builtin functions for
use in linker script expressions.
@table @code
@item ABSOLUTE(@var{exp})
@kindex ABSOLUTE(@var{exp})
@cindex expression, absolute
Return the absolute (non-relocatable, as opposed to non-negative) value
of the expression @var{exp}. Primarily useful to assign an absolute
value to a symbol within a section definition, where symbol values are
normally section relative. @xref{Expression Section}.
@item ADDR(@var{section})
@kindex ADDR(@var{section})
@cindex section address in expression
Return the absolute address (the VMA) of the named @var{section}. Your
script must previously have defined the location of that section. In
the following example, @code{symbol_1} and @code{symbol_2} are assigned
identical values:
@smallexample
@group
SECTIONS @{ @dots{}
.output1 :
2001-03-17 22:24:26 +01:00
@{
1999-05-03 09:29:11 +02:00
start_of_output_1 = ABSOLUTE(.);
@dots{}
@}
.output :
@{
symbol_1 = ADDR(.output1);
symbol_2 = start_of_output_1;
@}
@dots{} @}
@end group
@end smallexample
2004-02-20 16:31:10 +01:00
@item ALIGN(@var{align})
@itemx ALIGN(@var{exp},@var{align})
@kindex ALIGN(@var{align})
@kindex ALIGN(@var{exp},@var{align})
1999-05-03 09:29:11 +02:00
@cindex round up location counter
@cindex align location counter
2004-02-20 16:31:10 +01:00
@cindex round up expression
@cindex align expression
Return the location counter (@code{.}) or arbitrary expression aligned
to the next @var{align} boundary. The single operand @code{ALIGN}
doesn't change the value of the location counter---it just does
arithmetic on it. The two operand @code{ALIGN} allows an arbitrary
expression to be aligned upwards (@code{ALIGN(@var{align})} is
equivalent to @code{ALIGN(., @var{align})}).
Here is an example which aligns the output @code{.data} section to the
next @code{0x2000} byte boundary after the preceding section and sets a
variable within the section to the next @code{0x8000} boundary after the
input sections:
1999-05-03 09:29:11 +02:00
@smallexample
@group
SECTIONS @{ @dots{}
.data ALIGN(0x2000): @{
*(.data)
variable = ALIGN(0x8000);
@}
@dots{} @}
@end group
@end smallexample
@noindent
The first use of @code{ALIGN} in this example specifies the location of
a section because it is used as the optional @var{address} attribute of
a section definition (@pxref{Output Section Address}). The second use
of @code{ALIGN} is used to defines the value of a symbol.
The builtin function @code{NEXT} is closely related to @code{ALIGN}.
2007-06-18 14:38:22 +02:00
@item ALIGNOF(@var{section})
@kindex ALIGNOF(@var{section})
@cindex section alignment
Return the alignment in bytes of the named @var{section}, if that section has
been allocated. If the section has not been allocated when this is
evaluated, the linker will report an error. In the following example,
the alignment of the @code{.output} section is stored as the first
value in that section.
@smallexample
@group
SECTIONS@{ @dots{}
.output @{
LONG (ALIGNOF (.output))
@dots{}
@}
@dots{} @}
@end group
@end smallexample
1999-05-03 09:29:11 +02:00
@item BLOCK(@var{exp})
@kindex BLOCK(@var{exp})
This is a synonym for @code{ALIGN}, for compatibility with older linker
scripts. It is most often seen when setting the address of an output
section.
2002-02-12 15:50:08 +01:00
@item DATA_SEGMENT_ALIGN(@var{maxpagesize}, @var{commonpagesize})
@kindex DATA_SEGMENT_ALIGN(@var{maxpagesize}, @var{commonpagesize})
This is equivalent to either
@smallexample
(ALIGN(@var{maxpagesize}) + (. & (@var{maxpagesize} - 1)))
@end smallexample
or
@smallexample
(ALIGN(@var{maxpagesize}) + (. & (@var{maxpagesize} - @var{commonpagesize})))
@end smallexample
@noindent
depending on whether the latter uses fewer @var{commonpagesize} sized pages
for the data segment (area between the result of this expression and
@code{DATA_SEGMENT_END}) than the former or not.
If the latter form is used, it means @var{commonpagesize} bytes of runtime
memory will be saved at the expense of up to @var{commonpagesize} wasted
bytes in the on-disk file.
This expression can only be used directly in @code{SECTIONS} commands, not in
any output section descriptions and only once in the linker script.
@var{commonpagesize} should be less or equal to @var{maxpagesize} and should
be the system page size the object wants to be optimized for (while still
working on system page sizes up to @var{maxpagesize}).
@noindent
Example:
@smallexample
. = DATA_SEGMENT_ALIGN(0x10000, 0x2000);
@end smallexample
@item DATA_SEGMENT_END(@var{exp})
@kindex DATA_SEGMENT_END(@var{exp})
This defines the end of data segment for @code{DATA_SEGMENT_ALIGN}
evaluation purposes.
@smallexample
. = DATA_SEGMENT_END(.);
@end smallexample
2004-10-04 15:41:15 +02:00
@item DATA_SEGMENT_RELRO_END(@var{offset}, @var{exp})
@kindex DATA_SEGMENT_RELRO_END(@var{offset}, @var{exp})
This defines the end of the @code{PT_GNU_RELRO} segment when
@samp{-z relro} option is used. Second argument is returned.
When @samp{-z relro} option is not present, @code{DATA_SEGMENT_RELRO_END}
does nothing, otherwise @code{DATA_SEGMENT_ALIGN} is padded so that
@var{exp} + @var{offset} is aligned to the most commonly used page
boundary for particular target. If present in the linker script,
it must always come in between @code{DATA_SEGMENT_ALIGN} and
@code{DATA_SEGMENT_END}.
@smallexample
. = DATA_SEGMENT_RELRO_END(24, .);
@end smallexample
1999-05-03 09:29:11 +02:00
@item DEFINED(@var{symbol})
@kindex DEFINED(@var{symbol})
@cindex symbol defaults
Return 1 if @var{symbol} is in the linker global symbol table and is
2003-10-11 11:16:20 +02:00
defined before the statement using DEFINED in the script, otherwise
return 0. You can use this function to provide
1999-05-03 09:29:11 +02:00
default values for symbols. For example, the following script fragment
shows how to set a global symbol @samp{begin} to the first location in
the @samp{.text} section---but if a symbol called @samp{begin} already
existed, its value is preserved:
@smallexample
@group
SECTIONS @{ @dots{}
.text : @{
begin = DEFINED(begin) ? begin : . ;
@dots{}
@}
@dots{}
@}
@end group
@end smallexample
2004-11-19 10:31:55 +01:00
@item LENGTH(@var{memory})
@kindex LENGTH(@var{memory})
Return the length of the memory region named @var{memory}.
1999-05-03 09:29:11 +02:00
@item LOADADDR(@var{section})
@kindex LOADADDR(@var{section})
@cindex section load address in expression
Return the absolute LMA of the named @var{section}. This is normally
the same as @code{ADDR}, but it may be different if the @code{AT}
attribute is used in the output section definition (@pxref{Output
Section LMA}).
@kindex MAX
@item MAX(@var{exp1}, @var{exp2})
Returns the maximum of @var{exp1} and @var{exp2}.
@kindex MIN
@item MIN(@var{exp1}, @var{exp2})
Returns the minimum of @var{exp1} and @var{exp2}.
@item NEXT(@var{exp})
@kindex NEXT(@var{exp})
@cindex unallocated address, next
Return the next unallocated address that is a multiple of @var{exp}.
This function is closely related to @code{ALIGN(@var{exp})}; unless you
use the @code{MEMORY} command to define discontinuous memory for the
output file, the two functions are equivalent.
2004-11-19 10:31:55 +01:00
@item ORIGIN(@var{memory})
@kindex ORIGIN(@var{memory})
Return the origin of the memory region named @var{memory}.
2004-10-26 20:41:52 +02:00
@item SEGMENT_START(@var{segment}, @var{default})
@kindex SEGMENT_START(@var{segment}, @var{default})
Return the base address of the named @var{segment}. If an explicit
value has been given for this segment (with a command-line @samp{-T}
option) that value will be returned; otherwise the value will be
@var{default}. At present, the @samp{-T} command-line option can only
be used to set the base address for the ``text'', ``data'', and
``bss'' sections, but you use @code{SEGMENT_START} with any segment
name.
1999-05-03 09:29:11 +02:00
@item SIZEOF(@var{section})
@kindex SIZEOF(@var{section})
@cindex section size
Return the size in bytes of the named @var{section}, if that section has
been allocated. If the section has not been allocated when this is
evaluated, the linker will report an error. In the following example,
@code{symbol_1} and @code{symbol_2} are assigned identical values:
@smallexample
@group
SECTIONS@{ @dots{}
.output @{
.start = . ;
@dots{}
.end = . ;
@}
symbol_1 = .end - .start ;
symbol_2 = SIZEOF(.output);
@dots{} @}
@end group
@end smallexample
@item SIZEOF_HEADERS
@itemx sizeof_headers
@kindex SIZEOF_HEADERS
@cindex header size
Return the size in bytes of the output file's headers. This is
information which appears at the start of the output file. You can use
this number when setting the start address of the first section, if you
choose, to facilitate paging.
@cindex not enough room for program headers
@cindex program headers, not enough room
When producing an ELF output file, if the linker script uses the
@code{SIZEOF_HEADERS} builtin function, the linker must compute the
number of program headers before it has determined all the section
addresses and sizes. If the linker later discovers that it needs
additional program headers, it will report an error @samp{not enough
room for program headers}. To avoid this error, you must avoid using
the @code{SIZEOF_HEADERS} function, or you must rework your linker
script to avoid forcing the linker to use additional program headers, or
you must define the program headers yourself using the @code{PHDRS}
command (@pxref{PHDRS}).
@end table
@node Implicit Linker Scripts
@section Implicit Linker Scripts
@cindex implicit linker scripts
If you specify a linker input file which the linker can not recognize as
an object file or an archive file, it will try to read the file as a
linker script. If the file can not be parsed as a linker script, the
linker will report an error.
An implicit linker script will not replace the default linker script.
Typically an implicit linker script would contain only symbol
assignments, or the @code{INPUT}, @code{GROUP}, or @code{VERSION}
commands.
Any input files read because of an implicit linker script will be read
at the position in the command line where the implicit linker script was
read. This can affect archive searching.
@ifset GENERIC
@node Machine Dependent
@chapter Machine Dependent Features
@cindex machine dependencies
2001-11-09 21:30:40 +01:00
@command{ld} has additional features on some platforms; the following
sections describe them. Machines where @command{ld} has no additional
1999-05-03 09:29:11 +02:00
functionality are not listed.
@menu
2003-02-21 11:27:06 +01:00
@ifset H8300
* H8/300:: @command{ld} and the H8/300
@end ifset
@ifset I960
* i960:: @command{ld} and the Intel 960 family
@end ifset
@ifset ARM
* ARM:: @command{ld} and the ARM family
@end ifset
@ifset HPPA
* HPPA ELF32:: @command{ld} and HPPA 32-bit ELF
@end ifset
Multi-GOT support for m68k.
bfd/
* elf32-m68k.c (struct elf_m68k_link_hash_entry: got_entry_key,
glist): New fields.
(struct elf_m68k_got_entry_key, struct elf_m68k_got_entry,
struct elf_m68k_got, struct elf_m68k_bfd2got_entry,
struct elf_m68k_multi_got): New data structures.
(struct elf_m68k_link_hash_table: local_gp_p, use_neg_got_offsets_p,
allow_multigot_p, multi_got_): New fields.
(elf_m68k_multi_got): New macro.
(elf_m68k_link_hash_newfunc): Initialize new fields of
struct elf_m68k_link_hash_entry.
(elf_m68k_link_hash_table_create): Initialize new fields of
struct elf_m68k_link_hash_table.
(elf_m68k_link_hash_table_free): New static function implementing hook.
(elf_m68k_init_got, elf_m68k_clear_got, elf_m68k_create_empty_got): New
static functions for struct elf_m68k_got.
(elf_m68k_init_got_entry_key, elf_m68k_got_entry_hash,
elf_m68k_got_entry_eq): New static functions for
struct elf_m68k_got_entry.
(ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT,
ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT): New macros.
(enum elf_m68k_get_entry_howto): New enum.
(elf_m68k_get_got_entry, elf_m68k_update_got_entry_type,
elf_m68k_remove_got_entry_type): New static functions for
struct elf_m68k_got_entry.
(elf_m68k_add_entry_to_got): New static function.
(elf_m68k_bfd2got_entry_hash, elf_m68k_bfd2got_entry_eq,
elf_m68k_bfd2got_entry_del, elf_m68k_get_bfd2got_entry): New static
functions for struct elf_m68k_bfd2got_entry.
(struct elf_m68k_can_merge_gots_arg, elf_m68k_can_merge_gots_1,
elf_m68k_can_merge_gots): New traversal.
(struct elf_m68k_merge_gots_arg, elf_m68k_merge_gots_1,
elf_m68k_merge_gots): Ditto.
(struct elf_m68k_finalize_got_offsets_arg,
elf_m68k_finalize_got_offsets_1, elf_m68k_finalize_got_offsets): Ditto.
(struct elf_m68k_partition_multi_got_arg,
elf_m68k_partition_multi_got_1, elf_m68k_init_symndx2h_1,
elf_m68k_partition_multi_got): Ditto.
(elf_m68k_find_got_entry_ptr, elf_m68k_remove_got_entry): New static
functions.
(elf_m68k_copy_indirect_symbol): New static function implementing
a hook.
(elf_m68k_check_relocs): Update to add entries to multi-GOT.
(elf_m68k_gc_sweep_hook): Update to remove entries from multi-GOT.
(elf_m68k_always_size_sections): Assign BFDs to GOTs.
(elf_m68k_relocate_section): Update to properly handle GOT relocations.
(elf_m68k_finish_dynamic_symbol): Update to traverse all GOT entries
of a global symbol.
(bfd_elf_m68k_set_target_options): New function.
(bfd_elf32_bfd_link_hash_table_free): Define hook.
(bfd_elf32_bfd_final_link): Change expansion to bfd_elf_final_link
to skip generic calculation of GOT offsets.
(elf_backend_copy_indirect_symbol): Define hook.
* bfd-in.h (bfd_elf_m68k_set_target_options): Declare function.
* bfd-in2.h: Regenerate.
ld/
* configure.in (--enable-got): New option. Handle it.
* configure: Regenerate.
* config.in: Regenerate.
* emultempl/m68kelf.em: (got_handling_target_default): New shell
variable.
(GOT_HANDLING_TARGET_DEFAULT): New macro.
(GOT_HANDLING_DEFAULT): New macro. Initialize it from configure
option if one was given.
(got_handling): New static variable.
(elf_m68k_create_output_section_statements): New static function
implementing hook.
(PARSE_AND_LIST_PROLOGUE): Define shell variable.
(OPTION_GOT): New macro.
(PARSE_AND_LIST_LONGOPTS): Define shell variable. Specify
--got option.
(got): New linker option.
(PARSE_AND_LIST_OPTIONS): Define shell variable. Print help string
for --got option.
(PARSE_AND_LIST_ARGS_CASES): Define shell variable. Handle --got
option.
* ld.texinfo: Document --got=<type> option.
* gen-doc.texi: Add M68K.
* NEWS: Mention the new feature.
ld/testsuite/
* ld-m68k/got-12.s: New file.
* ld-m68k/got-13.s: New file.
* ld-m68k/got-14.s: New file.
* ld-m68k/got-15.s: New file.
* ld-m68k/got-34.s: New file.
* ld-m68k/got-35.s: New file.
* ld-m68k/got-single-12-ok.d: New dump test.
* ld-m68k/got-single-13-er.d: New dump test.
* ld-m68k/got-negative-14-ok.d: New dump test.
* ld-m68k/got-negative-15-er.d: New dump test.
* ld-m68k/got-negative-12-13-14-34-ok.d: New dump test.
* ld-m68k/got-negative-12-13-14-35-er.d: New dump test.
* ld-m68k/got-multigot-14-ok.d: New dump test.
* ld-m68k/got-multigot-15-er.d: New dump test.
* ld-m68k/got-multigot-12-13-14-34-35-ok.d: New dump test.
* ld-m68k/xgot-15.s: New source.
* ld-m68k/got-xgot-15-ok.d: New test.
* ld-m68k/got-xgot-12-13-14-15-34-35-ok.d: New test.
* ld-m68k/m68k.exp: Run new tests.
2008-05-21 14:01:37 +02:00
@ifset M68K
* M68K:: @command{ld} and the Motorola 68K family
@end ifset
2001-10-30 16:20:14 +01:00
@ifset MMIX
2003-02-21 11:27:06 +01:00
* MMIX:: @command{ld} and MMIX
2001-10-30 16:20:14 +01:00
@end ifset
2002-12-30 20:25:13 +01:00
@ifset MSP430
2003-02-21 11:27:06 +01:00
* MSP430:: @command{ld} and MSP430
2002-12-30 20:25:13 +01:00
@end ifset
2004-08-02 22:03:41 +02:00
@ifset M68HC11
* M68HC11/68HC12:: @code{ld} and the Motorola 68HC11 and 68HC12 families
@end ifset
2006-05-05 02:51:37 +02:00
@ifset POWERPC
* PowerPC ELF32:: @command{ld} and PowerPC 32-bit ELF Support
@end ifset
@ifset POWERPC64
* PowerPC64 ELF64:: @command{ld} and PowerPC64 64-bit ELF Support
@end ifset
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@ifset SPU
* SPU ELF:: @command{ld} and SPU ELF Support
@end ifset
2000-06-20 15:29:07 +02:00
@ifset TICOFF
2001-11-09 21:30:40 +01:00
* TI COFF:: @command{ld} and TI COFF
2000-06-20 15:29:07 +02:00
@end ifset
2002-12-18 17:25:02 +01:00
@ifset WIN32
* WIN32:: @command{ld} and WIN32 (cygwin/mingw)
@end ifset
2003-04-01 17:50:31 +02:00
@ifset XTENSA
* Xtensa:: @command{ld} and Xtensa Processors
@end ifset
1999-05-03 09:29:11 +02:00
@end menu
@end ifset
@ifset H8300
@ifclear GENERIC
@raisesections
@end ifclear
@node H8/300
2001-11-09 21:30:40 +01:00
@section @command{ld} and the H8/300
1999-05-03 09:29:11 +02:00
@cindex H8/300 support
2001-11-09 21:30:40 +01:00
For the H8/300, @command{ld} can perform these global optimizations when
1999-05-03 09:29:11 +02:00
you specify the @samp{--relax} command-line option.
@table @emph
@cindex relaxing on H8/300
@item relaxing address modes
2001-11-09 21:30:40 +01:00
@command{ld} finds all @code{jsr} and @code{jmp} instructions whose
1999-05-03 09:29:11 +02:00
targets are within eight bits, and turns them into eight-bit
program-counter relative @code{bsr} and @code{bra} instructions,
respectively.
@cindex synthesizing on H8/300
@item synthesizing instructions
@c FIXME: specifically mov.b, or any mov instructions really?
2001-11-09 21:30:40 +01:00
@command{ld} finds all @code{mov.b} instructions which use the
1999-05-03 09:29:11 +02:00
sixteen-bit absolute address form, but refer to the top
page of memory, and changes them to use the eight-bit address form.
(That is: the linker turns @samp{mov.b @code{@@}@var{aa}:16} into
@samp{mov.b @code{@@}@var{aa}:8} whenever the address @var{aa} is in the
top page of memory).
2004-04-21 12:47:13 +02:00
@item bit manipulation instructions
2007-07-09 23:25:34 +02:00
@command{ld} finds all bit manipulation instructions like @code{band, bclr,
2004-04-21 12:47:13 +02:00
biand, bild, bior, bist, bixor, bld, bnot, bor, bset, bst, btst, bxor}
2007-07-09 23:25:34 +02:00
which use 32 bit and 16 bit absolute address form, but refer to the top
2004-04-21 12:47:13 +02:00
page of memory, and changes them to use the 8 bit address form.
(That is: the linker turns @samp{bset #xx:3,@code{@@}@var{aa}:32} into
2007-07-09 23:25:34 +02:00
@samp{bset #xx:3,@code{@@}@var{aa}:8} whenever the address @var{aa} is in
2004-04-21 12:47:13 +02:00
the top page of memory).
@item system control instructions
2007-07-09 23:25:34 +02:00
@command{ld} finds all @code{ldc.w, stc.w} instructions which use the
32 bit absolute address form, but refer to the top page of memory, and
2004-04-21 12:47:13 +02:00
changes them to use 16 bit address form.
(That is: the linker turns @samp{ldc.w @code{@@}@var{aa}:32,ccr} into
2007-07-09 23:25:34 +02:00
@samp{ldc.w @code{@@}@var{aa}:16,ccr} whenever the address @var{aa} is in
2004-04-21 12:47:13 +02:00
the top page of memory).
1999-05-03 09:29:11 +02:00
@end table
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2003-02-21 11:27:06 +01:00
@ifclear GENERIC
2003-04-15 10:51:55 +02:00
@ifset Renesas
2003-02-21 11:27:06 +01:00
@c This stuff is pointless to say unless you're especially concerned
2003-04-15 10:51:55 +02:00
@c with Renesas chips; don't enable it for generic case, please.
@node Renesas
@chapter @command{ld} and Other Renesas Chips
2003-02-21 11:27:06 +01:00
2003-04-15 10:51:55 +02:00
@command{ld} also supports the Renesas (formerly Hitachi) H8/300H,
H8/500, and SH chips. No special features, commands, or command-line
options are required for these chips.
2003-02-21 11:27:06 +01:00
@end ifset
@end ifclear
@ifset I960
@ifclear GENERIC
@raisesections
@end ifclear
@node i960
@section @command{ld} and the Intel 960 Family
@cindex i960 support
You can use the @samp{-A@var{architecture}} command line option to
specify one of the two-letter names identifying members of the 960
family; the option specifies the desired output target, and warns of any
incompatible instructions in the input files. It also modifies the
linker's search strategy for archive libraries, to support the use of
libraries specific to each particular architecture, by including in the
search loop names suffixed with the string identifying the architecture.
For example, if your @command{ld} command line included @w{@samp{-ACA}} as
well as @w{@samp{-ltry}}, the linker would look (in its built-in search
paths, and in any paths you specify with @samp{-L}) for a library with
the names
@smallexample
@group
try
libtry.a
tryca
libtryca.a
@end group
@end smallexample
@noindent
The first two possibilities would be considered in any event; the last
two are due to the use of @w{@samp{-ACA}}.
You can meaningfully use @samp{-A} more than once on a command line, since
the 960 architecture family allows combination of target architectures; each
use will add another pair of name variants to search for when @w{@samp{-l}}
specifies a library.
@cindex @option{--relax} on i960
@cindex relaxing on i960
@command{ld} supports the @samp{--relax} option for the i960 family. If
you specify @samp{--relax}, @command{ld} finds all @code{balx} and
@code{calx} instructions whose targets are within 24 bits, and turns
them into 24-bit program-counter relative @code{bal} and @code{cal}
instructions, respectively. @command{ld} also turns @code{cal}
instructions into @code{bal} instructions when it determines that the
target subroutine is a leaf routine (that is, the target subroutine does
not itself call any subroutines).
ld/
* emultempl/armelf.em (fix_cortex_a8): New.
(arm_elf_before_allocation): Call bfd_elf32_arm_set_cortex_a8_fix.
(arm_elf_create_output_section_statements): Add fix_cortex_a8 to
bfd_elf32_arm_set_target_relocs.
(OPTION_FIX_CORTEX_A8, OPTION_NO_FIX_CORTEX_A8): New.
(PARSE_AND_LIST_LONGOPTS): Add [no-]fix-cortex-a8 options.
(PARSE_AND_LIST_OPTIONS): Add [no-]fix-cortex-a8 options.
(PARSE_AND_LIST_ARGS_CASES): Handle OPTION_[NO_]FIX_CORTEX_A8.
* ld.texinfo (--[no-]fix-cortex-a8): Briefly document new options.
bfd/
* elf32-arm.c (THUMB16_BCOND_INSN, THUMB32_INSN, THUMB32_B_INSN):
New macros.
(elf32_arm_stub_a8_veneer_b_cond, elf32_arm_stub_a8_veneer_b)
(elf32_arm_stub_a8_veneer_blx): New stub sequences.
(elf32_arm_stub_type): Add arm_stub_a8_veneer_b_cond,
arm_stub_a8_veneer_b and arm_stub_a8_veneer_blx.
(elf32_arm_stub_hash_entry): Add target_addend, orig_insn fields.
(a8_erratum_fix, a8_erratum_reloc): New structs.
(elf32_arm_link_hash_table): Add a8_erratum_fixes,
num_a8_erratum_fixes, fix_cortex_a8 fields.
(elf32_arm_link_hash_table_create): Zero fix_cortex_a8.
(elf32_arm_add_stub): Split into two parts, creating...
(elf32_arm_create_or_find_stub_sec): New function.
(elf32_arm_final_link_relocate): Add forward declaration.
(arm_build_one_stub): Add support for THUMB32_TYPE, Thumb-2
relocations, multiple relocations per stub.
(find_stub_size_and_template): New (using parts of
arm_size_one_stub).
(arm_size_one_stub): Use find_stub_size_and_template.
(a8_reloc_compare): New.
(find_thumb_glue): Add forward declaration.
(cortex_a8_erratum_scan): New.
(elf32_arm_size_stubs): Add Cortex-A8 erratum workaround support.
(bfd_elf32_arm_set_cortex_a8_fix): New.
(bfd_elf32_arm_set_target_relocs): Add fix_cortex_a8 argument.
(arm_map_one_stub): Add THUMB32_TYPE support.
(a8_branch_to_stub_data): New.
(make_branch_to_a8_stub): New.
(elf32_arm_write_section): Add Cortex-A8 erratum workaround support.
* bfd-in.h (bfd_elf32_arm_set_cortex_a8_fix): New.
(bfd_elf32_arm_set_target_relocs): Add argument for controlling
Cortex-A8 erratum workaround.
* bfd-in2.h: Regenerate.
ld/testsuite/
* ld-arm/cortex-a8-arm-target.s: New.
* ld-arm/cortex-a8-thumb-target.s: New.
* ld-arm/cortex-a8-fix-b-rel.s: New.
* ld-arm/cortex-a8-fix-b-rel-arm.d: New.
* ld-arm/cortex-a8-fix-b-rel-thumb.d: New.
* ld-arm/cortex-a8-fix-b.s: New.
* ld-arm/cortex-a8-fix-b.d: New.
* ld-arm/cortex-a8-fix-bl-rel.s: New.
* ld-arm/cortex-a8-fix-bl-rel-arm.d: New.
* ld-arm/cortex-a8-fix-bl-rel-thumb.d: New.
* ld-arm/cortex-a8-fix-bl.s: New.
* ld-arm/cortex-a8-fix-bl.d: New.
* ld-arm/cortex-a8-fix-bcc-rel.s: New.
* ld-arm/cortex-a8-fix-bcc-rel-thumb.d: New.
* ld-arm/cortex-a8-fix-bcc.s: New.
* ld-arm/cortex-a8-fix-bcc.d: New.
* ld-arm/cortex-a8-fix-blx-rel.s: New.
* ld-arm/cortex-a8-fix-blx-rel-arm.d: New.
* ld-arm/cortex-a8-fix-blx-rel-thumb.d: New.
* ld-arm/cortex-a8-fix-blx.s: New.
* ld-arm/cortex-a8-fix-blx.d: New.
* ld-arm/arm-elf.exp: Add new tests.
2009-05-22 13:58:45 +02:00
@cindex Cortex-A8 erratum workaround
@kindex --fix-cortex-a8
@kindex --no-fix-cortex-a8
The @samp{--fix-cortex-a8} switch enables a link-time workaround for an erratum in certain Cortex-A8 processors. The workaround is enabled by default if you are targeting the ARM v7-A architecture profile. It can be enabled otherwise by specifying @samp{--fix-cortex-a8}, or disabled unconditionally by specifying @samp{--no-fix-cortex-a8}.
The erratum only affects Thumb-2 code. Please contact ARM for further details.
2010-04-21 18:32:31 +02:00
@kindex --merge-exidx-entries
@kindex --no-merge-exidx-entries
The @samp{--no-merge-exidx-entries} switch disables the merging of adjacent exidx entries in debuginfo.
2003-02-21 11:27:06 +01:00
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
@ifset ARM
@ifclear GENERIC
@raisesections
@end ifclear
2004-08-02 22:03:41 +02:00
@ifset M68HC11
@ifclear GENERIC
@raisesections
@end ifclear
@node M68HC11/68HC12
@section @command{ld} and the Motorola 68HC11 and 68HC12 families
@cindex M68HC11 and 68HC12 support
@subsection Linker Relaxation
For the Motorola 68HC11, @command{ld} can perform these global
optimizations when you specify the @samp{--relax} command-line option.
@table @emph
@cindex relaxing on M68HC11
@item relaxing address modes
@command{ld} finds all @code{jsr} and @code{jmp} instructions whose
targets are within eight bits, and turns them into eight-bit
program-counter relative @code{bsr} and @code{bra} instructions,
respectively.
@command{ld} also looks at all 16-bit extended addressing modes and
transforms them in a direct addressing mode when the address is in
page 0 (between 0 and 0x0ff).
@item relaxing gcc instruction group
When @command{gcc} is called with @option{-mrelax}, it can emit group
of instructions that the linker can optimize to use a 68HC11 direct
addressing mode. These instructions consists of @code{bclr} or
@code{bset} instructions.
@end table
@subsection Trampoline Generation
@cindex trampoline generation on M68HC11
@cindex trampoline generation on M68HC12
For 68HC11 and 68HC12, @command{ld} can generate trampoline code to
call a far function using a normal @code{jsr} instruction. The linker
2007-07-09 23:25:34 +02:00
will also change the relocation to some far function to use the
2004-08-02 22:03:41 +02:00
trampoline address instead of the function address. This is typically the
case when a pointer to a function is taken. The pointer will in fact
point to the function trampoline.
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2003-02-21 11:27:06 +01:00
@node ARM
2004-09-17 14:18:19 +02:00
@section @command{ld} and the ARM family
2003-02-21 11:27:06 +01:00
@cindex ARM interworking support
@kindex --support-old-code
For the ARM, @command{ld} will generate code stubs to allow functions calls
2006-07-24 15:49:50 +02:00
between ARM and Thumb code. These stubs only work with code that has
2003-02-21 11:27:06 +01:00
been compiled and assembled with the @samp{-mthumb-interwork} command
line option. If it is necessary to link with old ARM object files or
libraries, which have not been compiled with the -mthumb-interwork
option then the @samp{--support-old-code} command line switch should be
given to the linker. This will make it generate larger stub functions
which will work with non-interworking aware ARM code. Note, however,
the linker does not support generating stubs for function calls to
non-interworking aware Thumb code.
@cindex thumb entry point
@cindex entry point, thumb
@kindex --thumb-entry=@var{entry}
The @samp{--thumb-entry} switch is a duplicate of the generic
@samp{--entry} switch, in that it sets the program's starting address.
But it also sets the bottom bit of the address, so that it can be
branched to using a BX instruction, and the program will start
executing in Thumb mode straight away.
2009-01-08 14:28:48 +01:00
@cindex PE import table prefixing
@kindex --use-nul-prefixed-import-tables
The @samp{--use-nul-prefixed-import-tables} switch is specifying, that
the import tables idata4 and idata5 have to be generated with a zero
elememt prefix for import libraries. This is the old style to generate
import tables. By default this option is turned off.
2004-04-01 13:20:04 +02:00
@cindex BE8
@kindex --be8
The @samp{--be8} switch instructs @command{ld} to generate BE8 format
executables. This option is only valid when linking big-endian objects.
The resulting image will contain big-endian data and little-endian code.
2004-09-17 14:18:19 +02:00
@cindex TARGET1
@kindex --target1-rel
@kindex --target1-abs
The @samp{R_ARM_TARGET1} relocation is typically used for entries in the
@samp{.init_array} section. It is interpreted as either @samp{R_ARM_REL32}
or @samp{R_ARM_ABS32}, depending on the target. The @samp{--target1-rel}
and @samp{--target1-abs} switches override the default.
@cindex TARGET2
@kindex --target2=@var{type}
The @samp{--target2=type} switch overrides the default definition of the
@samp{R_ARM_TARGET2} relocation. Valid values for @samp{type}, their
meanings, and target defaults are as follows:
@table @samp
@item rel
2004-09-30 19:03:53 +02:00
@samp{R_ARM_REL32} (arm*-*-elf, arm*-*-eabi)
@item abs
@samp{R_ARM_ABS32} (arm*-*-symbianelf)
2004-09-17 14:18:19 +02:00
@item got-rel
@samp{R_ARM_GOT_PREL} (arm*-*-linux, arm*-*-*bsd)
@end table
2005-01-28 18:24:41 +01:00
@cindex FIX_V4BX
@kindex --fix-v4bx
The @samp{R_ARM_V4BX} relocation (defined by the ARM AAELF
specification) enables objects compiled for the ARMv4 architecture to be
interworking-safe when linked with other objects compiled for ARMv4t, but
also allows pure ARMv4 binaries to be built from the same ARMv4 objects.
In the latter case, the switch @option{--fix-v4bx} must be passed to the
linker, which causes v4t @code{BX rM} instructions to be rewritten as
@code{MOV PC,rM}, since v4 processors do not have a @code{BX} instruction.
In the former case, the switch should not be used, and @samp{R_ARM_V4BX}
relocations are ignored.
2008-02-20 16:17:56 +01:00
@cindex FIX_V4BX_INTERWORKING
@kindex --fix-v4bx-interworking
Replace @code{BX rM} instructions identified by @samp{R_ARM_V4BX}
relocations with a branch to the following veneer:
@smallexample
TST rM, #1
MOVEQ PC, rM
BX Rn
@end smallexample
This allows generation of libraries/applications that work on ARMv4 cores
and are still interworking safe. Note that the above veneer clobbers the
condition flags, so may cause incorrect progrm behavior in rare cases.
2005-04-15 18:37:47 +02:00
@cindex USE_BLX
@kindex --use-blx
The @samp{--use-blx} switch enables the linker to use ARM/Thumb
BLX instructions (available on ARMv5t and above) in various
situations. Currently it is used to perform calls via the PLT from Thumb
code using BLX rather than using BX and a mode-switching stub before
each PLT entry. This should lead to such calls executing slightly faster.
This option is enabled implicitly for SymbianOS, so there is no need to
specify it if you are using that target.
2007-01-29 17:28:40 +01:00
@cindex VFP11_DENORM_FIX
@kindex --vfp11-denorm-fix
The @samp{--vfp11-denorm-fix} switch enables a link-time workaround for a
bug in certain VFP11 coprocessor hardware, which sometimes allows
instructions with denorm operands (which must be handled by support code)
to have those operands overwritten by subsequent instructions before
the support code can read the intended values.
The bug may be avoided in scalar mode if you allow at least one
intervening instruction between a VFP11 instruction which uses a register
and another instruction which writes to the same register, or at least two
intervening instructions if vector mode is in use. The bug only affects
full-compliance floating-point mode: you do not need this workaround if
you are using "runfast" mode. Please contact ARM for further details.
If you know you are using buggy VFP11 hardware, you can
enable this workaround by specifying the linker option
@samp{--vfp-denorm-fix=scalar} if you are using the VFP11 scalar
mode only, or @samp{--vfp-denorm-fix=vector} if you are using
vector mode (the latter also works for scalar code). The default is
@samp{--vfp-denorm-fix=none}.
If the workaround is enabled, instructions are scanned for
potentially-troublesome sequences, and a veneer is created for each
such sequence which may trigger the erratum. The veneer consists of the
first instruction of the sequence and a branch back to the subsequent
instruction. The original instruction is then replaced with a branch to
the veneer. The extra cycles required to call and return from the veneer
are sufficient to avoid the erratum in both the scalar and vector cases.
2007-03-20 15:24:57 +01:00
@cindex NO_ENUM_SIZE_WARNING
@kindex --no-enum-size-warning
2008-05-21 10:09:38 +02:00
The @option{--no-enum-size-warning} switch prevents the linker from
2007-03-20 15:24:57 +01:00
warning when linking object files that specify incompatible EABI
enumeration size attributes. For example, with this switch enabled,
linking of an object file using 32-bit enumeration values with another
using enumeration values fitted into the smallest possible space will
not be diagnosed.
bfd:
* bfd-in.h (bfd_elf32_arm_set_target_relocs): Add new parameter.
* bfd-in2.h: Regenerate.
* elf32-arm.c (struct elf_arm_obj_tdata): Add field
no_wchar_size_warning.
(bfd_elf32_arm_set_target_relocs): Add new parameter
no_wchar_warn.
(elf32_arm_merge_eabi_attributes): Give a warning, not an error,
for conflicting wchar_t attributes. Do not warn if
--no-wchar-size-warning. Make diagnostic text more specific.
ld:
* ld.texinfo (--no-wchar-size-warning): Document new ARM option.
* emultempl/armelf.em (no_wchar_size_warning): New.
(arm_elf_create_output_section_statements): Pass
no_wchar_size_warning to arm_elf_create_output_section_statements.
(OPTION_NO_WCHAR_SIZE_WARNING): New.
(PARSE_AND_LIST_LONGOPTS): Add no-wchar-size-warning.
(PARSE_AND_LIST_OPTIONS): List --no-wchar-size-warning.
(PARSE_AND_LIST_ARGS_CASES): Handle --no-wchar-size-warning.
ld/testsuite:
* ld-arm/attr-merge-wchar-0.s,ld-arm/attr-merge-wchar-2.s,
ld-arm/attr-merge-wchar-4.s, ld-arm/attr-merge-wchar-00-nowarn.d,
ld-arm/attr-merge-wchar-00.d, ld-arm/attr-merge-wchar-02-nowarn.d,
ld-arm/attr-merge-wchar-02.d, ld-arm/attr-merge-wchar-04-nowarn.d,
ld-arm/attr-merge-wchar-04.d, ld-arm/attr-merge-wchar-20-nowarn.d,
ld-arm/attr-merge-wchar-20.d, ld-arm/attr-merge-wchar-22-nowarn.d,
ld-arm/attr-merge-wchar-22.d, ld-arm/attr-merge-wchar-24-nowarn.d,
ld-arm/attr-merge-wchar-24.d, ld-arm/attr-merge-wchar-40-nowarn.d,
ld-arm/attr-merge-wchar-40.d, ld-arm/attr-merge-wchar-42-nowarn.d,
ld-arm/attr-merge-wchar-42.d, ld-arm/attr-merge-wchar-44-nowarn.d,
ld-arm/attr-merge-wchar-44.d: New.
* ld-arm/arm-elf.exp: Run new tests.
2008-07-18 22:49:12 +02:00
@cindex NO_WCHAR_SIZE_WARNING
@kindex --no-wchar-size-warning
The @option{--no-wchar-size-warning} switch prevents the linker from
warning when linking object files that specify incompatible EABI
@code{wchar_t} size attributes. For example, with this switch enabled,
linking of an object file using 32-bit @code{wchar_t} values with another
using 16-bit @code{wchar_t} values will not be diagnosed.
2007-03-20 15:24:57 +01:00
2008-05-21 10:09:38 +02:00
@cindex PIC_VENEER
@kindex --pic-veneer
The @samp{--pic-veneer} switch makes the linker use PIC sequences for
ARM/Thumb interworking veneers, even if the rest of the binary
is not PIC. This avoids problems on uClinux targets where
@samp{--emit-relocs} is used to generate relocatable binaries.
@cindex STUB_GROUP_SIZE
@kindex --stub-group-size=@var{N}
The linker will automatically generate and insert small sequences of
code into a linked ARM ELF executable whenever an attempt is made to
perform a function call to a symbol that is too far away. The
placement of these sequences of instructions - called stubs - is
controlled by the command line option @option{--stub-group-size=N}.
The placement is important because a poor choice can create a need for
duplicate stubs, increasing the code sizw. The linker will try to
group stubs together in order to reduce interruptions to the flow of
code, but it needs guidance as to how big these groups should be and
where they should be placed.
The value of @samp{N}, the parameter to the
@option{--stub-group-size=} option controls where the stub groups are
2009-02-24 Joseph Myers <joseph@codesourcery.com>
bfd/
* elf32-arm.c (PREV_SEC): Update comment.
(group_sections): Rename argument to stubs_always_after_branch.
Reverse the list and place stubs at the end of input sections.
Undefine NEXT_SEC.
(elf32_arm_size_stubs): Update to use stubs_always_after_branch.
ld/
* ld.texinfo (ARM): Document changed meaning of --stub-group-size.
* emultempl/armelf.em (hook_in_stub): Insert after the input section.
(elf32_arm_add_stub_section): Update comment.
(PARSE_AND_LIST_OPTIONS): Update help for --stub-group-size.
2009-02-24 Daniel Jacobowitz <dan@codesourcery.com>
ld/testsuite/
* ld-arm/arm-elf.exp (armeabitests): Update duplicate test names.
Use normal output files for big-endian.
* ld-arm/farcall-arm-arm-be.d, ld-arm/farcall-thumb-arm-be.d: Delete.
* ld-arm/farcall-arm-arm-be8.d, ld-arm/farcall-arm-arm-pic-veneer.d,
ld-arm/farcall-arm-arm.d, ld-arm/farcall-arm-thumb-blx-pic-veneer.d,
ld-arm/farcall-arm-thumb-blx.d, ld-arm/farcall-arm-thumb-pic-veneer.d,
ld-arm/farcall-arm-thumb.d, ld-arm/farcall-group-size2.d,
ld-arm/farcall-group.d, ld-arm/farcall-mix.d, ld-arm/farcall-mix2.d,
ld-arm/farcall-thumb-arm-be8.d,
ld-arm/farcall-thumb-arm-blx-pic-veneer.d,
ld-arm/farcall-thumb-arm-blx.d, ld-arm/farcall-thumb-arm-short.d,
ld-arm/farcall-thumb-arm.d,
ld-arm/farcall-thumb-thumb-blx-pic-veneer.d,
ld-arm/farcall-thumb-thumb-blx.d, ld-arm/farcall-thumb-thumb-m.d,
ld-arm/farcall-thumb-thumb.d, ld-arm/thumb2-bl-as-thumb1-bad.d,
ld-arm/thumb2-bl-bad.d: Update for moved stubs.
2009-02-24 23:43:10 +01:00
placed. If it is negative then all stubs are placed after the first
2008-05-21 10:09:38 +02:00
branch that needs them. If it is positive then the stubs can be
placed either before or after the branches that need them. If the
value of @samp{N} is 1 (either +1 or -1) then the linker will choose
exactly where to place groups of stubs, using its built in heuristics.
A value of @samp{N} greater than 1 (or smaller than -1) tells the
linker that a single group of stubs can service at most @samp{N} bytes
from the input sections.
The default, if @option{--stub-group-size=} is not specified, is
@samp{N = +1}.
2008-05-28 17:38:36 +02:00
Farcalls stubs insertion is fully supported for the ARM-EABI target
only, because it relies on object files properties not present
otherwise.
2003-02-21 11:27:06 +01:00
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
@ifset HPPA
@ifclear GENERIC
@raisesections
@end ifclear
@node HPPA ELF32
@section @command{ld} and HPPA 32-bit ELF Support
@cindex HPPA multiple sub-space stubs
@kindex --multi-subspace
When generating a shared library, @command{ld} will by default generate
import stubs suitable for use with a single sub-space application.
The @samp{--multi-subspace} switch causes @command{ld} to generate export
stubs, and different (larger) import stubs suitable for use with
multiple sub-spaces.
@cindex HPPA stub grouping
@kindex --stub-group-size=@var{N}
Long branch stubs and import/export stubs are placed by @command{ld} in
stub sections located between groups of input sections.
@samp{--stub-group-size} specifies the maximum size of a group of input
sections handled by one stub section. Since branch offsets are signed,
a stub section may serve two groups of input sections, one group before
the stub section, and one group after it. However, when using
conditional branches that require stubs, it may be better (for branch
prediction) that stub sections only serve one group of input sections.
A negative value for @samp{N} chooses this scheme, ensuring that
branches to stubs always use a negative offset. Two special values of
@samp{N} are recognized, @samp{1} and @samp{-1}. These both instruct
@command{ld} to automatically size input section groups for the branch types
detected, with the same behaviour regarding stub placement as other
positive or negative values of @samp{N} respectively.
Note that @samp{--stub-group-size} does not split input sections. A
single input section larger than the group size specified will of course
create a larger group (of one section). If input sections are too
large, it may not be possible for a branch to reach its stub.
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
Multi-GOT support for m68k.
bfd/
* elf32-m68k.c (struct elf_m68k_link_hash_entry: got_entry_key,
glist): New fields.
(struct elf_m68k_got_entry_key, struct elf_m68k_got_entry,
struct elf_m68k_got, struct elf_m68k_bfd2got_entry,
struct elf_m68k_multi_got): New data structures.
(struct elf_m68k_link_hash_table: local_gp_p, use_neg_got_offsets_p,
allow_multigot_p, multi_got_): New fields.
(elf_m68k_multi_got): New macro.
(elf_m68k_link_hash_newfunc): Initialize new fields of
struct elf_m68k_link_hash_entry.
(elf_m68k_link_hash_table_create): Initialize new fields of
struct elf_m68k_link_hash_table.
(elf_m68k_link_hash_table_free): New static function implementing hook.
(elf_m68k_init_got, elf_m68k_clear_got, elf_m68k_create_empty_got): New
static functions for struct elf_m68k_got.
(elf_m68k_init_got_entry_key, elf_m68k_got_entry_hash,
elf_m68k_got_entry_eq): New static functions for
struct elf_m68k_got_entry.
(ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT,
ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT): New macros.
(enum elf_m68k_get_entry_howto): New enum.
(elf_m68k_get_got_entry, elf_m68k_update_got_entry_type,
elf_m68k_remove_got_entry_type): New static functions for
struct elf_m68k_got_entry.
(elf_m68k_add_entry_to_got): New static function.
(elf_m68k_bfd2got_entry_hash, elf_m68k_bfd2got_entry_eq,
elf_m68k_bfd2got_entry_del, elf_m68k_get_bfd2got_entry): New static
functions for struct elf_m68k_bfd2got_entry.
(struct elf_m68k_can_merge_gots_arg, elf_m68k_can_merge_gots_1,
elf_m68k_can_merge_gots): New traversal.
(struct elf_m68k_merge_gots_arg, elf_m68k_merge_gots_1,
elf_m68k_merge_gots): Ditto.
(struct elf_m68k_finalize_got_offsets_arg,
elf_m68k_finalize_got_offsets_1, elf_m68k_finalize_got_offsets): Ditto.
(struct elf_m68k_partition_multi_got_arg,
elf_m68k_partition_multi_got_1, elf_m68k_init_symndx2h_1,
elf_m68k_partition_multi_got): Ditto.
(elf_m68k_find_got_entry_ptr, elf_m68k_remove_got_entry): New static
functions.
(elf_m68k_copy_indirect_symbol): New static function implementing
a hook.
(elf_m68k_check_relocs): Update to add entries to multi-GOT.
(elf_m68k_gc_sweep_hook): Update to remove entries from multi-GOT.
(elf_m68k_always_size_sections): Assign BFDs to GOTs.
(elf_m68k_relocate_section): Update to properly handle GOT relocations.
(elf_m68k_finish_dynamic_symbol): Update to traverse all GOT entries
of a global symbol.
(bfd_elf_m68k_set_target_options): New function.
(bfd_elf32_bfd_link_hash_table_free): Define hook.
(bfd_elf32_bfd_final_link): Change expansion to bfd_elf_final_link
to skip generic calculation of GOT offsets.
(elf_backend_copy_indirect_symbol): Define hook.
* bfd-in.h (bfd_elf_m68k_set_target_options): Declare function.
* bfd-in2.h: Regenerate.
ld/
* configure.in (--enable-got): New option. Handle it.
* configure: Regenerate.
* config.in: Regenerate.
* emultempl/m68kelf.em: (got_handling_target_default): New shell
variable.
(GOT_HANDLING_TARGET_DEFAULT): New macro.
(GOT_HANDLING_DEFAULT): New macro. Initialize it from configure
option if one was given.
(got_handling): New static variable.
(elf_m68k_create_output_section_statements): New static function
implementing hook.
(PARSE_AND_LIST_PROLOGUE): Define shell variable.
(OPTION_GOT): New macro.
(PARSE_AND_LIST_LONGOPTS): Define shell variable. Specify
--got option.
(got): New linker option.
(PARSE_AND_LIST_OPTIONS): Define shell variable. Print help string
for --got option.
(PARSE_AND_LIST_ARGS_CASES): Define shell variable. Handle --got
option.
* ld.texinfo: Document --got=<type> option.
* gen-doc.texi: Add M68K.
* NEWS: Mention the new feature.
ld/testsuite/
* ld-m68k/got-12.s: New file.
* ld-m68k/got-13.s: New file.
* ld-m68k/got-14.s: New file.
* ld-m68k/got-15.s: New file.
* ld-m68k/got-34.s: New file.
* ld-m68k/got-35.s: New file.
* ld-m68k/got-single-12-ok.d: New dump test.
* ld-m68k/got-single-13-er.d: New dump test.
* ld-m68k/got-negative-14-ok.d: New dump test.
* ld-m68k/got-negative-15-er.d: New dump test.
* ld-m68k/got-negative-12-13-14-34-ok.d: New dump test.
* ld-m68k/got-negative-12-13-14-35-er.d: New dump test.
* ld-m68k/got-multigot-14-ok.d: New dump test.
* ld-m68k/got-multigot-15-er.d: New dump test.
* ld-m68k/got-multigot-12-13-14-34-35-ok.d: New dump test.
* ld-m68k/xgot-15.s: New source.
* ld-m68k/got-xgot-15-ok.d: New test.
* ld-m68k/got-xgot-12-13-14-15-34-35-ok.d: New test.
* ld-m68k/m68k.exp: Run new tests.
2008-05-21 14:01:37 +02:00
@ifset M68K
@ifclear GENERIC
@raisesections
@end ifclear
@node M68K
@section @command{ld} and the Motorola 68K family
@cindex Motorola 68K GOT generation
@kindex --got=@var{type}
The @samp{--got=@var{type}} option lets you choose the GOT generation scheme.
The choices are @samp{single}, @samp{negative}, @samp{multigot} and
@samp{target}. When @samp{target} is selected the linker chooses
the default GOT generation scheme for the current target.
@samp{single} tells the linker to generate a single GOT with
entries only at non-negative offsets.
@samp{negative} instructs the linker to generate a single GOT with
entries at both negative and positive offsets. Not all environments
support such GOTs.
@samp{multigot} allows the linker to generate several GOTs in the
output file. All GOT references from a single input object
file access the same GOT, but references from different input object
files might access different GOTs. Not all environments support such GOTs.
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2003-02-21 11:27:06 +01:00
@ifset MMIX
@ifclear GENERIC
@raisesections
@end ifclear
@node MMIX
@section @code{ld} and MMIX
For MMIX, there is a choice of generating @code{ELF} object files or
@code{mmo} object files when linking. The simulator @code{mmix}
understands the @code{mmo} format. The binutils @code{objcopy} utility
can translate between the two formats.
There is one special section, the @samp{.MMIX.reg_contents} section.
Contents in this section is assumed to correspond to that of global
registers, and symbols referring to it are translated to special symbols,
equal to registers. In a final link, the start address of the
@samp{.MMIX.reg_contents} section corresponds to the first allocated
global register multiplied by 8. Register @code{$255} is not included in
this section; it is always set to the program entry, which is at the
symbol @code{Main} for @code{mmo} files.
2008-06-16 17:10:13 +02:00
Global symbols with the prefix @code{__.MMIX.start.}, for example
@code{__.MMIX.start..text} and @code{__.MMIX.start..data} are special.
The default linker script uses these to set the default start address
of a section.
2003-02-21 11:27:06 +01:00
Initial and trailing multiples of zero-valued 32-bit words in a section,
are left out from an mmo file.
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
@ifset MSP430
@ifclear GENERIC
@raisesections
@end ifclear
@node MSP430
@section @code{ld} and MSP430
For the MSP430 it is possible to select the MPU architecture. The flag @samp{-m [mpu type]}
will select an appropriate linker script for selected MPU type. (To get a list of known MPUs
just pass @samp{-m help} option to the linker).
@cindex MSP430 extra sections
The linker will recognize some extra sections which are MSP430 specific:
@table @code
@item @samp{.vectors}
Defines a portion of ROM where interrupt vectors located.
@item @samp{.bootloader}
Defines the bootloader portion of the ROM (if applicable). Any code
in this section will be uploaded to the MPU.
@item @samp{.infomem}
Defines an information memory section (if applicable). Any code in
this section will be uploaded to the MPU.
2007-07-09 23:25:34 +02:00
@item @samp{.infomemnobits}
2003-02-21 11:27:06 +01:00
This is the same as the @samp{.infomem} section except that any code
in this section will not be uploaded to the MPU.
@item @samp{.noinit}
Denotes a portion of RAM located above @samp{.bss} section.
2007-07-09 23:25:34 +02:00
The last two sections are used by gcc.
2003-02-21 11:27:06 +01:00
@end table
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2006-05-05 02:51:37 +02:00
@ifset POWERPC
@ifclear GENERIC
@raisesections
@end ifclear
@node PowerPC ELF32
@section @command{ld} and PowerPC 32-bit ELF Support
@cindex PowerPC long branches
@kindex --relax on PowerPC
Branches on PowerPC processors are limited to a signed 26-bit
displacement, which may result in @command{ld} giving
@samp{relocation truncated to fit} errors with very large programs.
@samp{--relax} enables the generation of trampolines that can access
the entire 32-bit address space. These trampolines are inserted at
section boundaries, so may not themselves be reachable if an input
2009-05-27 15:31:24 +02:00
section exceeds 33M in size. You may combine @samp{-r} and
@samp{--relax} to add trampolines in a partial link. In that case
both branches to undefined symbols and inter-section branches are also
considered potentially out of range, and trampolines inserted.
2006-05-05 02:51:37 +02:00
@cindex PowerPC ELF32 options
@table @option
@cindex PowerPC PLT
@kindex --bss-plt
@item --bss-plt
Current PowerPC GCC accepts a @samp{-msecure-plt} option that
generates code capable of using a newer PLT and GOT layout that has
the security advantage of no executable section ever needing to be
writable and no writable section ever being executable. PowerPC
@command{ld} will generate this layout, including stubs to access the
PLT, if all input files (including startup and static libraries) were
compiled with @samp{-msecure-plt}. @samp{--bss-plt} forces the old
BSS PLT (and GOT layout) which can give slightly better performance.
2007-05-11 08:39:05 +02:00
@kindex --secure-plt
@item --secure-plt
@command{ld} will use the new PLT and GOT layout if it is linking new
@samp{-fpic} or @samp{-fPIC} code, but does not do so automatically
when linking non-PIC code. This option requests the new PLT and GOT
layout. A warning will be given if some object file requires the old
style BSS PLT.
2006-05-05 02:51:37 +02:00
@cindex PowerPC GOT
@kindex --sdata-got
@item --sdata-got
The new secure PLT and GOT are placed differently relative to other
sections compared to older BSS PLT and GOT placement. The location of
@code{.plt} must change because the new secure PLT is an initialized
section while the old PLT is uninitialized. The reason for the
@code{.got} change is more subtle: The new placement allows
@code{.got} to be read-only in applications linked with
@samp{-z relro -z now}. However, this placement means that
@code{.sdata} cannot always be used in shared libraries, because the
PowerPC ABI accesses @code{.sdata} in shared libraries from the GOT
pointer. @samp{--sdata-got} forces the old GOT placement. PowerPC
GCC doesn't use @code{.sdata} in shared libraries, so this option is
really only useful for other compilers that may do so.
@cindex PowerPC stub symbols
@kindex --emit-stub-syms
@item --emit-stub-syms
This option causes @command{ld} to label linker stubs with a local
symbol that encodes the stub type and destination.
@cindex PowerPC TLS optimization
@kindex --no-tls-optimize
@item --no-tls-optimize
PowerPC @command{ld} normally performs some optimization of code
sequences used to access Thread-Local Storage. Use this option to
disable the optimization.
@end table
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
@ifset POWERPC64
@ifclear GENERIC
@raisesections
@end ifclear
@node PowerPC64 ELF64
@section @command{ld} and PowerPC64 64-bit ELF Support
@cindex PowerPC64 ELF64 options
@table @option
@cindex PowerPC64 stub grouping
@kindex --stub-group-size
@item --stub-group-size
Long branch stubs, PLT call stubs and TOC adjusting stubs are placed
by @command{ld} in stub sections located between groups of input sections.
@samp{--stub-group-size} specifies the maximum size of a group of input
sections handled by one stub section. Since branch offsets are signed,
a stub section may serve two groups of input sections, one group before
the stub section, and one group after it. However, when using
conditional branches that require stubs, it may be better (for branch
prediction) that stub sections only serve one group of input sections.
A negative value for @samp{N} chooses this scheme, ensuring that
branches to stubs always use a negative offset. Two special values of
@samp{N} are recognized, @samp{1} and @samp{-1}. These both instruct
@command{ld} to automatically size input section groups for the branch types
detected, with the same behaviour regarding stub placement as other
positive or negative values of @samp{N} respectively.
Note that @samp{--stub-group-size} does not split input sections. A
single input section larger than the group size specified will of course
create a larger group (of one section). If input sections are too
large, it may not be possible for a branch to reach its stub.
@cindex PowerPC64 stub symbols
@kindex --emit-stub-syms
@item --emit-stub-syms
This option causes @command{ld} to label linker stubs with a local
symbol that encodes the stub type and destination.
@cindex PowerPC64 dot symbols
@kindex --dotsyms
@kindex --no-dotsyms
@item --dotsyms, --no-dotsyms
These two options control how @command{ld} interprets version patterns
in a version script. Older PowerPC64 compilers emitted both a
function descriptor symbol with the same name as the function, and a
code entry symbol with the name prefixed by a dot (@samp{.}). To
properly version a function @samp{foo}, the version script thus needs
to control both @samp{foo} and @samp{.foo}. The option
@samp{--dotsyms}, on by default, automatically adds the required
dot-prefixed patterns. Use @samp{--no-dotsyms} to disable this
feature.
@cindex PowerPC64 TLS optimization
@kindex --no-tls-optimize
@item --no-tls-optimize
PowerPC64 @command{ld} normally performs some optimization of code
sequences used to access Thread-Local Storage. Use this option to
disable the optimization.
@cindex PowerPC64 OPD optimization
@kindex --no-opd-optimize
@item --no-opd-optimize
PowerPC64 @command{ld} normally removes @code{.opd} section entries
corresponding to deleted link-once functions, or functions removed by
2008-05-08 19:34:36 +02:00
the action of @samp{--gc-sections} or linker script @code{/DISCARD/}.
2006-05-05 02:51:37 +02:00
Use this option to disable @code{.opd} optimization.
@cindex PowerPC64 OPD spacing
@kindex --non-overlapping-opd
@item --non-overlapping-opd
Some PowerPC64 compilers have an option to generate compressed
@code{.opd} entries spaced 16 bytes apart, overlapping the third word,
the static chain pointer (unused in C) with the first word of the next
entry. This option expands such entries to the full 24 bytes.
@cindex PowerPC64 TOC optimization
@kindex --no-toc-optimize
@item --no-toc-optimize
PowerPC64 @command{ld} normally removes unused @code{.toc} section
entries. Such entries are detected by examining relocations that
reference the TOC in code sections. A reloc in a deleted code section
marks a TOC word as unneeded, while a reloc in a kept code section
marks a TOC word as needed. Since the TOC may reference itself, TOC
relocs are also examined. TOC words marked as both needed and
unneeded will of course be kept. TOC words without any referencing
reloc are assumed to be part of a multi-word entry, and are kept or
discarded as per the nearest marked preceding word. This works
reliably for compiler generated code, but may be incorrect if assembly
code is used to insert TOC entries. Use this option to disable the
optimization.
@cindex PowerPC64 multi-TOC
@kindex --no-multi-toc
@item --no-multi-toc
By default, PowerPC64 GCC generates code for a TOC model where TOC
entries are accessed with a 16-bit offset from r2. This limits the
total TOC size to 64K. PowerPC64 @command{ld} extends this limit by
grouping code sections such that each group uses less than 64K for its
TOC entries, then inserts r2 adjusting stubs between inter-group
calls. @command{ld} does not split apart input sections, so cannot
help if a single input file has a @code{.toc} section that exceeds
64K, most likely from linking multiple files with @command{ld -r}.
Use this option to turn off this feature.
@end table
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@ifset SPU
@ifclear GENERIC
@raisesections
@end ifclear
@node SPU ELF
@section @command{ld} and SPU ELF Support
@cindex SPU ELF options
@table @option
@cindex SPU plugins
@kindex --plugin
@item --plugin
This option marks an executable as a PIC plugin module.
@cindex SPU overlays
@kindex --no-overlays
@item --no-overlays
Normally, @command{ld} recognizes calls to functions within overlay
regions, and redirects such calls to an overlay manager via a stub.
@command{ld} also provides a built-in overlay manager. This option
turns off all this special overlay handling.
@cindex SPU overlay stub symbols
@kindex --emit-stub-syms
@item --emit-stub-syms
This option causes @command{ld} to label overlay stubs with a local
symbol that encodes the stub type and destination.
@cindex SPU extra overlay stubs
@kindex --extra-overlay-stubs
@item --extra-overlay-stubs
This option causes @command{ld} to add overlay call stubs on all
function calls out of overlay regions. Normally stubs are not added
on calls to non-overlay regions.
@cindex SPU local store size
@kindex --local-store=lo:hi
@item --local-store=lo:hi
@command{ld} usually checks that a final executable for SPU fits in
the address range 0 to 256k. This option may be used to change the
range. Disable the check entirely with @option{--local-store=0:0}.
2007-07-09 23:25:34 +02:00
@cindex SPU
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@kindex --stack-analysis
@item --stack-analysis
SPU local store space is limited. Over-allocation of stack space
unnecessarily limits space available for code and data, while
under-allocation results in runtime failures. If given this option,
@command{ld} will provide an estimate of maximum stack usage.
@command{ld} does this by examining symbols in code sections to
determine the extents of functions, and looking at function prologues
for stack adjusting instructions. A call-graph is created by looking
for relocations on branch instructions. The graph is then searched
for the maximum stack usage path. Note that this analysis does not
find calls made via function pointers, and does not handle recursion
and other cycles in the call graph. Stack usage may be
under-estimated if your code makes such calls. Also, stack usage for
dynamic allocation, e.g. alloca, will not be detected. If a link map
is requested, detailed information about each function's stack usage
and calls will be given.
2007-07-09 23:25:34 +02:00
@cindex SPU
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@kindex --emit-stack-syms
@item --emit-stack-syms
This option, if given along with @option{--stack-analysis} will result
in @command{ld} emitting stack sizing symbols for each function.
These take the form @code{__stack_<function_name>} for global
functions, and @code{__stack_<number>_<function_name>} for static
functions. @code{<number>} is the section id in hex. The value of
such symbols is the stack requirement for the corresponding function.
The symbol size will be zero, type @code{STT_NOTYPE}, binding
2007-07-09 23:25:34 +02:00
@code{STB_LOCAL}, and section @code{SHN_ABS}.
bfd/
* elf32-spu.c (struct spu_link_hash_table): Add stack_analysis
and emit_stack_syms bitfields.
(get_sym_h): Read all symbols if stack analysis will be done.
(spu_elf_create_sections): Add stack_analysis and emit_stack_syms
params, and stash in hash table.
(is_hint): Split off from..
(is_branch): ..here. Adjust callers.
(spu_elf_size_stubs): Add stack_analysis param. Arrange to read
and keep all syms.
(write_one_stub): Fix mem leak.
(find_function_stack_adjust): New function.
(sort_syms_syms, sort_syms_psecs): New vars.
(sort_syms): New function.
(struct call_info, struct function_info): New.
(struct spu_elf_stack_info): New.
(alloc_stack_info, maybe_insert_function, func_name): New functions.
(is_nop, insns_at_end, check_function_ranges): Likewise.
(find_function, insert_callee, mark_functions_via_relocs): Likewise.
(pasted_function, interesting_section, discover_functions): Likewise.
(mark_non_root, call_graph_traverse, build_call_tree): Likewise.
(sum_stack, spu_elf_stack_analysis, spu_elf_final_link): Likewise.
(bfd_elf32_bfd_final_link): Define.
* elf32-spu.h (struct _spu_elf_section_data): Add stack_info field.
(spu_elf_create_sections, spu_elf_size_stubs): Update prototypes.
include/
* bfdlink.h (struct bfd_link_info): Add "info" and "minfo".
ld/
* ldmain.c (link_callbacks): Init info and minfo fields.
* ldmisc.c (minfo): Do nothing if no map file.
* emultempl/spuelf.em (stack_analysis, emit_stack_syms): New vars.
(spu_after_open): Adjust spu_elf_create_sections call.
(spu_before_allocation): Likewise for spu_elf_size_stubs.
(OPTION_SPU_STACK_ANALYSIS, OPTION_SPU_STACK_SYMS): Define.
(PARSE_AND_LIST_LONGOPTS): Add new entries.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* gen-doc.texi: Add @set for SPU and other missing targets.
* ld.texinfo: Update man page selection to match gen-doc.texi.
Document SPU features.
2007-04-30 16:06:40 +02:00
@end table
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2003-02-21 11:27:06 +01:00
@ifset TICOFF
@ifclear GENERIC
@raisesections
@end ifclear
@node TI COFF
@section @command{ld}'s Support for Various TI COFF Versions
@cindex TI COFF versions
@kindex --format=@var{version}
The @samp{--format} switch allows selection of one of the various
TI COFF versions. The latest of this writing is 2; versions 0 and 1 are
also supported. The TI COFF versions also vary in header byte-order
format; @command{ld} will read any version or byte order, but the output
header format depends on the default specified by the specific target.
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2002-12-18 17:25:02 +01:00
@ifset WIN32
@ifclear GENERIC
@raisesections
@end ifclear
@node WIN32
@section @command{ld} and WIN32 (cygwin/mingw)
2007-07-09 23:25:34 +02:00
This section describes some of the win32 specific @command{ld} issues.
2006-07-24 15:49:50 +02:00
See @ref{Options,,Command Line Options} for detailed description of the
2002-12-30 12:44:51 +01:00
command line options mentioned here.
2002-12-18 17:25:02 +01:00
@table @emph
2007-07-09 23:25:34 +02:00
@cindex import libraries
@item import libraries
2002-12-19 18:25:02 +01:00
The standard Windows linker creates and uses so-called import
2002-12-18 17:25:02 +01:00
libraries, which contains information for linking to dll's. They are
2002-12-19 18:25:02 +01:00
regular static archives and are handled as any other static
archive. The cygwin and mingw ports of @command{ld} have specific
2002-12-18 17:25:02 +01:00
support for creating such libraries provided with the
@samp{--out-implib} command line option.
2007-07-09 23:25:34 +02:00
@item exporting DLL symbols
@cindex exporting DLL symbols
2002-12-30 12:44:51 +01:00
The cygwin/mingw @command{ld} has several ways to export symbols for dll's.
@table @emph
@item using auto-export functionality
@cindex using auto-export functionality
By default @command{ld} exports symbols with the auto-export functionality,
which is controlled by the following command line options:
2003-01-14 12:25:58 +01:00
@itemize
@item --export-all-symbols [This is the default]
@item --exclude-symbols
@item --exclude-libs
2009-01-03 19:04:16 +01:00
@item --exclude-modules-for-implib
2009-05-04 14:09:30 +02:00
@item --version-script
2003-01-14 12:25:58 +01:00
@end itemize
2009-05-04 14:09:30 +02:00
When auto-export is in operation, @command{ld} will export all the non-local
(global and common) symbols it finds in a DLL, with the exception of a few
symbols known to belong to the system's runtime and libraries. As it will
often not be desirable to export all of a DLL's symbols, which may include
private functions that are not part of any public interface, the command-line
options listed above may be used to filter symbols out from the list for
exporting. The @samp{--output-def} option can be used in order to see the
final list of exported symbols with all exclusions taken into effect.
If @samp{--export-all-symbols} is not given explicitly on the
2003-01-14 12:25:58 +01:00
command line, then the default auto-export behavior will be @emph{disabled}
if either of the following are true:
@itemize
@item A DEF file is used.
@item Any symbol in any object file was marked with the __declspec(dllexport) attribute.
@end itemize
2002-12-30 12:44:51 +01:00
2007-07-09 23:25:34 +02:00
@item using a DEF file
@cindex using a DEF file
2002-12-30 12:44:51 +01:00
Another way of exporting symbols is using a DEF file. A DEF file is
an ASCII file containing definitions of symbols which should be
exported when a dll is created. Usually it is named @samp{<dll
name>.def} and is added as any other object file to the linker's
2003-01-14 12:25:58 +01:00
command line. The file's name must end in @samp{.def} or @samp{.DEF}.
2002-12-30 12:44:51 +01:00
@example
gcc -o <output> <objectfiles> <dll name>.def
@end example
2003-01-14 12:25:58 +01:00
Using a DEF file turns off the normal auto-export behavior, unless the
@samp{--export-all-symbols} option is also used.
2002-12-30 12:44:51 +01:00
Here is an example of a DEF file for a shared library called @samp{xyz.dll}:
@example
2006-01-31 23:13:41 +01:00
LIBRARY "xyz.dll" BASE=0x20000000
2002-12-30 12:44:51 +01:00
EXPORTS
foo
bar
_bar = bar
2006-01-31 23:13:41 +01:00
another_foo = abc.dll.afoo
var1 DATA
2009-10-23 13:40:17 +02:00
doo = foo == foo2
eoo DATA == var1
2007-07-09 23:25:34 +02:00
@end example
2002-12-30 12:44:51 +01:00
2009-10-23 13:40:17 +02:00
This example defines a DLL with a non-default base address and seven
2006-01-31 23:13:41 +01:00
symbols in the export table. The third exported symbol @code{_bar} is an
alias for the second. The fourth symbol, @code{another_foo} is resolved
by "forwarding" to another module and treating it as an alias for
@code{afoo} exported from the DLL @samp{abc.dll}. The final symbol
2009-10-23 13:40:17 +02:00
@code{var1} is declared to be a data object. The @samp{doo} symbol in
export library is an alias of @samp{foo}, which gets the string name
in export table @samp{foo2}. The @samp{eoo} symbol is an data export
symbol, which gets in export table the name @samp{var1}.
2006-01-31 23:13:41 +01:00
2006-02-01 22:28:29 +01:00
The optional @code{LIBRARY <name>} command indicates the @emph{internal}
name of the output DLL. If @samp{<name>} does not include a suffix,
the default library suffix, @samp{.DLL} is appended.
2006-07-24 15:49:50 +02:00
When the .DEF file is used to build an application, rather than a
library, the @code{NAME <name>} command should be used instead of
2006-02-01 22:28:29 +01:00
@code{LIBRARY}. If @samp{<name>} does not include a suffix, the default
2007-07-09 23:25:34 +02:00
executable suffix, @samp{.EXE} is appended.
2006-02-01 22:28:29 +01:00
With either @code{LIBRARY <name>} or @code{NAME <name>} the optional
specification @code{BASE = <number>} may be used to specify a
2007-07-09 23:25:34 +02:00
non-default base address for the image.
2006-02-01 22:28:29 +01:00
If neither @code{LIBRARY <name>} nor @code{NAME <name>} is specified,
2006-04-01 06:51:23 +02:00
or they specify an empty string, the internal name is the same as the
filename specified on the command line.
2006-02-01 22:28:29 +01:00
2006-01-31 23:13:41 +01:00
The complete specification of an export symbol is:
@example
EXPORTS
( ( ( <name1> [ = <name2> ] )
| ( <name1> = <module-name> . <external-name>))
2009-10-23 13:40:17 +02:00
[ @@ <integer> ] [NONAME] [DATA] [CONSTANT] [PRIVATE] [== <name3>] ) *
2007-07-09 23:25:34 +02:00
@end example
2006-01-31 23:13:41 +01:00
Declares @samp{<name1>} as an exported symbol from the DLL, or declares
@samp{<name1>} as an exported alias for @samp{<name2>}; or declares
@samp{<name1>} as a "forward" alias for the symbol
@samp{<external-name>} in the DLL @samp{<module-name>}.
Optionally, the symbol may be exported by the specified ordinal
2009-10-23 13:40:17 +02:00
@samp{<integer>} alias. The optional @samp{<name3>} is the to be used
string in import/export table for the symbol.
2006-01-31 23:13:41 +01:00
The optional keywords that follow the declaration indicate:
@code{NONAME}: Do not put the symbol name in the DLL's export table. It
will still be exported by its ordinal alias (either the value specified
by the .def specification or, otherwise, the value assigned by the
linker). The symbol name, however, does remain visible in the import
library (if any), unless @code{PRIVATE} is also specified.
@code{DATA}: The symbol is a variable or object, rather than a function.
The import lib will export only an indirect reference to @code{foo} as
the symbol @code{_imp__foo} (ie, @code{foo} must be resolved as
@code{*_imp__foo}).
@code{CONSTANT}: Like @code{DATA}, but put the undecorated @code{foo} as
well as @code{_imp__foo} into the import library. Both refer to the
read-only import address table's pointer to the variable, not to the
variable itself. This can be dangerous. If the user code fails to add
the @code{dllimport} attribute and also fails to explicitly add the
extra indirection that the use of the attribute enforces, the
application will behave unexpectedly.
@code{PRIVATE}: Put the symbol in the DLL's export table, but do not put
it into the static import library used to resolve imports at link time. The
symbol can still be imported using the @code{LoadLibrary/GetProcAddress}
API at runtime or by by using the GNU ld extension of linking directly to
the DLL without an import library.
2007-07-09 23:25:34 +02:00
2006-01-31 23:13:41 +01:00
See ld/deffilep.y in the binutils sources for the full specification of
other DEF file statements
2002-12-30 12:44:51 +01:00
@cindex creating a DEF file
While linking a shared dll, @command{ld} is able to create a DEF file
with the @samp{--output-def <file>} command line option.
2003-01-14 12:25:58 +01:00
@item Using decorations
@cindex Using decorations
Another way of marking symbols for export is to modify the source code
itself, so that when building the DLL each symbol to be exported is
declared as:
@example
__declspec(dllexport) int a_variable
__declspec(dllexport) void a_function(int with_args)
@end example
All such symbols will be exported from the DLL. If, however,
any of the object files in the DLL contain symbols decorated in
this way, then the normal auto-export behavior is disabled, unless
the @samp{--export-all-symbols} option is also used.
Note that object files that wish to access these symbols must @emph{not}
2007-07-09 23:25:34 +02:00
decorate them with dllexport. Instead, they should use dllimport,
2003-01-14 12:25:58 +01:00
instead:
@example
__declspec(dllimport) int a_variable
__declspec(dllimport) void a_function(int with_args)
@end example
2007-07-09 23:25:34 +02:00
This complicates the structure of library header files, because
when included by the library itself the header must declare the
2003-01-14 12:25:58 +01:00
variables and functions as dllexport, but when included by client
code the header must declare them as dllimport. There are a number
2007-07-09 23:25:34 +02:00
of idioms that are typically used to do this; often client code can
2003-01-14 12:25:58 +01:00
omit the __declspec() declaration completely. See
@samp{--enable-auto-import} and @samp{automatic data imports} for more
2006-07-24 15:49:50 +02:00
information.
2007-07-09 23:25:34 +02:00
@end table
2002-12-30 12:44:51 +01:00
2002-12-18 17:25:02 +01:00
@cindex automatic data imports
@item automatic data imports
The standard Windows dll format supports data imports from dlls only
2002-12-19 18:25:02 +01:00
by adding special decorations (dllimport/dllexport), which let the
2002-12-18 17:25:02 +01:00
compiler produce specific assembler instructions to deal with this
2007-07-09 23:25:34 +02:00
issue. This increases the effort necessary to port existing Un*x
2002-12-19 18:25:02 +01:00
code to these platforms, especially for large
2002-12-18 17:25:02 +01:00
c++ libraries and applications. The auto-import feature, which was
2007-07-09 23:25:34 +02:00
initially provided by Paul Sokolovsky, allows one to omit the
2006-07-24 15:49:50 +02:00
decorations to achieve a behavior that conforms to that on POSIX/Un*x
2007-07-09 23:25:34 +02:00
platforms. This feature is enabled with the @samp{--enable-auto-import}
2002-12-19 18:25:02 +01:00
command-line option, although it is enabled by default on cygwin/mingw.
The @samp{--enable-auto-import} option itself now serves mainly to
suppress any warnings that are ordinarily emitted when linked objects
trigger the feature's use.
2007-07-09 23:25:34 +02:00
auto-import of variables does not always work flawlessly without
2002-12-19 18:25:02 +01:00
additional assistance. Sometimes, you will see this message
2007-07-09 23:25:34 +02:00
"variable '<var>' can't be auto-imported. Please read the
2002-12-19 18:25:02 +01:00
documentation for ld's @code{--enable-auto-import} for details."
2007-07-09 23:25:34 +02:00
The @samp{--enable-auto-import} documentation explains why this error
occurs, and several methods that can be used to overcome this difficulty.
One of these methods is the @emph{runtime pseudo-relocs} feature, described
2002-12-19 18:25:02 +01:00
below.
@cindex runtime pseudo-relocation
2007-07-09 23:25:34 +02:00
For complex variables imported from DLLs (such as structs or classes),
object files typically contain a base address for the variable and an
offset (@emph{addend}) within the variable--to specify a particular
field or public member, for instance. Unfortunately, the runtime loader used
in win32 environments is incapable of fixing these references at runtime
2002-12-19 18:25:02 +01:00
without the additional information supplied by dllimport/dllexport decorations.
2007-07-09 23:25:34 +02:00
The standard auto-import feature described above is unable to resolve these
2002-12-19 18:25:02 +01:00
references.
2007-07-09 23:25:34 +02:00
The @samp{--enable-runtime-pseudo-relocs} switch allows these references to
be resolved without error, while leaving the task of adjusting the references
themselves (with their non-zero addends) to specialized code provided by the
runtime environment. Recent versions of the cygwin and mingw environments and
compilers provide this runtime support; older versions do not. However, the
support is only necessary on the developer's platform; the compiled result will
2002-12-19 18:25:02 +01:00
run without error on an older system.
2007-07-09 23:25:34 +02:00
@samp{--enable-runtime-pseudo-relocs} is not the default; it must be explicitly
enabled as needed.
2002-12-18 17:25:02 +01:00
@cindex direct linking to a dll
@item direct linking to a dll
The cygwin/mingw ports of @command{ld} support the direct linking,
including data symbols, to a dll without the usage of any import
2002-12-19 18:25:02 +01:00
libraries. This is much faster and uses much less memory than does the
2006-07-24 15:49:50 +02:00
traditional import library method, especially when linking large
2007-07-09 23:25:34 +02:00
libraries or applications. When @command{ld} creates an import lib, each
function or variable exported from the dll is stored in its own bfd, even
though a single bfd could contain many exports. The overhead involved in
2002-12-19 18:25:02 +01:00
storing, loading, and processing so many bfd's is quite large, and explains the
2007-07-09 23:25:34 +02:00
tremendous time, memory, and storage needed to link against particularly
2002-12-19 18:25:02 +01:00
large or complex libraries when using import libs.
2007-07-09 23:25:34 +02:00
Linking directly to a dll uses no extra command-line switches other than
2002-12-19 18:25:02 +01:00
@samp{-L} and @samp{-l}, because @command{ld} already searches for a number
2007-07-09 23:25:34 +02:00
of names to match each library. All that is needed from the developer's
2002-12-19 18:25:02 +01:00
perspective is an understanding of this search, in order to force ld to
select the dll instead of an import library.
2002-12-18 17:25:02 +01:00
2002-12-19 18:25:02 +01:00
For instance, when ld is called with the argument @samp{-lxxx} it will attempt
to find, in the first directory of its search path,
2002-12-18 17:25:02 +01:00
@example
2006-06-22 15:43:04 +02:00
libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.lib
2002-12-19 18:25:02 +01:00
cygxxx.dll (*)
2006-06-22 15:43:04 +02:00
libxxx.dll
xxx.dll
2002-12-18 17:25:02 +01:00
@end example
2002-12-19 18:25:02 +01:00
before moving on to the next directory in the search path.
2007-07-09 23:25:34 +02:00
(*) Actually, this is not @samp{cygxxx.dll} but in fact is @samp{<prefix>xxx.dll},
where @samp{<prefix>} is set by the @command{ld} option
@samp{--dll-search-prefix=<prefix>}. In the case of cygwin, the standard gcc spec
file includes @samp{--dll-search-prefix=cyg}, so in effect we actually search for
2002-12-19 18:25:02 +01:00
@samp{cygxxx.dll}.
2007-07-09 23:25:34 +02:00
Other win32-based unix environments, such as mingw or pw32, may use other
@samp{<prefix>}es, although at present only cygwin makes use of this feature. It
2002-12-19 18:25:02 +01:00
was originally intended to help avoid name conflicts among dll's built for the
various win32/un*x environments, so that (for example) two versions of a zlib dll
could coexist on the same machine.
2002-12-18 17:25:02 +01:00
The generic cygwin/mingw path layout uses a @samp{bin} directory for
applications and dll's and a @samp{lib} directory for the import
2002-12-19 18:25:02 +01:00
libraries (using cygwin nomenclature):
2002-12-18 17:25:02 +01:00
@example
bin/
cygxxx.dll
lib/
libxxx.dll.a (in case of dll's)
2007-07-09 23:25:34 +02:00
libxxx.a (in case of static archive)
2002-12-18 17:25:02 +01:00
@end example
2007-07-09 23:25:34 +02:00
Linking directly to a dll without using the import library can be
done two ways:
2002-12-18 17:25:02 +01:00
1. Use the dll directly by adding the @samp{bin} path to the link line
@example
gcc -Wl,-verbose -o a.exe -L../bin/ -lxxx
2007-07-09 23:25:34 +02:00
@end example
2002-12-18 17:25:02 +01:00
2002-12-19 18:25:02 +01:00
However, as the dll's often have version numbers appended to their names
(@samp{cygncurses-5.dll}) this will often fail, unless one specifies
@samp{-L../bin -lncurses-5} to include the version. Import libs are generally
not versioned, and do not have this difficulty.
2002-12-18 17:25:02 +01:00
2. Create a symbolic link from the dll to a file in the @samp{lib}
directory according to the above mentioned search pattern. This
should be used to avoid unwanted changes in the tools needed for
making the app/dll.
@example
ln -s bin/cygxxx.dll lib/[cyg|lib|]xxx.dll[.a]
2007-07-09 23:25:34 +02:00
@end example
2002-12-18 17:25:02 +01:00
Then you can link without any make environment changes.
@example
gcc -Wl,-verbose -o a.exe -L../lib/ -lxxx
2007-07-09 23:25:34 +02:00
@end example
2002-12-19 18:25:02 +01:00
This technique also avoids the version number problems, because the following is
perfectly legal
@example
bin/
cygxxx-5.dll
lib/
2007-07-09 23:25:34 +02:00
libxxx.dll.a -> ../bin/cygxxx-5.dll
2002-12-19 18:25:02 +01:00
@end example
2002-12-30 12:44:51 +01:00
Linking directly to a dll without using an import lib will work
2002-12-19 18:25:02 +01:00
even when auto-import features are exercised, and even when
@samp{--enable-runtime-pseudo-relocs} is used.
Given the improvements in speed and memory usage, one might justifiably
2006-06-22 15:43:04 +02:00
wonder why import libraries are used at all. There are three reasons:
2002-12-19 18:25:02 +01:00
1. Until recently, the link-directly-to-dll functionality did @emph{not}
work with auto-imported data.
2002-12-30 12:44:51 +01:00
2. Sometimes it is necessary to include pure static objects within the
import library (which otherwise contains only bfd's for indirection
symbols that point to the exports of a dll). Again, the import lib
for the cygwin kernel makes use of this ability, and it is not
possible to do this without an import lib.
2002-12-19 18:25:02 +01:00
2006-06-22 15:43:04 +02:00
3. Symbol aliases can only be resolved using an import lib. This is
critical when linking against OS-supplied dll's (eg, the win32 API)
in which symbols are usually exported as undecorated aliases of their
stdcall-decorated assembly names.
2002-12-19 18:25:02 +01:00
So, import libs are not going away. But the ability to replace
2007-07-09 23:25:34 +02:00
true import libs with a simple symbolic link to (or a copy of)
a dll, in many cases, is a useful addition to the suite of tools
binutils makes available to the win32 developer. Given the
2002-12-19 18:25:02 +01:00
massive improvements in memory requirements during linking, storage
requirements, and linking speed, we expect that many developers
will soon begin to use this feature whenever possible.
2002-12-30 12:44:51 +01:00
2007-07-09 23:25:34 +02:00
@item symbol aliasing
2002-12-30 12:44:51 +01:00
@table @emph
2007-07-09 23:25:34 +02:00
@item adding additional names
Sometimes, it is useful to export symbols with additional names.
2002-12-30 12:44:51 +01:00
A symbol @samp{foo} will be exported as @samp{foo}, but it can also be
exported as @samp{_foo} by using special directives in the DEF file
when creating the dll. This will affect also the optional created
2007-07-09 23:25:34 +02:00
import library. Consider the following DEF file:
2002-12-30 12:44:51 +01:00
2007-07-09 23:25:34 +02:00
@example
2002-12-30 12:44:51 +01:00
LIBRARY "xyz.dll" BASE=0x61000000
EXPORTS
2007-07-09 23:25:34 +02:00
foo
2002-12-30 12:44:51 +01:00
_foo = foo
2007-07-09 23:25:34 +02:00
@end example
2002-12-30 12:44:51 +01:00
The line @samp{_foo = foo} maps the symbol @samp{foo} to @samp{_foo}.
Another method for creating a symbol alias is to create it in the
source code using the "weak" attribute:
2007-07-09 23:25:34 +02:00
@example
void foo () @{ /* Do something. */; @}
2002-12-30 12:44:51 +01:00
void _foo () __attribute__ ((weak, alias ("foo")));
2007-07-09 23:25:34 +02:00
@end example
2002-12-30 12:44:51 +01:00
See the gcc manual for more information about attributes and weak
symbols.
@item renaming symbols
Sometimes it is useful to rename exports. For instance, the cygwin
2007-07-09 23:25:34 +02:00
kernel does this regularly. A symbol @samp{_foo} can be exported as
2002-12-30 12:44:51 +01:00
@samp{foo} but not as @samp{_foo} by using special directives in the
DEF file. (This will also affect the import library, if it is
2007-07-09 23:25:34 +02:00
created). In the following example:
2002-12-30 12:44:51 +01:00
2007-07-09 23:25:34 +02:00
@example
2002-12-30 12:44:51 +01:00
LIBRARY "xyz.dll" BASE=0x61000000
EXPORTS
_foo = foo
2007-07-09 23:25:34 +02:00
@end example
2002-12-30 12:44:51 +01:00
The line @samp{_foo = foo} maps the exported symbol @samp{foo} to
@samp{_foo}.
2007-07-09 23:25:34 +02:00
@end table
2002-12-30 12:44:51 +01:00
2003-01-14 12:25:58 +01:00
Note: using a DEF file disables the default auto-export behavior,
2007-07-09 23:25:34 +02:00
unless the @samp{--export-all-symbols} command line option is used.
2003-01-14 12:25:58 +01:00
If, however, you are trying to rename symbols, then you should list
2007-07-09 23:25:34 +02:00
@emph{all} desired exports in the DEF file, including the symbols
that are not being renamed, and do @emph{not} use the
@samp{--export-all-symbols} option. If you list only the
renamed symbols in the DEF file, and use @samp{--export-all-symbols}
to handle the other symbols, then the both the new names @emph{and}
the original names for the renamed symbols will be exported.
In effect, you'd be aliasing those symbols, not renaming them,
2003-01-14 12:25:58 +01:00
which is probably not what you wanted.
2004-07-03 18:07:51 +02:00
@cindex weak externals
@item weak externals
The Windows object format, PE, specifies a form of weak symbols called
weak externals. When a weak symbol is linked and the symbol is not
defined, the weak symbol becomes an alias for some other symbol. There
are three variants of weak externals:
@itemize
@item Definition is searched for in objects and libraries, historically
called lazy externals.
@item Definition is searched for only in other objects, not in libraries.
This form is not presently implemented.
@item No search; the symbol is an alias. This form is not presently
implemented.
@end itemize
As a GNU extension, weak symbols that do not specify an alternate symbol
are supported. If the symbol is undefined when linking, the symbol
uses a default value.
2009-05-19 18:08:08 +02:00
@cindex aligned common symbols
@item aligned common symbols
As a GNU extension to the PE file format, it is possible to specify the
desired alignment for a common symbol. This information is conveyed from
the assembler or compiler to the linker by means of GNU-specific commands
carried in the object file's @samp{.drectve} section, which are recognized
by @command{ld} and respected when laying out the common symbols. Native
tools will be able to process object files employing this GNU extension,
but will fail to respect the alignment instructions, and may issue noisy
warnings about unknown linker directives.
2002-12-18 17:25:02 +01:00
@end table
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
2003-04-01 17:50:31 +02:00
@ifset XTENSA
@ifclear GENERIC
@raisesections
@end ifclear
@node Xtensa
@section @code{ld} and Xtensa Processors
@cindex Xtensa processors
The default @command{ld} behavior for Xtensa processors is to interpret
@code{SECTIONS} commands so that lists of explicitly named sections in a
specification with a wildcard file will be interleaved when necessary to
keep literal pools within the range of PC-relative load offsets. For
example, with the command:
@smallexample
SECTIONS
@{
.text : @{
*(.literal .text)
@}
@}
@end smallexample
@noindent
@command{ld} may interleave some of the @code{.literal}
and @code{.text} sections from different object files to ensure that the
literal pools are within the range of PC-relative load offsets. A valid
interleaving might place the @code{.literal} sections from an initial
group of files followed by the @code{.text} sections of that group of
files. Then, the @code{.literal} sections from the rest of the files
and the @code{.text} sections from the rest of the files would follow.
bfd ChangeLog
* elf32-xtensa.c (elf32xtensa_size_opt): New global variable.
(xtensa_default_isa): Global variable moved here from xtensa-isa.c.
(elf32xtensa_no_literal_movement): New global variable.
(elf_howto_table): Add entries for new relocations.
(elf_xtensa_reloc_type_lookup): Handle new relocations.
(property_table_compare): When addresses are equal, compare sizes and
various property flags.
(property_table_matches): New.
(xtensa_read_table_entries): Extend to read new property tables. Add
output_addr parameter to indicate that output addresses should be used.
Use bfd_get_section_limit.
(elf_xtensa_find_property_entry): New.
(elf_xtensa_in_literal_pool): Use elf_xtensa_find_property_entry.
(elf_xtensa_check_relocs): Handle new relocations.
(elf_xtensa_do_reloc): Use bfd_get_section_limit. Handle new
relocations. Use new xtensa-isa.h functions.
(build_encoding_error_message): Remove encode_result parameter. Add
new target_address parameter used to detect alignment errors.
(elf_xtensa_relocate_section): Use bfd_get_section_limit. Clean up
error handling. Use new is_operand_relocation function.
(elf_xtensa_combine_prop_entries, elf_xtensa_merge_private_bfd_data):
Use underbar macro for error messages. Formatting.
(get_const16_opcode): New.
(get_l32r_opcode): Add a separate flag for initialization.
(get_relocation_opnd): Operand number is no longer explicit in the
relocation. Change to decode the opcode and analyze its operands.
(get_relocation_slot): New.
(get_relocation_opcode): Add bfd parameter. Use bfd_get_section_limit.
Use new xtensa-isa.h functions to handle multislot instructions.
(is_l32r_relocation): Add bfd parameter. Use is_operand_relocation.
(get_asm_simplify_size, is_alt_relocation, is_operand_relocation,
insn_decode_len, insn_decode_opcode, check_branch_target_aligned,
check_loop_aligned, check_branch_target_aligned_address, narrowable,
widenable, narrow_instruction, widen_instruction, op_single_fmt_table,
get_single_format, init_op_single_format_table): New.
(elf_xtensa_do_asm_simplify): Add error_message parameter and use it
instead of calling _bfd_error_handler. Use new xtensa-isa.h functions.
(contract_asm_expansion): Add error_message parameter and pass it to
elf_xtensa_do_asm_simplify. Replace use of R_XTENSA_OP0 relocation
with R_XTENSA_SLOT0_OP.
(get_expanded_call_opcode): Extend to handle either L32R or CONST16
instructions. Use new xtensa-isa.h functions.
(r_reloc struct): Add new virtual_offset field.
(r_reloc_init): Add contents and content_length parameters. Set
virtual_offset field to zero. Add contents to target_offset field for
partial_inplace relocations.
(r_reloc_is_defined): Check for null.
(print_r_reloc): New debug function.
(source_reloc struct): Replace xtensa_operand field with pair of the
opcode and the operand position. Add is_abs_literal field.
(init_source_reloc): Specify operand by opcode/position pair. Set
is_abs_literal field.
(source_reloc_compare): When target_offsets are equal, compare other
fields to make sorting predictable.
(literal_value struct): Add is_abs_literal field.
(value_map_hash_table struct): Add has_last_loc and last_loc fields.
(init_literal_value): New.
(is_same_value): Replace with ...
(literal_value_equal): ... this function. Add comparisons of
virtual_offset and is_abs_literal fields.
(value_map_hash_table_init): Use bfd_zmalloc. Check for allocation
failure. Initialize has_last_loc field.
(value_map_hash_table_delete): New.
(hash_literal_value): Rename to ...
(literal_value_hash): ... this. Include is_abs_literal flag and
virtual_offset field in the hash value.
(get_cached_value): Rename to ...
(value_map_get_cached_value): ... this. Update calls to
literal_value_hash and literal_value_equal.
(add_value_map): Check for allocation failure. Update calls to
value_map_get_cached_value and literal_value_hash.
(text_action, text_action_list, text_action_t): New types.
(find_fill_action, compute_removed_action_diff, adjust_fill_action,
text_action_add, text_action_add_literal, offset_with_removed_text,
offset_with_removed_text_before_fill, find_insn_action,
print_action_list, print_removed_literals): New.
(offset_with_removed_literals): Delete.
(xtensa_relax_info struct): Add is_relaxable_asm_section, action_list,
fix_array, fix_array_count, allocated_relocs, relocs_count, and
allocated_relocs_count fields.
(init_xtensa_relax_info): Initialize new fields.
(reloc_bfd_fix struct): Add new translated field.
(reloc_bfd_fix_init): Add translated parameter and use it to set the
translated field.
(fix_compare, cache_fix_array): New.
(get_bfd_fix): Remove fix_list parameter and get all relax_info for the
section via get_xtensa_relax_info. Use cache_fix_array to set up
sorted fix_array and use bsearch instead of linear search.
(section_cache_t): New struct.
(init_section_cache, section_cache_section, clear_section_cache): New.
(ebb_t, ebb_target_enum, proposed_action, ebb_constraint): New types.
(init_ebb_constraint, free_ebb_constraint, init_ebb, extend_ebb_bounds,
extend_ebb_bounds_forward, extend_ebb_bounds_backward,
insn_block_decodable_len, ebb_propose_action, ebb_add_proposed_action):
New.
(retrieve_contents): Use bfd_get_section_limit.
(elf_xtensa_relax_section): Add relocations_analyzed flag. Update call
to compute_removed_literals. Free value_map_hash_table when no longer
needed.
(analyze_relocations): Check is_relaxable_asm_section flag. Call
compute_text_actions for all sections.
(find_relaxable_sections): Mark sections as relaxable if they contain
ASM_EXPAND relocations that can be optimized. Adjust r_reloc_init
call. Increment relax_info src_count field only for appropriate
relocation types. Remove is_literal_section check.
(collect_source_relocs): Use bfd_get_section_limit. Adjust calls to
r_reloc_init and find_associated_l32r_irel. Check
is_relaxable_asm_section flag. Handle L32R instructions with absolute
literals. Pass is_abs_literal flag to init_source_reloc.
(is_resolvable_asm_expansion): Use bfd_get_section_limit. Check for
CONST16 instructions. Adjust calls to r_reloc_init and
pcrel_reloc_fits. Handle weak symbols conservatively.
(find_associated_l32r_irel): Add bfd parameter and pass it to
is_l32r_relocation.
(compute_text_actions, compute_ebb_proposed_actions,
compute_ebb_actions, check_section_ebb_pcrels_fit,
check_section_ebb_reduces, text_action_add_proposed,
compute_fill_extra_space): New.
(remove_literals): Replace with ...
(compute_removed_literals): ... this function. Call
init_section_cache. Use bfd_get_section_limit. Sort internal_relocs.
Call xtensa_read_table_entries to get the property table. Skip
relocations other than R_XTENSA_32 and R_XTENSA_PLT. Use new
is_removable_literal, remove_dead_literal, and
identify_literal_placement functions.
(get_irel_at_offset): Rewrite to use bsearch on sorted relocations
instead of linear search.
(is_removable_literal, remove_dead_literal,
identify_literal_placement): New.
(relocations_reach): Update check for literal not referenced by any
PC-relative relocations. Adjust call to pcrel_reloc_fits.
(coalesce_shared_literal, move_shared_literal): New.
(relax_section): Use bfd_get_section_limit. Call
translate_section_fixes. Update calls to r_reloc_init and
offset_with_removed_text. Check new is_relaxable_asm_section flag.
Add call to pin_internal_relocs. Add special handling for
R_XTENSA_ASM_SIMPLIFY and R_XTENSA_DIFF* relocs. Use virtual_offset
info to calculate new addend_displacement variable. Replace code for
deleting literals with more general code to perform the actions
determined by the action_list for the section.
(translate_section_fixes, translate_reloc_bfd_fix): New.
(translate_reloc): Check new is_relaxable_asm_section flag. Call
find_removed_literal only if is_operand_relocation. Update call to
offset_with_removed_text. Use new target_offset and removed_bytes
variables.
(move_literal): New.
(relax_property_section): Use bfd_get_section_limit. Set new
is_full_prop_section flag and handle new property tables. Update calls
to r_reloc_init and offset_with_removed_text. Check
is_relaxable_asm_section flag. Handle expansion of zero-sized
unreachable entries, with use of offset_with_removed_text_before_fill.
For relocatable links, combine entries only for literal tables.
(relax_section_symbols): Check is_relaxable_asm_section flag. Update
calls to offset_with_removed_text. Translate st_size field for
function symbols.
(do_fix_for_relocatable_link): Change to return bfd_boolean to indicate
failure. Add contents parameter. Update call to get_bfd_fix. Update
call to r_reloc_init. Call _bfd_error_handler and return FALSE for
R_XTENSA_ASM_EXPAND relocs.
(do_fix_for_final_link): Add input_bfd and contents parameters. Update
call to get_bfd_fix. Include offset from contents for partial_inplace
relocations.
(is_reloc_sym_weak): New.
(pcrel_reloc_fits): Use new xtensa-isa.h functions.
(prop_sec_len): New.
(xtensa_is_property_section): Handle new property sections.
(is_literal_section): Delete.
(internal_reloc_compare): When r_offset matches, compare r_info and
r_addend to make sorting predictable.
(internal_reloc_matches): New.
(xtensa_get_property_section_name): Handle new property sections.
(xtensa_get_property_predef_flags): New.
(xtensa_callback_required_dependence): Use bfd_get_section_limit.
Update calls to xtensa_isa_init, is_l32r_relocation, and r_reloc_init.
* xtensa-isa.c (xtensa_default_isa): Moved to elf32-xtensa.c.
(xtisa_errno, xtisa_error_msg): New variables.
(xtensa_isa_errno, xtensa_isa_error_msg): New.
(xtensa_insnbuf_alloc): Add error handling.
(xtensa_insnbuf_to_chars): Add num_chars parameter. Update to
use xtensa_format_decode. Add error handling.
(xtensa_insnbuf_from_chars): Add num_chars parameter. Decode the
instruction length to find the number of bytes to copy.
(xtensa_isa_init): Add error handling. Replace calls to
xtensa_load_isa and xtensa_extend_isa with code to initialize lookup
tables in the xtensa_modules structure.
(xtensa_check_isa_config, xtensa_add_isa, xtensa_load_isa,
xtensa_extend_isa): Delete.
(xtensa_isa_free): Change to only free lookup tables.
(opname_lookup_compare): Replace with ...
(xtensa_isa_name_compare): ... this function. Use strcasecmp.
(xtensa_insn_maxlength): Rename to ...
(xtensa_isa_maxlength): ... this.
(xtensa_insn_length): Delete.
(xtensa_insn_length_from_first_byte): Replace with ...
(xtensa_isa_length_from_chars): ... this function.
(xtensa_num_opcodes): Rename to ...
(xtensa_isa_num_opcodes): ... this.
(xtensa_isa_num_pipe_stages, xtensa_isa_num_formats,
xtensa_isa_num_regfiles, xtensa_isa_num_stages,
xtensa_isa_num_sysregs, xtensa_isa_num_interfaces,
xtensa_isa_num_funcUnits, xtensa_format_name, xtensa_format_lookup,
xtensa_format_decode, xtensa_format_encode, xtensa_format_length,
xtensa_format_num_slots, xtensa_format_slot_nop_opcode,
xtensa_format_get_slot, xtensa_format_set_slot): New functions.
(xtensa_opcode_lookup): Add error handling.
(xtensa_decode_insn): Replace with ...
(xtensa_opcode_decode): ... this function, with new format and
slot parameters. Add error handling.
(xtensa_encode_insn): Replace with ...
(xtensa_opcode_encode): ... this function, which does the encoding via
one of the entries in the "encode_fns" array. Add error handling.
(xtensa_opcode_name): Add error handling.
(xtensa_opcode_is_branch, xtensa_opcode_is_jump, xtensa_opcode_is_loop,
xtensa_opcode_is_call): New.
(xtensa_num_operands): Replace with ...
(xtensa_opcode_num_operands): ... this function. Add error handling.
(xtensa_opcode_num_stateOperands,
xtensa_opcode_num_interfaceOperands, xtensa_opcode_num_funcUnit_uses,
xtensa_opcode_funcUnit_use, xtensa_operand_name,
xtensa_operand_is_visible): New.
(xtensa_get_operand, xtensa_operand_kind): Delete.
(xtensa_operand_inout): Add error handling and special-case for
"sout" operands.
(xtensa_operand_get_field, xtensa_operand_set_field): Rewritten to
operate on one slot of an instruction. Added error handling.
(xtensa_operand_encode): Handle default operands with no encoding
functions. Check for success by comparing against decoded value.
Add error handling.
(xtensa_operand_decode): Handle default operands. Return decoded value
through argument pointer. Add error handling.
(xtensa_operand_is_register, xtensa_operand_regfile,
xtensa_operand_num_regs, xtensa_operand_is_known_reg): New.
(xtensa_operand_isPCRelative): Rename to ...
(xtensa_operand_is_PCrelative): ... this. Add error handling.
(xtensa_operand_do_reloc, xtensa_operand_undo_reloc): Return value
through argument pointer. Add error handling.
(xtensa_stateOperand_state, xtensa_stateOperand_inout,
xtensa_interfaceOperand_interface, xtensa_regfile_lookup,
xtensa_regfile_lookup_shortname, xtensa_regfile_name,
xtensa_regfile_shortname, xtensa_regfile_view_parent,
xtensa_regfile_num_bits, xtensa_regfile_num_entries,
xtensa_state_lookup, xtensa_state_name, xtensa_state_num_bits,
xtensa_state_is_exported, xtensa_sysreg_lookup,
xtensa_sysreg_lookup_name, xtensa_sysreg_name, xtensa_sysreg_number,
xtensa_sysreg_is_user, xtensa_interface_lookup, xtensa_interface_name,
xtensa_interface_num_bits, xtensa_interface_inout,
xtensa_interface_has_side_effect, xtensa_funcUnit_lookup,
xtensa_funcUnit_name, xtensa_funcUnit_num_copies): New.
* xtensa-modules.c: Rewrite to use new data structures.
* reloc.c (BFD_RELOC_XTENSA_DIFF8, BFD_RELOC_XTENSA_DIFF16,
BFD_RELOC_XTENSA_DIFF32, BFD_RELOC_XTENSA_SLOT0_OP,
BFD_RELOC_XTENSA_SLOT1_OP, BFD_RELOC_XTENSA_SLOT2_OP,
BFD_RELOC_XTENSA_SLOT3_OP, BFD_RELOC_XTENSA_SLOT4_OP,
BFD_RELOC_XTENSA_SLOT5_OP, BFD_RELOC_XTENSA_SLOT6_OP,
BFD_RELOC_XTENSA_SLOT7_OP, BFD_RELOC_XTENSA_SLOT8_OP,
BFD_RELOC_XTENSA_SLOT9_OP, BFD_RELOC_XTENSA_SLOT10_OP,
BFD_RELOC_XTENSA_SLOT11_OP, BFD_RELOC_XTENSA_SLOT12_OP,
BFD_RELOC_XTENSA_SLOT13_OP, BFD_RELOC_XTENSA_SLOT14_OP,
BFD_RELOC_XTENSA_SLOT0_ALT, BFD_RELOC_XTENSA_SLOT1_ALT,
BFD_RELOC_XTENSA_SLOT2_ALT, BFD_RELOC_XTENSA_SLOT3_ALT,
BFD_RELOC_XTENSA_SLOT4_ALT, BFD_RELOC_XTENSA_SLOT5_ALT,
BFD_RELOC_XTENSA_SLOT6_ALT, BFD_RELOC_XTENSA_SLOT7_ALT,
BFD_RELOC_XTENSA_SLOT8_ALT, BFD_RELOC_XTENSA_SLOT9_ALT,
BFD_RELOC_XTENSA_SLOT10_ALT, BFD_RELOC_XTENSA_SLOT11_ALT,
BFD_RELOC_XTENSA_SLOT12_ALT, BFD_RELOC_XTENSA_SLOT13_ALT,
BFD_RELOC_XTENSA_SLOT14_ALT): Add new relocations.
* Makefile.am (xtensa-isa.lo, xtensa-modules.lo): Update dependencies.
* Makefile.in: Regenerate.
* bfd-in2.h: Likewise.
* libbfd.h: Likewise.
gas ChangeLog
* config/tc-xtensa.c (absolute_literals_supported): New global flag.
(UNREACHABLE_MAX_WIDTH): Define.
(XTENSA_FETCH_WIDTH): Delete.
(cur_vinsn, xtensa_fetch_width, xt_saved_debug_type, past_xtensa_end,
prefer_const16, prefer_l32r): New global variables.
(LIT4_SECTION_NAME): Define.
(lit4_state struct): Add lit4_seg_name and lit4_seg fields.
(XTENSA_PROP_*, GET_XTENSA_PROP_*, SET_XTENSA_PROP_*): Define.
(frag_flags struct): New.
(xtensa_block_info struct): Move from tc-xtensa.h. Add flags field.
(subseg_map struct): Add cur_total_freq and cur_target_freq fields.
(bitfield, bit_is_set, set_bit, clear_bit): Define.
(MAX_FORMATS): Define.
(op_placement_info struct, op_placement_table): New.
(O_pltrel, O_hi16, O_lo16): Define.
(directiveE enum): Rename directive_generics to directive_transform.
Delete directive_relax. Add directive_schedule,
directive_absolute_literals, and directive_last_directive.
(directive_info): Rename "generics" to "transform". Delete "relax".
Add "schedule" and "absolute-literals".
(directive_state): Adjust entries to match changes in directive_info.
(xtensa_relax_statesE, RELAX_IMMED_MAXSTEPS): Move to tc-xtensa.h.
(xtensa_const16_opcode, xtensa_movi_opcode, xtensa_movi_n_opcode,
xtensa_l32r_opcode, xtensa_nop_opcode, xtensa_rsr_lcount_opcode): New.
(xtensa_j_opcode, xtensa_rsr_opcode): Delete.
(align_only_targets, software_a0_b_retw_interlock,
software_avoid_b_j_loop_end, maybe_has_b_j_loop_end,
software_avoid_short_loop, software_avoid_close_loop_end,
software_avoid_all_short_loops, specific_opcode): Delete.
(warn_unaligned_branch_targets): New.
(workaround_a0_b_retw, workaround_b_j_loop_end, workaround_short_loop,
workaround_close_loop_end, workaround_all_short_loops): Default FALSE.
(option_[no_]link_relax, option_[no_]transform,
option_[no_]absolute_literals, option_warn_unaligned_targets,
option_prefer_l32r, option_prefer_const16, option_target_hardware):
New enum values.
(option_[no_]align_only_targets, option_literal_section_name,
option_text_section_name, option_data_section_name,
option_bss_section_name, option_eb, option_el): Delete.
(md_longopts): Add entries for: [no-]transform, [no-]absolute-literals,
warn-unaligned-targets, prefer-l32r, prefer-const16, [no-]link-relax,
and target-hardware. Delete entries for [no-]target-align-only,
literal-section-name, text-section-name, data-section-name, and
bss-section-name.
(md_parse_option): Handle new options and remove old ones. Accept but
ignore [no-]density options. Warn for [no-]generics and [no-]relax
and treat them as [no-]transform.
(md_show_usage): Add new options and remove old ones.
(xtensa_setup_hw_workarounds): New.
(md_pseudo_table): Change "word" entry to use xtensa_elf_cons. Add
"long", "short", "loc" and "frequency" entries.
(use_generics): Rename to ...
(use_transform): ... this function. Add past_xtensa_end check.
(use_longcalls): Add past_xtensa_end check.
(code_density_available, can_relax): Delete.
(do_align_targets): New.
(get_directive): Accept dashes in directive names. Warn about
[no-]generics and [no-]relax directives and treat them as
[no-]transform.
(xtensa_begin_directive): Call md_flush_pending_output only for some
directives. Check for directives inside instruction bundles. Warn
about deprecated ".begin literal" usage. Warn and ignore [no-]density
directives. Handle new directives. Check generating_literals flag
for literal_prefix.
(xtensa_end_directive): Check for directives inside instruction
bundles. Warn and ignore [no-]density directives. Handle new
directives. Call xtensa_set_frag_assembly_state.
(xtensa_loc_directive_seen, xtensa_dwarf2_directive_loc,
xtensa_dwarf2_emit_insn): New.
(xtensa_literal_position): Call md_flush_pending_output. Do not check
use_literal_section flag.
(xtensa_literal_pseudo): Call md_flush_pending_output. Handle absolute
literals. Use xtensa_elf_cons to parse the expression.
(xtensa_literal_prefix): Do not check use_literal_section. Support
".lit4" sections for absolute literals. Change prefix convention to
replace ".text" (or ".t" in a linkonce section). No need to call
subseg_set.
(xtensa_frequency_pseudo, xtensa_elf_cons, xtensa_elf_suffix): New.
(expression_end): Handle closing braces and colons.
(PLT_SUFFIX, plt_suffix): Delete.
(expression_maybe_register): Use new xtensa-isa.h functions. Use
xtensa_elf_suffix instead of checking for plt suffix, and handle O_lo16
and O_hi16 expressions as well.
(tokenize_arguments): Handle closing braces and colons.
(parse_arguments): Use new xtensa-isa.h functions. Handle "invisible"
operands and paired register syntax.
(get_invisible_operands): New.
(xg_translate_sysreg_op): Handle new Xtensa LX RSR/WSR/XSR syntax. Use
new xtensa-isa.h functions.
(xtensa_translate_old_userreg_ops, xtensa_translate_zero_immed): New.
(xg_translate_idioms): Check if inside bundle. Use use_transform.
Handle new Xtensa LX RSR/WSR/XSR syntax. Remove code to widen density
instructions. Use xtensa_translate_zero_immed.
(operand_is_immed, operand_is_pcrel_label): Delete.
(get_relaxable_immed): Use new xtensa-isa.h functions.
(get_opcode_from_buf): Add slot parameter. Use new xtensa-isa.h
functions.
(xtensa_print_insn_table, print_vliw_insn): New.
(is_direct_call_opcode): Use new xtensa-isa.h functions.
(is_call_opcode, is_loop_opcode, is_conditional_branch_opcode,
is_branch_or_jump_opcode): Delete.
(is_movi_opcode, decode_reloc, encode_reloc, encode_alt_reloc): New.
(opnum_to_reloc, reloc_to_opnum): Delete.
(xtensa_insnbuf_set_operand, xtensa_insnbuf_get_operand): Use new
xtensa-isa.h functions. Operate on one slot of an instruction.
(xtensa_insnbuf_set_immediate_field, is_negatable_branch,
xg_get_insn_size): Delete.
(xg_get_build_instr_size): Use xg_get_single_size.
(xg_is_narrow_insn, xg_is_single_relaxable_insn): Update calls to
xg_build_widen_table. Use xg_get_single_size.
(xg_get_max_narrow_insn_size): Delete.
(xg_get_max_insn_widen_size, xg_get_max_insn_widen_literal_size,
xg_is_relaxable_insn): Update calls to xg_build_widen_table. Use
xg_get_single_size.
(xg_build_to_insn): Record the loc field. Handle OP_OPERAND_HI16U and
OP_OPERAND_LOW16U. Check xg_valid_literal_expression.
(xg_expand_to_stack, xg_expand_narrow): Update calls to
xg_build_widen_table. Use xg_get_single_size.
(xg_immeds_fit): Use new xtensa-isa.h functions. Update call to
xg_check_operand.
(xg_symbolic_immeds_fit): Likewise. Also handle O_lo16 and O_hi16, and
treat weak symbols conservatively.
(xg_check_operand): Use new xtensa-isa.h functions.
(is_dnrange): Delete.
(xg_assembly_relax): Inline previous calls to tinsn_copy.
(xg_finish_frag): Specify separate relax states for the frag and slot0.
(is_branch_jmp_to_next, xg_add_branch_and_loop_targets): Use new
xtensa-isa.h functions.
(xg_instruction_matches_option_term, xg_instruction_matches_or_options,
xg_instruction_matches_options): New.
(xg_instruction_matches_rule): Handle O_register expressions. Call
xg_instruction_matches_options.
(transition_rule_cmp): New.
(xg_instruction_match): Update call to xg_build_simplify_table.
(xg_build_token_insn): Record loc fields.
(xg_simplify_insn): Check is_specific_opcode field and
density_supported flag.
(xg_expand_assembly_insn): Skip checking code_density_available. Use
new xtensa-isa.h functions. Call use_transform instead of can_relax.
(xg_assemble_literal): Add error handling for O_big. Call
record_alignment. Handle O_pltrel.
(xg_valid_literal_expression): New.
(xg_assemble_literal_space): Add slot parameter. Remove call to
set_expr_symbol_offset. Add call to record_alignment. Update call to
xg_finish_frag.
(xg_emit_insn): Delete.
(xg_emit_insn_to_buf): Add format parameter. Update calls to
xg_add_opcode_fix and xtensa_insnbuf_to_chars.
(xg_add_opcode_fix): Change opcode parameter to tinsn and add format
and slot parameters. Handle new "alternate" relocations for absolute
literals and CONST16 instructions. Check for bad uses of O_lo16 and
O_hi16. Use new xtensa-isa.h functions.
(xg_assemble_tokens): Delete.
(is_register_writer): Use new xtensa-isa.h functions.
(is_bad_loopend_opcode): Check for xtensa_rsr_lcount_opcode instead of
old-style RSR from LCOUNT.
(next_frag_opcode): Delete.
(next_frag_opcode_is_loop, next_frag_format_size, frag_format_size,
update_next_frag_state): New.
(update_next_frag_nop_state): Delete.
(next_frag_pre_opcode_bytes): Use next_frag_opcode_is_loop.
(xtensa_mark_literal_pool_location): Check use_literal_section flag and
the state of the absolute-literals directive. Add calls to
record_alignment and xtensa_set_frag_assembly_state. Call
xtensa_switch_to_non_abs_literal_fragment instead of
xtensa_switch_to_literal_fragment.
(build_nop): New.
(assemble_nop): Use build_nop. Update call to xtensa_insnbuf_to_chars.
(get_expanded_loop_offset): Change check for undefined opcode to an
assertion.
(xtensa_set_frag_assembly_state, relaxable_section,
xtensa_find_unmarked_state_frags, xtensa_find_unaligned_branch_targets,
xtensa_find_unaligned_loops, xg_apply_tentative_value): New.
(md_begin): Update call to xtensa_isa_init. Initialize linkrelax to 1.
Set lit4_seg_name. Call xg_init_vinsn. Initialize new global opcodes.
Call init_op_placement_info_table and xtensa_set_frag_assembly_state.
(xtensa_init_fix_data): New.
(xtensa_frob_label): Reset label symbol to the current frag. Check
do_align_targets and generating_literals flag. Propagate frequency
info to new alignment frag. Call xtensa_set_frag_assembly_state.
(xtensa_unrecognized_line): New.
(xtensa_flush_pending_output): Check if inside a bundle. Add a call
to xtensa_set_frag_assembly_state.
(error_reset_cur_vinsn): New.
(md_assemble): Remove check for literal frag. Remove call to
istack_init. Call use_transform instead of use_generics. Parse
explicit instruction format specifiers. Move code for
a0_b_retw_interlock workaround to xg_assemble_vliw_tokens. Call
error_reset_cur_vinsn on errors. Add call to get_invisible_operands.
Add dwarf2_where call. Remote automatic alignment for ENTRY
instructions. Move call to xtensa_clear_insn_labels to the end.
Rearrange to handle bundles.
(xtensa_cons_fix_new): Delete.
(xtensa_handle_align): New.
(xtensa_frag_init): Call xtensa_set_frag_assembly_state. Remove
assignment to is_no_density field.
(md_pcrel_from): Use new xtensa-isa.h functions. Use decode_reloc
instead of reloc_to_opnum. Handle "alternate" relocations.
(xtensa_force_relocation, xtensa_check_inside_bundle,
xtensa_elf_section_change_hook): New.
(xtensa_symbol_new_hook): Delete.
(xtensa_fix_adjustable): Check for difference of symbols with an
offset. Check for external and weak symbols.
(md_apply_fix3): Remove cases for XTENSA_OP{0,1,2} relocs.
(md_estimate_size_before_relax): Return expansion for the first slot.
(tc_gen_reloc): Handle difference of symbols by producing
XTENSA_DIFF{8,16,32} relocs and by writing the value of the difference
into the output. Handle new XTENSA_SLOT*_OP relocs by storing the
tentative values into the output when linkrelax is set.
(XTENSA_PROP_SEC_NAME): Define.
(xtensa_post_relax_hook): Call xtensa_find_unmarked_state_frags.
Create literal tables only if using literal sections. Create new
property tables instead of old instruction tables. Check for unaligned
branch targets and loops.
(finish_vinsn, find_vinsn_conflicts, check_t1_t2_reads_and_writes,
new_resource_table, clear_resource_table, resize_resource_table,
resources_available, reserve_resources, release_resources,
opcode_funcUnit_use_unit, opcode_funcUnit_use_stage,
resources_conflict, xg_find_narrowest_format, relaxation_requirements,
bundle_single_op, emit_single_op, xg_assemble_vliw_tokens): New.
(xtensa_end): Call xtensa_flush_pending_output. Set past_xtensa_end
flag. Update checks for workaround options. Call
xtensa_mark_narrow_branches and xtensa_mark_zcl_first_insns.
(xtensa_cleanup_align_frags): Add special case for branch targets.
Check for and mark unreachable frags.
(xtensa_fix_target_frags): Remove use of align_only_targets flag.
Use RELAX_LOOP_END_BYTES in special case for negatable branch at the
end of a zero-overhead loop body.
(frag_can_negate_branch): Handle instructions with multiple slots.
Use new xtensa-isa.h functions
(xtensa_mark_narrow_branches, is_narrow_branch_guaranteed_in_range,
xtensa_mark_zcl_first_insns): New.
(xtensa_fix_a0_b_retw_frags, xtensa_fix_b_j_loop_end_frags): Error if
transformations are disabled.
(next_instrs_are_b_retw): Use new xtensa-isa.h functions. Handle
multislot instructions.
(xtensa_fix_close_loop_end_frags, xtensa_fix_short_loop_frags):
Likewise. Also error if transformations are disabled.
(unrelaxed_frag_max_size): New.
(unrelaxed_frag_min_insn_count, unrelax_frag_has_b_j): Use new
xtensa-isa.h functions.
(xtensa_sanity_check, is_empty_loop, is_local_forward_loop): Use
xtensa_opcode_is_loop instead of is_loop_opcode.
(get_text_align_power): Replace as_fatal with assertion.
(get_text_align_fill_size): Iterate instead of using modulus when
use_nops is false.
(get_noop_aligned_address): Assert that this is for a machine-dependent
RELAX_ALIGN_NEXT_OPCODE frag. Use next_frag_opcode_is_loop,
xg_get_single_size, and frag_format_size.
(get_widen_aligned_address): Rename to ...
(get_aligned_diff): ... this function. Add max_diff parameter.
Remove handling of rs_align/rs_align_code frags. Use
next_frag_format_size, get_text_align_power, get_text_align_fill_size,
next_frag_opcode_is_loop, and xg_get_single_size. Compute max_diff
and pass it back to caller.
(xtensa_relax_frag): Use relax_frag_loop_align. Add code for new
RELAX_SLOTS, RELAX_MAYBE_UNREACHABLE, RELAX_MAYBE_DESIRE_ALIGN,
RELAX_FILL_NOP, and RELAX_UNREACHABLE frag types. Check relax_seen.
(relax_frag_text_align): Rename to ...
(relax_frag_loop_align): ... this function. Assume loops can only be
in the first slot of an instruction.
(relax_frag_add_nop): Use assemble_nop instead of constructing an OR
instruction. Remove call to frag_wane.
(relax_frag_narrow): Rename to ...
(relax_frag_for_align): ... this function. Extend to handle
RELAX_FILL_NOP and RELAX_UNREACHABLE, as well as RELAX_SLOTS with
RELAX_NARROW for the first slot.
(find_address_of_next_align_frag, bytes_to_stretch): New.
(future_alignment_required): Use find_address_of_next_align_frag and
bytes_to_stretch. Look ahead to subsequent frags to make smarter
alignment decisions.
(relax_frag_immed): Add format, slot, and estimate_only parameters.
Check if transformations are enabled for b_j_loop_end workaround.
Use new xtensa-isa.h functions and handle multislot instructions.
Update call to xg_assembly_relax.
(md_convert_frag): Handle new RELAX_SLOTS, RELAX_UNREACHABLE,
RELAX_MAYBE_UNREACHABLE, RELAX_MAYBE_DESIRE_ALIGN, and RELAX_FILL_NOP
frag types.
(convert_frag_narrow): Add segP, format and slot parameters. Call
convert_frag_immed for branch instructions. Adjust calls to
tinsn_from_chars, tinsn_immed_from_frag, and xg_emit_insn_to_buf. Use
xg_get_single_size and xg_get_single_format.
(convert_frag_fill_nop): New.
(convert_frag_immed): Add format and slot parameters. Handle multislot
instructions and use new xtensa-isa.h functions. Update calls to
tinsn_immed_from_frag and xg_assembly_relax. Check if transformations
enabled for b_j_loop_end workaround. Use build_nop instead of
assemble_nop. Check is_specific_opcode flag. Check for unreachable
frags. Use xg_get_single_size. Handle O_pltrel.
(fix_new_exp_in_seg): Remove check for old plt flag.
(convert_frag_immed_finish_loop): Update calls to tinsn_from_chars and
xtensa_insnbuf_to_chars. Call tinsn_immed_from_frag. Change check
for loop opcode to an assertion. Mark all frags up to the end of the
loop as not transformable.
(get_last_insn_flags, set_last_insn_flags): Use get_subseg_info.
(get_subseg_info): New.
(xtensa_move_literals): Call xtensa_set_frag_assembly_state. Add null
check for dest_seg.
(xtensa_switch_to_literal_fragment): Rewrite to handle absolute
literals and use xtensa_switch_to_non_abs_literal_fragment otherwise.
(xtensa_switch_to_non_abs_literal_fragment): New.
(cache_literal_section): Add is_code parameter and pass it through to
retrieve_literal_seg.
(retrieve_literal_seg): Add is_code parameter and use it to set the
flags on the literal section. Handle case where head parameter is 0.
(get_frag_is_no_transform, set_frag_is_specific_opcode,
set_frag_is_no_transform): New.
(xtensa_create_property_segments): Add end_property_function parameter
and pass it through to add_xt_block_frags. Call bfd_get_section_flags
and skip SEC_DEBUGGING and !SEC_ALLOC sections.
(xtensa_create_xproperty_segments, section_has_xproperty): New.
(add_xt_block_frags): Add end_property_function parameter and call it
if it is non-zero. Call xtensa_frag_flags_init.
(xtensa_frag_flags_is_empty, xtensa_frag_flags_init,
get_frag_property_flags, frag_flags_to_number,
xtensa_frag_flags_combinable, xt_block_aligned_size,
xtensa_xt_block_combine, add_xt_prop_frags,
init_op_placement_info_table, opcode_fits_format_slot,
xg_get_single_size, xg_get_single_format): New.
(istack_push): Inline call to tinsn_copy.
(tinsn_copy): Delete.
(tinsn_has_invalid_symbolic_operands): Handle O_hi16 and O_lo16 and
CONST16 opcodes. Handle O_big, O_illegal, and O_absent.
(tinsn_has_complex_operands): Handle O_hi16 and O_lo16.
(tinsn_to_insnbuf): Use xg_get_single_format and new xtensa-isa.h
functions. Handle invisible operands.
(tinsn_to_slotbuf): New.
(tinsn_check_arguments): Use new xtensa-isa.h functions.
(tinsn_from_chars): Add slot parameter. Rewrite using xg_init_vinsn,
vinsn_from_chars, and xg_free_vinsn.
(tinsn_from_insnbuf): New.
(tinsn_immed_from_frag): Add slot parameter and handle multislot
instructions. Handle symbol differences.
(get_num_stack_text_bytes): Use xg_get_single_size.
(xg_init_vinsn, xg_clear_vinsn, vinsn_has_specific_opcodes,
xg_free_vinsn, vinsn_to_insnbuf, vinsn_from_chars, expr_is_register,
get_expr_register, set_expr_symbol_offset_diff): New.
* config/tc-xtensa.h (MAX_SLOTS): Define.
(xtensa_relax_statesE): Move from tc-xtensa.c. Add
RELAX_CHECK_ALIGN_NEXT_OPCODE, RELAX_MAYBE_DESIRE_ALIGN, RELAX_SLOTS,
RELAX_FILL_NOP, RELAX_UNREACHABLE, RELAX_MAYBE_UNREACHABLE, and
RELAX_NONE types.
(RELAX_IMMED_MAXSTEPS): Move from tc-xtensa.c.
(xtensa_frag_type struct): Add is_assembly_state_set,
use_absolute_literals, relax_seen, is_unreachable, is_specific_opcode,
is_align, is_text_align, alignment, and is_first_loop_insn fields.
Replace is_generics and is_relax fields by is_no_transform field.
Delete is_text and is_longcalls fields. Change text_expansion and
literal_expansion to arrays of MAX_SLOTS entries. Add arrays of
per-slot information: literal_frags, slot_subtypes, slot_symbols,
slot_sub_symbols, and slot_offsets. Add fr_prev field.
(xtensa_fix_data struct): New.
(xtensa_symfield_type struct): Delete plt field.
(xtensa_block_info struct): Move definition to tc-xtensa.h. Add
forward declaration here.
(xt_section_type enum): Delete xt_insn_sec. Add xt_prop_sec.
(XTENSA_SECTION_RENAME): Undefine.
(TC_FIX_TYPE, TC_INIT_FIX_DATA, TC_FORCE_RELOCATION, NO_PSEUDO_DOT,
tc_unrecognized_line, md_do_align, md_elf_section_change_hook,
HANDLE_ALIGN, TC_LINKRELAX_FIXUP, SUB_SEGMENT_ALIGN): Define.
(TC_CONS_FIX_NEW, tc_symbol_new_hook): Delete.
(unit_num_copies_func, opcode_num_units_func,
opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func): New.
(resource_table struct): New.
* config/xtensa-istack.h (MAX_INSN_ARGS): Increase from 6 to 10.
(TInsn struct): Add keep_wide, loc, fixup, record_fix, subtype,
literal_space, symbol, sub_symbol, offset, and literal_frag fields.
(tinsn_copy): Delete prototype.
(vliw_insn struct): New.
* config/xtensa-relax.c (insn_pattern_struct): Add options field.
(widen_spec_list): Add option conditions for density and boolean
instructions. Add expansions using CONST16 and conditions for using
CONST16 vs. L32R. Use new Xtensa LX RSR/WSR syntax. Add entries for
predicted branches.
(simplify_spec_list): Add option conditions for density instructions.
Add entry for NOP instruction.
(append_transition): Add cmp function pointer parameter and use it to
insert the new entry in order.
(operand_function_LOW16U, operand_function_HI16U): New.
(xg_has_userdef_op_fn, xg_apply_userdef_op_fn): Handle
OP_OPERAND_LOW16U and OP_OPERAND_HI16U.
(enter_opname, split_string): Use xstrdup instead of strdup.
(init_insn_pattern): Initialize new options field.
(clear_req_or_option_list, clear_req_option_list,
clone_req_or_option_list, clone_req_option_list, parse_option_cond):
New.
(parse_insn_pattern): Parse option conditions.
(transition_applies): New.
(build_transition): Use new xtensa-isa.h functions. Fix incorrectly
swapped last arguments in calls to append_constant_value_condition.
Call clone_req_option_list. Add warning about invalid opcode.
Handle LOW16U and HI16U function names.
(build_transition_table): Add cmp parameter and use it in calls to
append_transition. Use new xtensa-isa.h functions. Check
transition_applies before adding entries.
(xg_build_widen_table, xg_build_simplify_table): Add cmp parameter and
pass it through to build_transition_table.
* config/xtensa-relax.h (ReqOrOptionList, ReqOrOption, ReqOptionList,
ReqOption, transition_cmp_fn): New types.
(OpType enum): Add OP_OPERAND_LOW16U and OP_OPERAND_HI16U.
(transition_rule struct): Add options field.
* doc/as.texinfo (Overview): Update Xtensa options.
* doc/c-xtensa.texi (Xtensa Options): Delete --[no-]density,
--[no-]relax, and --[no-]generics options. Update descriptions of
--text-section-literals and --[no-]longcalls. Add
--[no-]absolute-literals and --[no-]transform.
(Xtensa Syntax): Add description of syntax for FLIX instructions.
Remove use of "generic" and "specific" terminology for opcodes.
(Xtensa Registers): Generalize the syntax description to include
user-defined register files.
(Xtensa Automatic Alignment): Update.
(Xtensa Branch Relaxation): Mention limitation of unconditional jumps.
(Xtensa Call Relaxation): Linker can now remove most of the overhead.
(Xtensa Directives): Remove confusing rules about precedence.
(Density Directive, Relax Directive): Delete.
(Schedule Directive): New.
(Generics Directive): Rename to ...
(Transform Directive): ... this node.
(Literal Directive): Update for absolute literals. Missing
literal_position directive is now an error.
(Literal Position Directive): Update for absolute literals.
(Freeregs Directive): Delete.
(Absolute Literals Directive): New.
(Frame Directive): Minor editing.
* Makefile.am (DEPTC_xtensa_elf, DEPOBJ_xtensa_elf, DEP_xtensa_elf):
Update dependencies.
* Makefile.in: Regenerate.
gas/testsuite ChangeLog
* gas/xtensa/all.exp: Adjust expected error message for j_too_far.
Change entry_align test to expect an error.
* gas/xtensa/entry_misalign2.s: Use no-transform instead of
no-generics directives.
include ChangeLog
* xtensa-config.h (XSHAL_USE_ABSOLUTE_LITERALS,
XCHAL_HAVE_PREDICTED_BRANCHES, XCHAL_INST_FETCH_WIDTH): New.
(XCHAL_EXTRA_SA_SIZE, XCHAL_EXTRA_SA_ALIGN): Delete.
* xtensa-isa-internal.h (ISA_INTERFACE_VERSION): Delete.
(config_sturct struct): Delete.
(XTENSA_OPERAND_IS_REGISTER, XTENSA_OPERAND_IS_PCRELATIVE,
XTENSA_OPERAND_IS_INVISIBLE, XTENSA_OPERAND_IS_UNKNOWN,
XTENSA_OPCODE_IS_BRANCH, XTENSA_OPCODE_IS_JUMP,
XTENSA_OPCODE_IS_LOOP, XTENSA_OPCODE_IS_CALL,
XTENSA_STATE_IS_EXPORTED, XTENSA_INTERFACE_HAS_SIDE_EFFECT): Define.
(xtensa_format_encode_fn, xtensa_get_slot_fn, xtensa_set_slot_fn): New.
(xtensa_insn_decode_fn): Rename to ...
(xtensa_opcode_decode_fn): ... this.
(xtensa_immed_decode_fn, xtensa_immed_encode_fn, xtensa_do_reloc_fn,
xtensa_undo_reloc_fn): Update.
(xtensa_encoding_template_fn): Delete.
(xtensa_opcode_encode_fn, xtensa_format_decode_fn,
xtensa_length_decode_fn): New.
(xtensa_format_internal, xtensa_slot_internal): New types.
(xtensa_operand_internal): Delete operand_kind, inout, isPCRelative,
get_field, and set_field fields. Add name, field_id, regfile,
num_regs, and flags fields.
(xtensa_arg_internal): New type.
(xtensa_iclass_internal): Change operands field to array of
xtensa_arg_internal. Add num_stateOperands, stateOperands,
num_interfaceOperands, and interfaceOperands fields.
(xtensa_opcode_internal): Delete length, template, and iclass fields.
Add iclass_id, flags, encode_fns, num_funcUnit_uses, and funcUnit_uses.
(opname_lookup_entry): Delete.
(xtensa_regfile_internal, xtensa_interface_internal,
xtensa_funcUnit_internal, xtensa_state_internal,
xtensa_sysreg_internal, xtensa_lookup_entry): New.
(xtensa_isa_internal): Replace opcode_table field with opcodes field.
Change type of opname_lookup_table. Delete num_modules,
module_opcode_base, module_decode_fn, config, and has_density fields.
Add num_formats, formats, format_decode_fn, length_decode_fn,
num_slots, slots, num_fields, num_operands, operands, num_iclasses,
iclasses, num_regfiles, regfiles, num_states, states,
state_lookup_table, num_sysregs, sysregs, sysreg_lookup_table,
max_sysreg_num, sysreg_table, num_interfaces, interfaces,
interface_lookup_table, num_funcUnits, funcUnits and
funcUnit_lookup_table fields.
(xtensa_isa_module, xtensa_isa_modules): Delete.
(xtensa_isa_name_compare): New prototype.
(xtisa_errno, xtisa_error_msg): New.
* xtensa-isa.h (XTENSA_ISA_VERSION): Define.
(xtensa_isa): Change type.
(xtensa_operand): Delete.
(xtensa_format, xtensa_regfile, xtensa_state, xtensa_sysreg,
xtensa_interface, xtensa_funcUnit, xtensa_isa_status,
xtensa_funcUnit_use): New types.
(libisa_module_specifier): Delete.
(xtensa_isa_errno, xtensa_isa_error_msg): New prototypes.
(xtensa_insnbuf_free, xtensa_insnbuf_to_chars,
xtensa_insnbuf_from_chars): Update prototypes.
(xtensa_load_isa, xtensa_extend_isa, xtensa_default_isa,
xtensa_insn_maxlength, xtensa_num_opcodes, xtensa_decode_insn,
xtensa_encode_insn, xtensa_insn_length,
xtensa_insn_length_from_first_byte, xtensa_num_operands,
xtensa_operand_kind, xtensa_encode_result,
xtensa_operand_isPCRelative): Delete.
(xtensa_isa_init, xtensa_operand_inout, xtensa_operand_get_field,
xtensa_operand_set_field, xtensa_operand_encode,
xtensa_operand_decode, xtensa_operand_do_reloc,
xtensa_operand_undo_reloc): Update prototypes.
(xtensa_isa_maxlength, xtensa_isa_length_from_chars,
xtensa_isa_num_pipe_stages, xtensa_isa_num_formats,
xtensa_isa_num_opcodes, xtensa_isa_num_regfiles, xtensa_isa_num_states,
xtensa_isa_num_sysregs, xtensa_isa_num_interfaces,
xtensa_isa_num_funcUnits, xtensa_format_name, xtensa_format_lookup,
xtensa_format_decode, xtensa_format_encode, xtensa_format_length,
xtensa_format_num_slots, xtensa_format_slot_nop_opcode,
xtensa_format_get_slot, xtensa_format_set_slot, xtensa_opcode_decode,
xtensa_opcode_encode, xtensa_opcode_is_branch, xtensa_opcode_is_jump,
xtensa_opcode_is_loop, xtensa_opcode_is_call,
xtensa_opcode_num_operands, xtensa_opcode_num_stateOperands,
xtensa_opcode_num_interfaceOperands, xtensa_opcode_num_funcUnit_uses,
xtensa_opcode_funcUnit_use, xtensa_operand_name,
xtensa_operand_is_visible, xtensa_operand_is_register,
xtensa_operand_regfile, xtensa_operand_num_regs,
xtensa_operand_is_known_reg, xtensa_operand_is_PCrelative,
xtensa_stateOperand_state, xtensa_stateOperand_inout,
xtensa_interfaceOperand_interface, xtensa_regfile_lookup,
xtensa_regfile_lookup_shortname, xtensa_regfile_name,
xtensa_regfile_shortname, xtensa_regfile_view_parent,
xtensa_regfile_num_bits, xtensa_regfile_num_entries,
xtensa_state_lookup, xtensa_state_name, xtensa_state_num_bits,
xtensa_state_is_exported, xtensa_sysreg_lookup,
xtensa_sysreg_lookup_name, xtensa_sysreg_name, xtensa_sysreg_number,
xtensa_sysreg_is_user, xtensa_interface_lookup, xtensa_interface_name,
xtensa_interface_num_bits, xtensa_interface_inout,
xtensa_interface_has_side_effect, xtensa_funcUnit_lookup,
xtensa_funcUnit_name, xtensa_funcUnit_num_copies): New prototypes.
* elf/xtensa.h (R_XTENSA_DIFF8, R_XTENSA_DIFF16, R_XTENSA_DIFF32,
R_XTENSA_SLOT*_OP, R_XTENSA_SLOT*_ALT): New relocations.
(XTENSA_PROP_SEC_NAME): Define.
(property_table_entry): Add flags field.
(XTENSA_PROP_*, GET_XTENSA_PROP_*, SET_XTENSA_PROP_*): Define.
ld ChangeLog
* ld.texinfo (Xtensa): Describe new linker relaxation to optimize
assembler-generated longcall sequences. Describe new --size-opt
option.
* emulparams/elf32xtensa.sh (OTHER_SECTIONS): Add .xt.prop section.
* emultempl/xtensaelf.em (remove_section,
replace_insn_sec_with_prop_sec, replace_instruction_table_sections,
elf_xtensa_after_open): New.
(OPTION_OPT_SIZEOPT, OPTION_LITERAL_MOVEMENT,
OPTION_NO_LITERAL_MOVEMENT): Define.
(elf32xtensa_size_opt, elf32xtensa_no_literal_movement): New globals.
(PARSE_AND_LIST_LONGOPTS): Add size-opt and [no-]literal-movement.
(PARSE_AND_LIST_OPTIONS): Add --size-opt.
(PARSE_AND_LIST_ARGS_CASES): Handle OPTION_OPT_SIZEOPT,
OPTION_LITERAL_MOVEMENT, and OPTION_NO_LITERAL_MOVEMENT.
(LDEMUL_AFTER_OPEN): Set to elf_xtensa_after_open.
* scripttempl/elfxtensa.sc: Update with changes from elf.sc.
* Makefile.am (eelf32xtensa.c): Update dependencies.
* Makefile.in: Regenerate.
ld/testsuite ChangeLog
* ld-xtensa/lcall1.s: Use .literal directive.
* ld-xtensa/lcall2.s: Align function entry.
* ld-xtensa/coalesce2.s: Likewise.
opcodes ChangeLog
* xtensa-dis.c (state_names): Delete.
(fetch_data): Use xtensa_isa_maxlength.
(print_xtensa_operand): Replace operand parameter with opcode/operand
pair. Remove print_sr_name parameter. Use new xtensa-isa.h functions.
(print_insn_xtensa): Use new xtensa-isa.h functions. Handle multislot
instruction bundles. Use xmalloc instead of malloc.
2004-10-08 02:22:15 +02:00
@cindex @option{--relax} on Xtensa
2003-04-01 17:50:31 +02:00
@cindex relaxing on Xtensa
bfd ChangeLog
* elf32-xtensa.c (elf32xtensa_size_opt): New global variable.
(xtensa_default_isa): Global variable moved here from xtensa-isa.c.
(elf32xtensa_no_literal_movement): New global variable.
(elf_howto_table): Add entries for new relocations.
(elf_xtensa_reloc_type_lookup): Handle new relocations.
(property_table_compare): When addresses are equal, compare sizes and
various property flags.
(property_table_matches): New.
(xtensa_read_table_entries): Extend to read new property tables. Add
output_addr parameter to indicate that output addresses should be used.
Use bfd_get_section_limit.
(elf_xtensa_find_property_entry): New.
(elf_xtensa_in_literal_pool): Use elf_xtensa_find_property_entry.
(elf_xtensa_check_relocs): Handle new relocations.
(elf_xtensa_do_reloc): Use bfd_get_section_limit. Handle new
relocations. Use new xtensa-isa.h functions.
(build_encoding_error_message): Remove encode_result parameter. Add
new target_address parameter used to detect alignment errors.
(elf_xtensa_relocate_section): Use bfd_get_section_limit. Clean up
error handling. Use new is_operand_relocation function.
(elf_xtensa_combine_prop_entries, elf_xtensa_merge_private_bfd_data):
Use underbar macro for error messages. Formatting.
(get_const16_opcode): New.
(get_l32r_opcode): Add a separate flag for initialization.
(get_relocation_opnd): Operand number is no longer explicit in the
relocation. Change to decode the opcode and analyze its operands.
(get_relocation_slot): New.
(get_relocation_opcode): Add bfd parameter. Use bfd_get_section_limit.
Use new xtensa-isa.h functions to handle multislot instructions.
(is_l32r_relocation): Add bfd parameter. Use is_operand_relocation.
(get_asm_simplify_size, is_alt_relocation, is_operand_relocation,
insn_decode_len, insn_decode_opcode, check_branch_target_aligned,
check_loop_aligned, check_branch_target_aligned_address, narrowable,
widenable, narrow_instruction, widen_instruction, op_single_fmt_table,
get_single_format, init_op_single_format_table): New.
(elf_xtensa_do_asm_simplify): Add error_message parameter and use it
instead of calling _bfd_error_handler. Use new xtensa-isa.h functions.
(contract_asm_expansion): Add error_message parameter and pass it to
elf_xtensa_do_asm_simplify. Replace use of R_XTENSA_OP0 relocation
with R_XTENSA_SLOT0_OP.
(get_expanded_call_opcode): Extend to handle either L32R or CONST16
instructions. Use new xtensa-isa.h functions.
(r_reloc struct): Add new virtual_offset field.
(r_reloc_init): Add contents and content_length parameters. Set
virtual_offset field to zero. Add contents to target_offset field for
partial_inplace relocations.
(r_reloc_is_defined): Check for null.
(print_r_reloc): New debug function.
(source_reloc struct): Replace xtensa_operand field with pair of the
opcode and the operand position. Add is_abs_literal field.
(init_source_reloc): Specify operand by opcode/position pair. Set
is_abs_literal field.
(source_reloc_compare): When target_offsets are equal, compare other
fields to make sorting predictable.
(literal_value struct): Add is_abs_literal field.
(value_map_hash_table struct): Add has_last_loc and last_loc fields.
(init_literal_value): New.
(is_same_value): Replace with ...
(literal_value_equal): ... this function. Add comparisons of
virtual_offset and is_abs_literal fields.
(value_map_hash_table_init): Use bfd_zmalloc. Check for allocation
failure. Initialize has_last_loc field.
(value_map_hash_table_delete): New.
(hash_literal_value): Rename to ...
(literal_value_hash): ... this. Include is_abs_literal flag and
virtual_offset field in the hash value.
(get_cached_value): Rename to ...
(value_map_get_cached_value): ... this. Update calls to
literal_value_hash and literal_value_equal.
(add_value_map): Check for allocation failure. Update calls to
value_map_get_cached_value and literal_value_hash.
(text_action, text_action_list, text_action_t): New types.
(find_fill_action, compute_removed_action_diff, adjust_fill_action,
text_action_add, text_action_add_literal, offset_with_removed_text,
offset_with_removed_text_before_fill, find_insn_action,
print_action_list, print_removed_literals): New.
(offset_with_removed_literals): Delete.
(xtensa_relax_info struct): Add is_relaxable_asm_section, action_list,
fix_array, fix_array_count, allocated_relocs, relocs_count, and
allocated_relocs_count fields.
(init_xtensa_relax_info): Initialize new fields.
(reloc_bfd_fix struct): Add new translated field.
(reloc_bfd_fix_init): Add translated parameter and use it to set the
translated field.
(fix_compare, cache_fix_array): New.
(get_bfd_fix): Remove fix_list parameter and get all relax_info for the
section via get_xtensa_relax_info. Use cache_fix_array to set up
sorted fix_array and use bsearch instead of linear search.
(section_cache_t): New struct.
(init_section_cache, section_cache_section, clear_section_cache): New.
(ebb_t, ebb_target_enum, proposed_action, ebb_constraint): New types.
(init_ebb_constraint, free_ebb_constraint, init_ebb, extend_ebb_bounds,
extend_ebb_bounds_forward, extend_ebb_bounds_backward,
insn_block_decodable_len, ebb_propose_action, ebb_add_proposed_action):
New.
(retrieve_contents): Use bfd_get_section_limit.
(elf_xtensa_relax_section): Add relocations_analyzed flag. Update call
to compute_removed_literals. Free value_map_hash_table when no longer
needed.
(analyze_relocations): Check is_relaxable_asm_section flag. Call
compute_text_actions for all sections.
(find_relaxable_sections): Mark sections as relaxable if they contain
ASM_EXPAND relocations that can be optimized. Adjust r_reloc_init
call. Increment relax_info src_count field only for appropriate
relocation types. Remove is_literal_section check.
(collect_source_relocs): Use bfd_get_section_limit. Adjust calls to
r_reloc_init and find_associated_l32r_irel. Check
is_relaxable_asm_section flag. Handle L32R instructions with absolute
literals. Pass is_abs_literal flag to init_source_reloc.
(is_resolvable_asm_expansion): Use bfd_get_section_limit. Check for
CONST16 instructions. Adjust calls to r_reloc_init and
pcrel_reloc_fits. Handle weak symbols conservatively.
(find_associated_l32r_irel): Add bfd parameter and pass it to
is_l32r_relocation.
(compute_text_actions, compute_ebb_proposed_actions,
compute_ebb_actions, check_section_ebb_pcrels_fit,
check_section_ebb_reduces, text_action_add_proposed,
compute_fill_extra_space): New.
(remove_literals): Replace with ...
(compute_removed_literals): ... this function. Call
init_section_cache. Use bfd_get_section_limit. Sort internal_relocs.
Call xtensa_read_table_entries to get the property table. Skip
relocations other than R_XTENSA_32 and R_XTENSA_PLT. Use new
is_removable_literal, remove_dead_literal, and
identify_literal_placement functions.
(get_irel_at_offset): Rewrite to use bsearch on sorted relocations
instead of linear search.
(is_removable_literal, remove_dead_literal,
identify_literal_placement): New.
(relocations_reach): Update check for literal not referenced by any
PC-relative relocations. Adjust call to pcrel_reloc_fits.
(coalesce_shared_literal, move_shared_literal): New.
(relax_section): Use bfd_get_section_limit. Call
translate_section_fixes. Update calls to r_reloc_init and
offset_with_removed_text. Check new is_relaxable_asm_section flag.
Add call to pin_internal_relocs. Add special handling for
R_XTENSA_ASM_SIMPLIFY and R_XTENSA_DIFF* relocs. Use virtual_offset
info to calculate new addend_displacement variable. Replace code for
deleting literals with more general code to perform the actions
determined by the action_list for the section.
(translate_section_fixes, translate_reloc_bfd_fix): New.
(translate_reloc): Check new is_relaxable_asm_section flag. Call
find_removed_literal only if is_operand_relocation. Update call to
offset_with_removed_text. Use new target_offset and removed_bytes
variables.
(move_literal): New.
(relax_property_section): Use bfd_get_section_limit. Set new
is_full_prop_section flag and handle new property tables. Update calls
to r_reloc_init and offset_with_removed_text. Check
is_relaxable_asm_section flag. Handle expansion of zero-sized
unreachable entries, with use of offset_with_removed_text_before_fill.
For relocatable links, combine entries only for literal tables.
(relax_section_symbols): Check is_relaxable_asm_section flag. Update
calls to offset_with_removed_text. Translate st_size field for
function symbols.
(do_fix_for_relocatable_link): Change to return bfd_boolean to indicate
failure. Add contents parameter. Update call to get_bfd_fix. Update
call to r_reloc_init. Call _bfd_error_handler and return FALSE for
R_XTENSA_ASM_EXPAND relocs.
(do_fix_for_final_link): Add input_bfd and contents parameters. Update
call to get_bfd_fix. Include offset from contents for partial_inplace
relocations.
(is_reloc_sym_weak): New.
(pcrel_reloc_fits): Use new xtensa-isa.h functions.
(prop_sec_len): New.
(xtensa_is_property_section): Handle new property sections.
(is_literal_section): Delete.
(internal_reloc_compare): When r_offset matches, compare r_info and
r_addend to make sorting predictable.
(internal_reloc_matches): New.
(xtensa_get_property_section_name): Handle new property sections.
(xtensa_get_property_predef_flags): New.
(xtensa_callback_required_dependence): Use bfd_get_section_limit.
Update calls to xtensa_isa_init, is_l32r_relocation, and r_reloc_init.
* xtensa-isa.c (xtensa_default_isa): Moved to elf32-xtensa.c.
(xtisa_errno, xtisa_error_msg): New variables.
(xtensa_isa_errno, xtensa_isa_error_msg): New.
(xtensa_insnbuf_alloc): Add error handling.
(xtensa_insnbuf_to_chars): Add num_chars parameter. Update to
use xtensa_format_decode. Add error handling.
(xtensa_insnbuf_from_chars): Add num_chars parameter. Decode the
instruction length to find the number of bytes to copy.
(xtensa_isa_init): Add error handling. Replace calls to
xtensa_load_isa and xtensa_extend_isa with code to initialize lookup
tables in the xtensa_modules structure.
(xtensa_check_isa_config, xtensa_add_isa, xtensa_load_isa,
xtensa_extend_isa): Delete.
(xtensa_isa_free): Change to only free lookup tables.
(opname_lookup_compare): Replace with ...
(xtensa_isa_name_compare): ... this function. Use strcasecmp.
(xtensa_insn_maxlength): Rename to ...
(xtensa_isa_maxlength): ... this.
(xtensa_insn_length): Delete.
(xtensa_insn_length_from_first_byte): Replace with ...
(xtensa_isa_length_from_chars): ... this function.
(xtensa_num_opcodes): Rename to ...
(xtensa_isa_num_opcodes): ... this.
(xtensa_isa_num_pipe_stages, xtensa_isa_num_formats,
xtensa_isa_num_regfiles, xtensa_isa_num_stages,
xtensa_isa_num_sysregs, xtensa_isa_num_interfaces,
xtensa_isa_num_funcUnits, xtensa_format_name, xtensa_format_lookup,
xtensa_format_decode, xtensa_format_encode, xtensa_format_length,
xtensa_format_num_slots, xtensa_format_slot_nop_opcode,
xtensa_format_get_slot, xtensa_format_set_slot): New functions.
(xtensa_opcode_lookup): Add error handling.
(xtensa_decode_insn): Replace with ...
(xtensa_opcode_decode): ... this function, with new format and
slot parameters. Add error handling.
(xtensa_encode_insn): Replace with ...
(xtensa_opcode_encode): ... this function, which does the encoding via
one of the entries in the "encode_fns" array. Add error handling.
(xtensa_opcode_name): Add error handling.
(xtensa_opcode_is_branch, xtensa_opcode_is_jump, xtensa_opcode_is_loop,
xtensa_opcode_is_call): New.
(xtensa_num_operands): Replace with ...
(xtensa_opcode_num_operands): ... this function. Add error handling.
(xtensa_opcode_num_stateOperands,
xtensa_opcode_num_interfaceOperands, xtensa_opcode_num_funcUnit_uses,
xtensa_opcode_funcUnit_use, xtensa_operand_name,
xtensa_operand_is_visible): New.
(xtensa_get_operand, xtensa_operand_kind): Delete.
(xtensa_operand_inout): Add error handling and special-case for
"sout" operands.
(xtensa_operand_get_field, xtensa_operand_set_field): Rewritten to
operate on one slot of an instruction. Added error handling.
(xtensa_operand_encode): Handle default operands with no encoding
functions. Check for success by comparing against decoded value.
Add error handling.
(xtensa_operand_decode): Handle default operands. Return decoded value
through argument pointer. Add error handling.
(xtensa_operand_is_register, xtensa_operand_regfile,
xtensa_operand_num_regs, xtensa_operand_is_known_reg): New.
(xtensa_operand_isPCRelative): Rename to ...
(xtensa_operand_is_PCrelative): ... this. Add error handling.
(xtensa_operand_do_reloc, xtensa_operand_undo_reloc): Return value
through argument pointer. Add error handling.
(xtensa_stateOperand_state, xtensa_stateOperand_inout,
xtensa_interfaceOperand_interface, xtensa_regfile_lookup,
xtensa_regfile_lookup_shortname, xtensa_regfile_name,
xtensa_regfile_shortname, xtensa_regfile_view_parent,
xtensa_regfile_num_bits, xtensa_regfile_num_entries,
xtensa_state_lookup, xtensa_state_name, xtensa_state_num_bits,
xtensa_state_is_exported, xtensa_sysreg_lookup,
xtensa_sysreg_lookup_name, xtensa_sysreg_name, xtensa_sysreg_number,
xtensa_sysreg_is_user, xtensa_interface_lookup, xtensa_interface_name,
xtensa_interface_num_bits, xtensa_interface_inout,
xtensa_interface_has_side_effect, xtensa_funcUnit_lookup,
xtensa_funcUnit_name, xtensa_funcUnit_num_copies): New.
* xtensa-modules.c: Rewrite to use new data structures.
* reloc.c (BFD_RELOC_XTENSA_DIFF8, BFD_RELOC_XTENSA_DIFF16,
BFD_RELOC_XTENSA_DIFF32, BFD_RELOC_XTENSA_SLOT0_OP,
BFD_RELOC_XTENSA_SLOT1_OP, BFD_RELOC_XTENSA_SLOT2_OP,
BFD_RELOC_XTENSA_SLOT3_OP, BFD_RELOC_XTENSA_SLOT4_OP,
BFD_RELOC_XTENSA_SLOT5_OP, BFD_RELOC_XTENSA_SLOT6_OP,
BFD_RELOC_XTENSA_SLOT7_OP, BFD_RELOC_XTENSA_SLOT8_OP,
BFD_RELOC_XTENSA_SLOT9_OP, BFD_RELOC_XTENSA_SLOT10_OP,
BFD_RELOC_XTENSA_SLOT11_OP, BFD_RELOC_XTENSA_SLOT12_OP,
BFD_RELOC_XTENSA_SLOT13_OP, BFD_RELOC_XTENSA_SLOT14_OP,
BFD_RELOC_XTENSA_SLOT0_ALT, BFD_RELOC_XTENSA_SLOT1_ALT,
BFD_RELOC_XTENSA_SLOT2_ALT, BFD_RELOC_XTENSA_SLOT3_ALT,
BFD_RELOC_XTENSA_SLOT4_ALT, BFD_RELOC_XTENSA_SLOT5_ALT,
BFD_RELOC_XTENSA_SLOT6_ALT, BFD_RELOC_XTENSA_SLOT7_ALT,
BFD_RELOC_XTENSA_SLOT8_ALT, BFD_RELOC_XTENSA_SLOT9_ALT,
BFD_RELOC_XTENSA_SLOT10_ALT, BFD_RELOC_XTENSA_SLOT11_ALT,
BFD_RELOC_XTENSA_SLOT12_ALT, BFD_RELOC_XTENSA_SLOT13_ALT,
BFD_RELOC_XTENSA_SLOT14_ALT): Add new relocations.
* Makefile.am (xtensa-isa.lo, xtensa-modules.lo): Update dependencies.
* Makefile.in: Regenerate.
* bfd-in2.h: Likewise.
* libbfd.h: Likewise.
gas ChangeLog
* config/tc-xtensa.c (absolute_literals_supported): New global flag.
(UNREACHABLE_MAX_WIDTH): Define.
(XTENSA_FETCH_WIDTH): Delete.
(cur_vinsn, xtensa_fetch_width, xt_saved_debug_type, past_xtensa_end,
prefer_const16, prefer_l32r): New global variables.
(LIT4_SECTION_NAME): Define.
(lit4_state struct): Add lit4_seg_name and lit4_seg fields.
(XTENSA_PROP_*, GET_XTENSA_PROP_*, SET_XTENSA_PROP_*): Define.
(frag_flags struct): New.
(xtensa_block_info struct): Move from tc-xtensa.h. Add flags field.
(subseg_map struct): Add cur_total_freq and cur_target_freq fields.
(bitfield, bit_is_set, set_bit, clear_bit): Define.
(MAX_FORMATS): Define.
(op_placement_info struct, op_placement_table): New.
(O_pltrel, O_hi16, O_lo16): Define.
(directiveE enum): Rename directive_generics to directive_transform.
Delete directive_relax. Add directive_schedule,
directive_absolute_literals, and directive_last_directive.
(directive_info): Rename "generics" to "transform". Delete "relax".
Add "schedule" and "absolute-literals".
(directive_state): Adjust entries to match changes in directive_info.
(xtensa_relax_statesE, RELAX_IMMED_MAXSTEPS): Move to tc-xtensa.h.
(xtensa_const16_opcode, xtensa_movi_opcode, xtensa_movi_n_opcode,
xtensa_l32r_opcode, xtensa_nop_opcode, xtensa_rsr_lcount_opcode): New.
(xtensa_j_opcode, xtensa_rsr_opcode): Delete.
(align_only_targets, software_a0_b_retw_interlock,
software_avoid_b_j_loop_end, maybe_has_b_j_loop_end,
software_avoid_short_loop, software_avoid_close_loop_end,
software_avoid_all_short_loops, specific_opcode): Delete.
(warn_unaligned_branch_targets): New.
(workaround_a0_b_retw, workaround_b_j_loop_end, workaround_short_loop,
workaround_close_loop_end, workaround_all_short_loops): Default FALSE.
(option_[no_]link_relax, option_[no_]transform,
option_[no_]absolute_literals, option_warn_unaligned_targets,
option_prefer_l32r, option_prefer_const16, option_target_hardware):
New enum values.
(option_[no_]align_only_targets, option_literal_section_name,
option_text_section_name, option_data_section_name,
option_bss_section_name, option_eb, option_el): Delete.
(md_longopts): Add entries for: [no-]transform, [no-]absolute-literals,
warn-unaligned-targets, prefer-l32r, prefer-const16, [no-]link-relax,
and target-hardware. Delete entries for [no-]target-align-only,
literal-section-name, text-section-name, data-section-name, and
bss-section-name.
(md_parse_option): Handle new options and remove old ones. Accept but
ignore [no-]density options. Warn for [no-]generics and [no-]relax
and treat them as [no-]transform.
(md_show_usage): Add new options and remove old ones.
(xtensa_setup_hw_workarounds): New.
(md_pseudo_table): Change "word" entry to use xtensa_elf_cons. Add
"long", "short", "loc" and "frequency" entries.
(use_generics): Rename to ...
(use_transform): ... this function. Add past_xtensa_end check.
(use_longcalls): Add past_xtensa_end check.
(code_density_available, can_relax): Delete.
(do_align_targets): New.
(get_directive): Accept dashes in directive names. Warn about
[no-]generics and [no-]relax directives and treat them as
[no-]transform.
(xtensa_begin_directive): Call md_flush_pending_output only for some
directives. Check for directives inside instruction bundles. Warn
about deprecated ".begin literal" usage. Warn and ignore [no-]density
directives. Handle new directives. Check generating_literals flag
for literal_prefix.
(xtensa_end_directive): Check for directives inside instruction
bundles. Warn and ignore [no-]density directives. Handle new
directives. Call xtensa_set_frag_assembly_state.
(xtensa_loc_directive_seen, xtensa_dwarf2_directive_loc,
xtensa_dwarf2_emit_insn): New.
(xtensa_literal_position): Call md_flush_pending_output. Do not check
use_literal_section flag.
(xtensa_literal_pseudo): Call md_flush_pending_output. Handle absolute
literals. Use xtensa_elf_cons to parse the expression.
(xtensa_literal_prefix): Do not check use_literal_section. Support
".lit4" sections for absolute literals. Change prefix convention to
replace ".text" (or ".t" in a linkonce section). No need to call
subseg_set.
(xtensa_frequency_pseudo, xtensa_elf_cons, xtensa_elf_suffix): New.
(expression_end): Handle closing braces and colons.
(PLT_SUFFIX, plt_suffix): Delete.
(expression_maybe_register): Use new xtensa-isa.h functions. Use
xtensa_elf_suffix instead of checking for plt suffix, and handle O_lo16
and O_hi16 expressions as well.
(tokenize_arguments): Handle closing braces and colons.
(parse_arguments): Use new xtensa-isa.h functions. Handle "invisible"
operands and paired register syntax.
(get_invisible_operands): New.
(xg_translate_sysreg_op): Handle new Xtensa LX RSR/WSR/XSR syntax. Use
new xtensa-isa.h functions.
(xtensa_translate_old_userreg_ops, xtensa_translate_zero_immed): New.
(xg_translate_idioms): Check if inside bundle. Use use_transform.
Handle new Xtensa LX RSR/WSR/XSR syntax. Remove code to widen density
instructions. Use xtensa_translate_zero_immed.
(operand_is_immed, operand_is_pcrel_label): Delete.
(get_relaxable_immed): Use new xtensa-isa.h functions.
(get_opcode_from_buf): Add slot parameter. Use new xtensa-isa.h
functions.
(xtensa_print_insn_table, print_vliw_insn): New.
(is_direct_call_opcode): Use new xtensa-isa.h functions.
(is_call_opcode, is_loop_opcode, is_conditional_branch_opcode,
is_branch_or_jump_opcode): Delete.
(is_movi_opcode, decode_reloc, encode_reloc, encode_alt_reloc): New.
(opnum_to_reloc, reloc_to_opnum): Delete.
(xtensa_insnbuf_set_operand, xtensa_insnbuf_get_operand): Use new
xtensa-isa.h functions. Operate on one slot of an instruction.
(xtensa_insnbuf_set_immediate_field, is_negatable_branch,
xg_get_insn_size): Delete.
(xg_get_build_instr_size): Use xg_get_single_size.
(xg_is_narrow_insn, xg_is_single_relaxable_insn): Update calls to
xg_build_widen_table. Use xg_get_single_size.
(xg_get_max_narrow_insn_size): Delete.
(xg_get_max_insn_widen_size, xg_get_max_insn_widen_literal_size,
xg_is_relaxable_insn): Update calls to xg_build_widen_table. Use
xg_get_single_size.
(xg_build_to_insn): Record the loc field. Handle OP_OPERAND_HI16U and
OP_OPERAND_LOW16U. Check xg_valid_literal_expression.
(xg_expand_to_stack, xg_expand_narrow): Update calls to
xg_build_widen_table. Use xg_get_single_size.
(xg_immeds_fit): Use new xtensa-isa.h functions. Update call to
xg_check_operand.
(xg_symbolic_immeds_fit): Likewise. Also handle O_lo16 and O_hi16, and
treat weak symbols conservatively.
(xg_check_operand): Use new xtensa-isa.h functions.
(is_dnrange): Delete.
(xg_assembly_relax): Inline previous calls to tinsn_copy.
(xg_finish_frag): Specify separate relax states for the frag and slot0.
(is_branch_jmp_to_next, xg_add_branch_and_loop_targets): Use new
xtensa-isa.h functions.
(xg_instruction_matches_option_term, xg_instruction_matches_or_options,
xg_instruction_matches_options): New.
(xg_instruction_matches_rule): Handle O_register expressions. Call
xg_instruction_matches_options.
(transition_rule_cmp): New.
(xg_instruction_match): Update call to xg_build_simplify_table.
(xg_build_token_insn): Record loc fields.
(xg_simplify_insn): Check is_specific_opcode field and
density_supported flag.
(xg_expand_assembly_insn): Skip checking code_density_available. Use
new xtensa-isa.h functions. Call use_transform instead of can_relax.
(xg_assemble_literal): Add error handling for O_big. Call
record_alignment. Handle O_pltrel.
(xg_valid_literal_expression): New.
(xg_assemble_literal_space): Add slot parameter. Remove call to
set_expr_symbol_offset. Add call to record_alignment. Update call to
xg_finish_frag.
(xg_emit_insn): Delete.
(xg_emit_insn_to_buf): Add format parameter. Update calls to
xg_add_opcode_fix and xtensa_insnbuf_to_chars.
(xg_add_opcode_fix): Change opcode parameter to tinsn and add format
and slot parameters. Handle new "alternate" relocations for absolute
literals and CONST16 instructions. Check for bad uses of O_lo16 and
O_hi16. Use new xtensa-isa.h functions.
(xg_assemble_tokens): Delete.
(is_register_writer): Use new xtensa-isa.h functions.
(is_bad_loopend_opcode): Check for xtensa_rsr_lcount_opcode instead of
old-style RSR from LCOUNT.
(next_frag_opcode): Delete.
(next_frag_opcode_is_loop, next_frag_format_size, frag_format_size,
update_next_frag_state): New.
(update_next_frag_nop_state): Delete.
(next_frag_pre_opcode_bytes): Use next_frag_opcode_is_loop.
(xtensa_mark_literal_pool_location): Check use_literal_section flag and
the state of the absolute-literals directive. Add calls to
record_alignment and xtensa_set_frag_assembly_state. Call
xtensa_switch_to_non_abs_literal_fragment instead of
xtensa_switch_to_literal_fragment.
(build_nop): New.
(assemble_nop): Use build_nop. Update call to xtensa_insnbuf_to_chars.
(get_expanded_loop_offset): Change check for undefined opcode to an
assertion.
(xtensa_set_frag_assembly_state, relaxable_section,
xtensa_find_unmarked_state_frags, xtensa_find_unaligned_branch_targets,
xtensa_find_unaligned_loops, xg_apply_tentative_value): New.
(md_begin): Update call to xtensa_isa_init. Initialize linkrelax to 1.
Set lit4_seg_name. Call xg_init_vinsn. Initialize new global opcodes.
Call init_op_placement_info_table and xtensa_set_frag_assembly_state.
(xtensa_init_fix_data): New.
(xtensa_frob_label): Reset label symbol to the current frag. Check
do_align_targets and generating_literals flag. Propagate frequency
info to new alignment frag. Call xtensa_set_frag_assembly_state.
(xtensa_unrecognized_line): New.
(xtensa_flush_pending_output): Check if inside a bundle. Add a call
to xtensa_set_frag_assembly_state.
(error_reset_cur_vinsn): New.
(md_assemble): Remove check for literal frag. Remove call to
istack_init. Call use_transform instead of use_generics. Parse
explicit instruction format specifiers. Move code for
a0_b_retw_interlock workaround to xg_assemble_vliw_tokens. Call
error_reset_cur_vinsn on errors. Add call to get_invisible_operands.
Add dwarf2_where call. Remote automatic alignment for ENTRY
instructions. Move call to xtensa_clear_insn_labels to the end.
Rearrange to handle bundles.
(xtensa_cons_fix_new): Delete.
(xtensa_handle_align): New.
(xtensa_frag_init): Call xtensa_set_frag_assembly_state. Remove
assignment to is_no_density field.
(md_pcrel_from): Use new xtensa-isa.h functions. Use decode_reloc
instead of reloc_to_opnum. Handle "alternate" relocations.
(xtensa_force_relocation, xtensa_check_inside_bundle,
xtensa_elf_section_change_hook): New.
(xtensa_symbol_new_hook): Delete.
(xtensa_fix_adjustable): Check for difference of symbols with an
offset. Check for external and weak symbols.
(md_apply_fix3): Remove cases for XTENSA_OP{0,1,2} relocs.
(md_estimate_size_before_relax): Return expansion for the first slot.
(tc_gen_reloc): Handle difference of symbols by producing
XTENSA_DIFF{8,16,32} relocs and by writing the value of the difference
into the output. Handle new XTENSA_SLOT*_OP relocs by storing the
tentative values into the output when linkrelax is set.
(XTENSA_PROP_SEC_NAME): Define.
(xtensa_post_relax_hook): Call xtensa_find_unmarked_state_frags.
Create literal tables only if using literal sections. Create new
property tables instead of old instruction tables. Check for unaligned
branch targets and loops.
(finish_vinsn, find_vinsn_conflicts, check_t1_t2_reads_and_writes,
new_resource_table, clear_resource_table, resize_resource_table,
resources_available, reserve_resources, release_resources,
opcode_funcUnit_use_unit, opcode_funcUnit_use_stage,
resources_conflict, xg_find_narrowest_format, relaxation_requirements,
bundle_single_op, emit_single_op, xg_assemble_vliw_tokens): New.
(xtensa_end): Call xtensa_flush_pending_output. Set past_xtensa_end
flag. Update checks for workaround options. Call
xtensa_mark_narrow_branches and xtensa_mark_zcl_first_insns.
(xtensa_cleanup_align_frags): Add special case for branch targets.
Check for and mark unreachable frags.
(xtensa_fix_target_frags): Remove use of align_only_targets flag.
Use RELAX_LOOP_END_BYTES in special case for negatable branch at the
end of a zero-overhead loop body.
(frag_can_negate_branch): Handle instructions with multiple slots.
Use new xtensa-isa.h functions
(xtensa_mark_narrow_branches, is_narrow_branch_guaranteed_in_range,
xtensa_mark_zcl_first_insns): New.
(xtensa_fix_a0_b_retw_frags, xtensa_fix_b_j_loop_end_frags): Error if
transformations are disabled.
(next_instrs_are_b_retw): Use new xtensa-isa.h functions. Handle
multislot instructions.
(xtensa_fix_close_loop_end_frags, xtensa_fix_short_loop_frags):
Likewise. Also error if transformations are disabled.
(unrelaxed_frag_max_size): New.
(unrelaxed_frag_min_insn_count, unrelax_frag_has_b_j): Use new
xtensa-isa.h functions.
(xtensa_sanity_check, is_empty_loop, is_local_forward_loop): Use
xtensa_opcode_is_loop instead of is_loop_opcode.
(get_text_align_power): Replace as_fatal with assertion.
(get_text_align_fill_size): Iterate instead of using modulus when
use_nops is false.
(get_noop_aligned_address): Assert that this is for a machine-dependent
RELAX_ALIGN_NEXT_OPCODE frag. Use next_frag_opcode_is_loop,
xg_get_single_size, and frag_format_size.
(get_widen_aligned_address): Rename to ...
(get_aligned_diff): ... this function. Add max_diff parameter.
Remove handling of rs_align/rs_align_code frags. Use
next_frag_format_size, get_text_align_power, get_text_align_fill_size,
next_frag_opcode_is_loop, and xg_get_single_size. Compute max_diff
and pass it back to caller.
(xtensa_relax_frag): Use relax_frag_loop_align. Add code for new
RELAX_SLOTS, RELAX_MAYBE_UNREACHABLE, RELAX_MAYBE_DESIRE_ALIGN,
RELAX_FILL_NOP, and RELAX_UNREACHABLE frag types. Check relax_seen.
(relax_frag_text_align): Rename to ...
(relax_frag_loop_align): ... this function. Assume loops can only be
in the first slot of an instruction.
(relax_frag_add_nop): Use assemble_nop instead of constructing an OR
instruction. Remove call to frag_wane.
(relax_frag_narrow): Rename to ...
(relax_frag_for_align): ... this function. Extend to handle
RELAX_FILL_NOP and RELAX_UNREACHABLE, as well as RELAX_SLOTS with
RELAX_NARROW for the first slot.
(find_address_of_next_align_frag, bytes_to_stretch): New.
(future_alignment_required): Use find_address_of_next_align_frag and
bytes_to_stretch. Look ahead to subsequent frags to make smarter
alignment decisions.
(relax_frag_immed): Add format, slot, and estimate_only parameters.
Check if transformations are enabled for b_j_loop_end workaround.
Use new xtensa-isa.h functions and handle multislot instructions.
Update call to xg_assembly_relax.
(md_convert_frag): Handle new RELAX_SLOTS, RELAX_UNREACHABLE,
RELAX_MAYBE_UNREACHABLE, RELAX_MAYBE_DESIRE_ALIGN, and RELAX_FILL_NOP
frag types.
(convert_frag_narrow): Add segP, format and slot parameters. Call
convert_frag_immed for branch instructions. Adjust calls to
tinsn_from_chars, tinsn_immed_from_frag, and xg_emit_insn_to_buf. Use
xg_get_single_size and xg_get_single_format.
(convert_frag_fill_nop): New.
(convert_frag_immed): Add format and slot parameters. Handle multislot
instructions and use new xtensa-isa.h functions. Update calls to
tinsn_immed_from_frag and xg_assembly_relax. Check if transformations
enabled for b_j_loop_end workaround. Use build_nop instead of
assemble_nop. Check is_specific_opcode flag. Check for unreachable
frags. Use xg_get_single_size. Handle O_pltrel.
(fix_new_exp_in_seg): Remove check for old plt flag.
(convert_frag_immed_finish_loop): Update calls to tinsn_from_chars and
xtensa_insnbuf_to_chars. Call tinsn_immed_from_frag. Change check
for loop opcode to an assertion. Mark all frags up to the end of the
loop as not transformable.
(get_last_insn_flags, set_last_insn_flags): Use get_subseg_info.
(get_subseg_info): New.
(xtensa_move_literals): Call xtensa_set_frag_assembly_state. Add null
check for dest_seg.
(xtensa_switch_to_literal_fragment): Rewrite to handle absolute
literals and use xtensa_switch_to_non_abs_literal_fragment otherwise.
(xtensa_switch_to_non_abs_literal_fragment): New.
(cache_literal_section): Add is_code parameter and pass it through to
retrieve_literal_seg.
(retrieve_literal_seg): Add is_code parameter and use it to set the
flags on the literal section. Handle case where head parameter is 0.
(get_frag_is_no_transform, set_frag_is_specific_opcode,
set_frag_is_no_transform): New.
(xtensa_create_property_segments): Add end_property_function parameter
and pass it through to add_xt_block_frags. Call bfd_get_section_flags
and skip SEC_DEBUGGING and !SEC_ALLOC sections.
(xtensa_create_xproperty_segments, section_has_xproperty): New.
(add_xt_block_frags): Add end_property_function parameter and call it
if it is non-zero. Call xtensa_frag_flags_init.
(xtensa_frag_flags_is_empty, xtensa_frag_flags_init,
get_frag_property_flags, frag_flags_to_number,
xtensa_frag_flags_combinable, xt_block_aligned_size,
xtensa_xt_block_combine, add_xt_prop_frags,
init_op_placement_info_table, opcode_fits_format_slot,
xg_get_single_size, xg_get_single_format): New.
(istack_push): Inline call to tinsn_copy.
(tinsn_copy): Delete.
(tinsn_has_invalid_symbolic_operands): Handle O_hi16 and O_lo16 and
CONST16 opcodes. Handle O_big, O_illegal, and O_absent.
(tinsn_has_complex_operands): Handle O_hi16 and O_lo16.
(tinsn_to_insnbuf): Use xg_get_single_format and new xtensa-isa.h
functions. Handle invisible operands.
(tinsn_to_slotbuf): New.
(tinsn_check_arguments): Use new xtensa-isa.h functions.
(tinsn_from_chars): Add slot parameter. Rewrite using xg_init_vinsn,
vinsn_from_chars, and xg_free_vinsn.
(tinsn_from_insnbuf): New.
(tinsn_immed_from_frag): Add slot parameter and handle multislot
instructions. Handle symbol differences.
(get_num_stack_text_bytes): Use xg_get_single_size.
(xg_init_vinsn, xg_clear_vinsn, vinsn_has_specific_opcodes,
xg_free_vinsn, vinsn_to_insnbuf, vinsn_from_chars, expr_is_register,
get_expr_register, set_expr_symbol_offset_diff): New.
* config/tc-xtensa.h (MAX_SLOTS): Define.
(xtensa_relax_statesE): Move from tc-xtensa.c. Add
RELAX_CHECK_ALIGN_NEXT_OPCODE, RELAX_MAYBE_DESIRE_ALIGN, RELAX_SLOTS,
RELAX_FILL_NOP, RELAX_UNREACHABLE, RELAX_MAYBE_UNREACHABLE, and
RELAX_NONE types.
(RELAX_IMMED_MAXSTEPS): Move from tc-xtensa.c.
(xtensa_frag_type struct): Add is_assembly_state_set,
use_absolute_literals, relax_seen, is_unreachable, is_specific_opcode,
is_align, is_text_align, alignment, and is_first_loop_insn fields.
Replace is_generics and is_relax fields by is_no_transform field.
Delete is_text and is_longcalls fields. Change text_expansion and
literal_expansion to arrays of MAX_SLOTS entries. Add arrays of
per-slot information: literal_frags, slot_subtypes, slot_symbols,
slot_sub_symbols, and slot_offsets. Add fr_prev field.
(xtensa_fix_data struct): New.
(xtensa_symfield_type struct): Delete plt field.
(xtensa_block_info struct): Move definition to tc-xtensa.h. Add
forward declaration here.
(xt_section_type enum): Delete xt_insn_sec. Add xt_prop_sec.
(XTENSA_SECTION_RENAME): Undefine.
(TC_FIX_TYPE, TC_INIT_FIX_DATA, TC_FORCE_RELOCATION, NO_PSEUDO_DOT,
tc_unrecognized_line, md_do_align, md_elf_section_change_hook,
HANDLE_ALIGN, TC_LINKRELAX_FIXUP, SUB_SEGMENT_ALIGN): Define.
(TC_CONS_FIX_NEW, tc_symbol_new_hook): Delete.
(unit_num_copies_func, opcode_num_units_func,
opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func): New.
(resource_table struct): New.
* config/xtensa-istack.h (MAX_INSN_ARGS): Increase from 6 to 10.
(TInsn struct): Add keep_wide, loc, fixup, record_fix, subtype,
literal_space, symbol, sub_symbol, offset, and literal_frag fields.
(tinsn_copy): Delete prototype.
(vliw_insn struct): New.
* config/xtensa-relax.c (insn_pattern_struct): Add options field.
(widen_spec_list): Add option conditions for density and boolean
instructions. Add expansions using CONST16 and conditions for using
CONST16 vs. L32R. Use new Xtensa LX RSR/WSR syntax. Add entries for
predicted branches.
(simplify_spec_list): Add option conditions for density instructions.
Add entry for NOP instruction.
(append_transition): Add cmp function pointer parameter and use it to
insert the new entry in order.
(operand_function_LOW16U, operand_function_HI16U): New.
(xg_has_userdef_op_fn, xg_apply_userdef_op_fn): Handle
OP_OPERAND_LOW16U and OP_OPERAND_HI16U.
(enter_opname, split_string): Use xstrdup instead of strdup.
(init_insn_pattern): Initialize new options field.
(clear_req_or_option_list, clear_req_option_list,
clone_req_or_option_list, clone_req_option_list, parse_option_cond):
New.
(parse_insn_pattern): Parse option conditions.
(transition_applies): New.
(build_transition): Use new xtensa-isa.h functions. Fix incorrectly
swapped last arguments in calls to append_constant_value_condition.
Call clone_req_option_list. Add warning about invalid opcode.
Handle LOW16U and HI16U function names.
(build_transition_table): Add cmp parameter and use it in calls to
append_transition. Use new xtensa-isa.h functions. Check
transition_applies before adding entries.
(xg_build_widen_table, xg_build_simplify_table): Add cmp parameter and
pass it through to build_transition_table.
* config/xtensa-relax.h (ReqOrOptionList, ReqOrOption, ReqOptionList,
ReqOption, transition_cmp_fn): New types.
(OpType enum): Add OP_OPERAND_LOW16U and OP_OPERAND_HI16U.
(transition_rule struct): Add options field.
* doc/as.texinfo (Overview): Update Xtensa options.
* doc/c-xtensa.texi (Xtensa Options): Delete --[no-]density,
--[no-]relax, and --[no-]generics options. Update descriptions of
--text-section-literals and --[no-]longcalls. Add
--[no-]absolute-literals and --[no-]transform.
(Xtensa Syntax): Add description of syntax for FLIX instructions.
Remove use of "generic" and "specific" terminology for opcodes.
(Xtensa Registers): Generalize the syntax description to include
user-defined register files.
(Xtensa Automatic Alignment): Update.
(Xtensa Branch Relaxation): Mention limitation of unconditional jumps.
(Xtensa Call Relaxation): Linker can now remove most of the overhead.
(Xtensa Directives): Remove confusing rules about precedence.
(Density Directive, Relax Directive): Delete.
(Schedule Directive): New.
(Generics Directive): Rename to ...
(Transform Directive): ... this node.
(Literal Directive): Update for absolute literals. Missing
literal_position directive is now an error.
(Literal Position Directive): Update for absolute literals.
(Freeregs Directive): Delete.
(Absolute Literals Directive): New.
(Frame Directive): Minor editing.
* Makefile.am (DEPTC_xtensa_elf, DEPOBJ_xtensa_elf, DEP_xtensa_elf):
Update dependencies.
* Makefile.in: Regenerate.
gas/testsuite ChangeLog
* gas/xtensa/all.exp: Adjust expected error message for j_too_far.
Change entry_align test to expect an error.
* gas/xtensa/entry_misalign2.s: Use no-transform instead of
no-generics directives.
include ChangeLog
* xtensa-config.h (XSHAL_USE_ABSOLUTE_LITERALS,
XCHAL_HAVE_PREDICTED_BRANCHES, XCHAL_INST_FETCH_WIDTH): New.
(XCHAL_EXTRA_SA_SIZE, XCHAL_EXTRA_SA_ALIGN): Delete.
* xtensa-isa-internal.h (ISA_INTERFACE_VERSION): Delete.
(config_sturct struct): Delete.
(XTENSA_OPERAND_IS_REGISTER, XTENSA_OPERAND_IS_PCRELATIVE,
XTENSA_OPERAND_IS_INVISIBLE, XTENSA_OPERAND_IS_UNKNOWN,
XTENSA_OPCODE_IS_BRANCH, XTENSA_OPCODE_IS_JUMP,
XTENSA_OPCODE_IS_LOOP, XTENSA_OPCODE_IS_CALL,
XTENSA_STATE_IS_EXPORTED, XTENSA_INTERFACE_HAS_SIDE_EFFECT): Define.
(xtensa_format_encode_fn, xtensa_get_slot_fn, xtensa_set_slot_fn): New.
(xtensa_insn_decode_fn): Rename to ...
(xtensa_opcode_decode_fn): ... this.
(xtensa_immed_decode_fn, xtensa_immed_encode_fn, xtensa_do_reloc_fn,
xtensa_undo_reloc_fn): Update.
(xtensa_encoding_template_fn): Delete.
(xtensa_opcode_encode_fn, xtensa_format_decode_fn,
xtensa_length_decode_fn): New.
(xtensa_format_internal, xtensa_slot_internal): New types.
(xtensa_operand_internal): Delete operand_kind, inout, isPCRelative,
get_field, and set_field fields. Add name, field_id, regfile,
num_regs, and flags fields.
(xtensa_arg_internal): New type.
(xtensa_iclass_internal): Change operands field to array of
xtensa_arg_internal. Add num_stateOperands, stateOperands,
num_interfaceOperands, and interfaceOperands fields.
(xtensa_opcode_internal): Delete length, template, and iclass fields.
Add iclass_id, flags, encode_fns, num_funcUnit_uses, and funcUnit_uses.
(opname_lookup_entry): Delete.
(xtensa_regfile_internal, xtensa_interface_internal,
xtensa_funcUnit_internal, xtensa_state_internal,
xtensa_sysreg_internal, xtensa_lookup_entry): New.
(xtensa_isa_internal): Replace opcode_table field with opcodes field.
Change type of opname_lookup_table. Delete num_modules,
module_opcode_base, module_decode_fn, config, and has_density fields.
Add num_formats, formats, format_decode_fn, length_decode_fn,
num_slots, slots, num_fields, num_operands, operands, num_iclasses,
iclasses, num_regfiles, regfiles, num_states, states,
state_lookup_table, num_sysregs, sysregs, sysreg_lookup_table,
max_sysreg_num, sysreg_table, num_interfaces, interfaces,
interface_lookup_table, num_funcUnits, funcUnits and
funcUnit_lookup_table fields.
(xtensa_isa_module, xtensa_isa_modules): Delete.
(xtensa_isa_name_compare): New prototype.
(xtisa_errno, xtisa_error_msg): New.
* xtensa-isa.h (XTENSA_ISA_VERSION): Define.
(xtensa_isa): Change type.
(xtensa_operand): Delete.
(xtensa_format, xtensa_regfile, xtensa_state, xtensa_sysreg,
xtensa_interface, xtensa_funcUnit, xtensa_isa_status,
xtensa_funcUnit_use): New types.
(libisa_module_specifier): Delete.
(xtensa_isa_errno, xtensa_isa_error_msg): New prototypes.
(xtensa_insnbuf_free, xtensa_insnbuf_to_chars,
xtensa_insnbuf_from_chars): Update prototypes.
(xtensa_load_isa, xtensa_extend_isa, xtensa_default_isa,
xtensa_insn_maxlength, xtensa_num_opcodes, xtensa_decode_insn,
xtensa_encode_insn, xtensa_insn_length,
xtensa_insn_length_from_first_byte, xtensa_num_operands,
xtensa_operand_kind, xtensa_encode_result,
xtensa_operand_isPCRelative): Delete.
(xtensa_isa_init, xtensa_operand_inout, xtensa_operand_get_field,
xtensa_operand_set_field, xtensa_operand_encode,
xtensa_operand_decode, xtensa_operand_do_reloc,
xtensa_operand_undo_reloc): Update prototypes.
(xtensa_isa_maxlength, xtensa_isa_length_from_chars,
xtensa_isa_num_pipe_stages, xtensa_isa_num_formats,
xtensa_isa_num_opcodes, xtensa_isa_num_regfiles, xtensa_isa_num_states,
xtensa_isa_num_sysregs, xtensa_isa_num_interfaces,
xtensa_isa_num_funcUnits, xtensa_format_name, xtensa_format_lookup,
xtensa_format_decode, xtensa_format_encode, xtensa_format_length,
xtensa_format_num_slots, xtensa_format_slot_nop_opcode,
xtensa_format_get_slot, xtensa_format_set_slot, xtensa_opcode_decode,
xtensa_opcode_encode, xtensa_opcode_is_branch, xtensa_opcode_is_jump,
xtensa_opcode_is_loop, xtensa_opcode_is_call,
xtensa_opcode_num_operands, xtensa_opcode_num_stateOperands,
xtensa_opcode_num_interfaceOperands, xtensa_opcode_num_funcUnit_uses,
xtensa_opcode_funcUnit_use, xtensa_operand_name,
xtensa_operand_is_visible, xtensa_operand_is_register,
xtensa_operand_regfile, xtensa_operand_num_regs,
xtensa_operand_is_known_reg, xtensa_operand_is_PCrelative,
xtensa_stateOperand_state, xtensa_stateOperand_inout,
xtensa_interfaceOperand_interface, xtensa_regfile_lookup,
xtensa_regfile_lookup_shortname, xtensa_regfile_name,
xtensa_regfile_shortname, xtensa_regfile_view_parent,
xtensa_regfile_num_bits, xtensa_regfile_num_entries,
xtensa_state_lookup, xtensa_state_name, xtensa_state_num_bits,
xtensa_state_is_exported, xtensa_sysreg_lookup,
xtensa_sysreg_lookup_name, xtensa_sysreg_name, xtensa_sysreg_number,
xtensa_sysreg_is_user, xtensa_interface_lookup, xtensa_interface_name,
xtensa_interface_num_bits, xtensa_interface_inout,
xtensa_interface_has_side_effect, xtensa_funcUnit_lookup,
xtensa_funcUnit_name, xtensa_funcUnit_num_copies): New prototypes.
* elf/xtensa.h (R_XTENSA_DIFF8, R_XTENSA_DIFF16, R_XTENSA_DIFF32,
R_XTENSA_SLOT*_OP, R_XTENSA_SLOT*_ALT): New relocations.
(XTENSA_PROP_SEC_NAME): Define.
(property_table_entry): Add flags field.
(XTENSA_PROP_*, GET_XTENSA_PROP_*, SET_XTENSA_PROP_*): Define.
ld ChangeLog
* ld.texinfo (Xtensa): Describe new linker relaxation to optimize
assembler-generated longcall sequences. Describe new --size-opt
option.
* emulparams/elf32xtensa.sh (OTHER_SECTIONS): Add .xt.prop section.
* emultempl/xtensaelf.em (remove_section,
replace_insn_sec_with_prop_sec, replace_instruction_table_sections,
elf_xtensa_after_open): New.
(OPTION_OPT_SIZEOPT, OPTION_LITERAL_MOVEMENT,
OPTION_NO_LITERAL_MOVEMENT): Define.
(elf32xtensa_size_opt, elf32xtensa_no_literal_movement): New globals.
(PARSE_AND_LIST_LONGOPTS): Add size-opt and [no-]literal-movement.
(PARSE_AND_LIST_OPTIONS): Add --size-opt.
(PARSE_AND_LIST_ARGS_CASES): Handle OPTION_OPT_SIZEOPT,
OPTION_LITERAL_MOVEMENT, and OPTION_NO_LITERAL_MOVEMENT.
(LDEMUL_AFTER_OPEN): Set to elf_xtensa_after_open.
* scripttempl/elfxtensa.sc: Update with changes from elf.sc.
* Makefile.am (eelf32xtensa.c): Update dependencies.
* Makefile.in: Regenerate.
ld/testsuite ChangeLog
* ld-xtensa/lcall1.s: Use .literal directive.
* ld-xtensa/lcall2.s: Align function entry.
* ld-xtensa/coalesce2.s: Likewise.
opcodes ChangeLog
* xtensa-dis.c (state_names): Delete.
(fetch_data): Use xtensa_isa_maxlength.
(print_xtensa_operand): Replace operand parameter with opcode/operand
pair. Remove print_sr_name parameter. Use new xtensa-isa.h functions.
(print_insn_xtensa): Use new xtensa-isa.h functions. Handle multislot
instruction bundles. Use xmalloc instead of malloc.
2004-10-08 02:22:15 +02:00
Relaxation is enabled by default for the Xtensa version of @command{ld} and
provides two important link-time optimizations. The first optimization
is to combine identical literal values to reduce code size. A redundant
literal will be removed and all the @code{L32R} instructions that use it
will be changed to reference an identical literal, as long as the
location of the replacement literal is within the offset range of all
the @code{L32R} instructions. The second optimization is to remove
unnecessary overhead from assembler-generated ``longcall'' sequences of
@code{L32R}/@code{CALLX@var{n}} when the target functions are within
range of direct @code{CALL@var{n}} instructions.
For each of these cases where an indirect call sequence can be optimized
to a direct call, the linker will change the @code{CALLX@var{n}}
instruction to a @code{CALL@var{n}} instruction, remove the @code{L32R}
instruction, and remove the literal referenced by the @code{L32R}
instruction if it is not used for anything else. Removing the
@code{L32R} instruction always reduces code size but can potentially
hurt performance by changing the alignment of subsequent branch targets.
By default, the linker will always preserve alignments, either by
switching some instructions between 24-bit encodings and the equivalent
density instructions or by inserting a no-op in place of the @code{L32R}
instruction that was removed. If code size is more important than
performance, the @option{--size-opt} option can be used to prevent the
linker from widening density instructions or inserting no-ops, except in
a few cases where no-ops are required for correctness.
The following Xtensa-specific command-line options can be used to
control the linker:
@cindex Xtensa options
@table @option
@item --size-opt
When optimizing indirect calls to direct calls, optimize for code size
more than performance. With this option, the linker will not insert
no-ops or widen density instructions to preserve branch target
alignment. There may still be some cases where no-ops are required to
preserve the correctness of the code.
@end table
2003-04-01 17:50:31 +02:00
@ifclear GENERIC
@lowersections
@end ifclear
@end ifset
1999-05-03 09:29:11 +02:00
@ifclear SingleFormat
@node BFD
@chapter BFD
@cindex back end
@cindex object file management
@cindex object formats available
@kindex objdump -i
The linker accesses object and archive files using the BFD libraries.
These libraries allow the linker to use the same routines to operate on
object files whatever the object file format. A different object file
format can be supported simply by creating a new BFD back end and adding
it to the library. To conserve runtime memory, however, the linker and
associated tools are usually configured to support only a subset of the
object file formats available. You can use @code{objdump -i}
(@pxref{objdump,,objdump,binutils.info,The GNU Binary Utilities}) to
list all the formats available for your configuration.
@cindex BFD requirements
@cindex requirements for BFD
As with most implementations, BFD is a compromise between
several conflicting requirements. The major factor influencing
BFD design was efficiency: any time used converting between
formats is time which would not have been spent had BFD not
been involved. This is partly offset by abstraction payback; since
BFD simplifies applications and back ends, more time and care
may be spent optimizing algorithms for a greater speed.
One minor artifact of the BFD solution which you should bear in
mind is the potential for information loss. There are two places where
useful information can be lost using the BFD mechanism: during
conversion and during output. @xref{BFD information loss}.
@menu
* BFD outline:: How it works: an outline of BFD
@end menu
@node BFD outline
2003-02-21 11:27:06 +01:00
@section How It Works: An Outline of BFD
1999-05-03 09:29:11 +02:00
@cindex opening object files
@include bfdsumm.texi
@end ifclear
@node Reporting Bugs
@chapter Reporting Bugs
2001-11-09 21:30:40 +01:00
@cindex bugs in @command{ld}
@cindex reporting bugs in @command{ld}
1999-05-03 09:29:11 +02:00
2001-11-09 21:30:40 +01:00
Your bug reports play an essential role in making @command{ld} reliable.
1999-05-03 09:29:11 +02:00
Reporting a bug may help you by bringing a solution to your problem, or
it may not. But in any case the principal function of a bug report is
2001-11-09 21:30:40 +01:00
to help the entire community by making the next version of @command{ld}
1999-05-03 09:29:11 +02:00
work better. Bug reports are your contribution to the maintenance of
2001-11-09 21:30:40 +01:00
@command{ld}.
1999-05-03 09:29:11 +02:00
In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.
@menu
* Bug Criteria:: Have you found a bug?
* Bug Reporting:: How to report bugs
@end menu
@node Bug Criteria
2003-02-21 11:27:06 +01:00
@section Have You Found a Bug?
1999-05-03 09:29:11 +02:00
@cindex bug criteria
If you are not sure whether you have found a bug, here are some guidelines:
@itemize @bullet
@cindex fatal signal
@cindex linker crash
@cindex crash of linker
@item
If the linker gets a fatal signal, for any input whatever, that is a
2001-11-09 21:30:40 +01:00
@command{ld} bug. Reliable linkers never crash.
1999-05-03 09:29:11 +02:00
@cindex error on valid input
@item
2001-11-09 21:30:40 +01:00
If @command{ld} produces an error message for valid input, that is a bug.
1999-05-03 09:29:11 +02:00
@cindex invalid input
@item
2001-11-09 21:30:40 +01:00
If @command{ld} does not produce an error message for invalid input, that
1999-05-03 09:29:11 +02:00
may be a bug. In the general case, the linker can not verify that
object files are correct.
@item
If you are an experienced user of linkers, your suggestions for
2001-11-09 21:30:40 +01:00
improvement of @command{ld} are welcome in any case.
1999-05-03 09:29:11 +02:00
@end itemize
@node Bug Reporting
2003-02-21 11:27:06 +01:00
@section How to Report Bugs
1999-05-03 09:29:11 +02:00
@cindex bug reports
2001-11-09 21:30:40 +01:00
@cindex @command{ld} bugs, reporting
1999-05-03 09:29:11 +02:00
A number of companies and individuals offer support for @sc{gnu}
2001-11-09 21:30:40 +01:00
products. If you obtained @command{ld} from a support organization, we
1999-05-03 09:29:11 +02:00
recommend you contact that organization first.
You can find contact information for many support companies and
individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
distribution.
2007-03-07 23:50:01 +01:00
@ifset BUGURL
2001-11-09 21:30:40 +01:00
Otherwise, send bug reports for @command{ld} to
2007-03-07 23:50:01 +01:00
@value{BUGURL}.
@end ifset
1999-05-03 09:29:11 +02:00
The fundamental principle of reporting bugs usefully is this:
@strong{report all the facts}. If you are not sure whether to state a
fact or leave it out, state it!
Often people omit facts because they think they know what causes the
problem and assume that some details do not matter. Thus, you might
2002-06-20 16:44:10 +02:00
assume that the name of a symbol you use in an example does not
matter. Well, probably it does not, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the linker
into doing the right thing despite the bug. Play it safe and give a
specific, complete example. That is the easiest thing for you to do,
2007-07-09 23:25:34 +02:00
and the most helpful.
2002-06-20 16:44:10 +02:00
Keep in mind that the purpose of a bug report is to enable us to fix
the bug if it is new to us. Therefore, always write your bug reports
on the assumption that the bug has not been reported previously.
1999-05-03 09:29:11 +02:00
Sometimes people give a few sketchy facts and ask, ``Does this ring a
2003-02-21 11:27:06 +01:00
bell?'' This cannot help us fix a bug, so it is basically useless. We
respond by asking for enough details to enable us to investigate.
You might as well expedite matters by sending them to begin with.
1999-05-03 09:29:11 +02:00
To enable us to fix the bug, you should include all these things:
@itemize @bullet
@item
2001-11-09 21:30:40 +01:00
The version of @command{ld}. @command{ld} announces it if you start it with
1999-05-03 09:29:11 +02:00
the @samp{--version} argument.
Without this, we will not know whether there is any point in looking for
2001-11-09 21:30:40 +01:00
the bug in the current version of @command{ld}.
1999-05-03 09:29:11 +02:00
@item
2001-11-09 21:30:40 +01:00
Any patches you may have applied to the @command{ld} source, including any
1999-05-03 09:29:11 +02:00
patches made to the @code{BFD} library.
@item
The type of machine you are using, and the operating system name and
version number.
@item
2001-11-09 21:30:40 +01:00
What compiler (and its version) was used to compile @command{ld}---e.g.
1999-05-03 09:29:11 +02:00
``@code{gcc-2.7}''.
@item
The command arguments you gave the linker to link your example and
observe the bug. To guarantee you will not omit something important,
list them all. A copy of the Makefile (or the output from make) is
sufficient.
If we were to try to guess the arguments, we would probably guess wrong
and then we might not encounter the bug.
@item
A complete input file, or set of input files, that will reproduce the
2002-06-20 16:44:10 +02:00
bug. It is generally most helpful to send the actual object files
provided that they are reasonably small. Say no more than 10K. For
bigger files you can either make them available by FTP or HTTP or else
state that you are willing to send the object file(s) to whomever
requests them. (Note - your email will be going to a mailing list, so
we do not want to clog it up with large attachments). But small
attachments are best.
1999-05-03 09:29:11 +02:00
If the source files were assembled using @code{gas} or compiled using
@code{gcc}, then it may be OK to send the source files rather than the
object files. In this case, be sure to say exactly what version of
@code{gas} or @code{gcc} was used to produce the object files. Also say
how @code{gas} or @code{gcc} were configured.
@item
A description of what behavior you observe that you believe is
incorrect. For example, ``It gets a fatal signal.''
2001-11-09 21:30:40 +01:00
Of course, if the bug is that @command{ld} gets a fatal signal, then we
1999-05-03 09:29:11 +02:00
will certainly notice it. But if the bug is incorrect output, we might
not notice unless it is glaringly wrong. You might as well not give us
a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as, your
2006-07-24 15:49:50 +02:00
copy of @command{ld} is out of sync, or you have encountered a bug in the
1999-05-03 09:29:11 +02:00
C library on your system. (This has happened!) Your copy might crash
and ours would not. If you told us to expect a crash, then when ours
fails to crash, we would know that the bug was not happening for us. If
you had not told us to expect a crash, then we would not be able to draw
any conclusion from our observations.
@item
2001-11-09 21:30:40 +01:00
If you wish to suggest changes to the @command{ld} source, send us context
1999-05-03 09:29:11 +02:00
diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or
@samp{-p} option. Always send diffs from the old file to the new file.
2001-11-09 21:30:40 +01:00
If you even discuss something in the @command{ld} source, refer to it by
1999-05-03 09:29:11 +02:00
context, not by line number.
The line numbers in our development sources will not match those in your
sources. Your line numbers would convey no useful information to us.
@end itemize
Here are some things that are not necessary:
@itemize @bullet
@item
A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
We recommend that you save your time for something else.
Of course, if you can find a simpler example to report @emph{instead}
of the original one, that is a convenience for us. Errors in the
output will be easier to spot, running under the debugger will take
less time, and so on.
However, simplification is not vital; if you do not want to do this,
report the bug anyway and send us the entire test case you used.
@item
A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit
the necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and decide
to fix the problem another way, or we might not understand it at all.
2001-11-09 21:30:40 +01:00
Sometimes with a program as complicated as @command{ld} it is very hard to
1999-05-03 09:29:11 +02:00
construct an example that will make the program follow a certain path
through the code. If you do not send us the example, we will not be
able to construct one, so we will not be able to verify that the bug is
fixed.
And if we cannot understand what bug you are trying to fix, or why your
patch should be an improvement, we will not install it. A test case will
help us to understand.
@item
A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about such
things without first using the debugger to find the facts.
@end itemize
@node MRI
@appendix MRI Compatible Script Files
@cindex MRI compatibility
2001-11-09 21:30:40 +01:00
To aid users making the transition to @sc{gnu} @command{ld} from the MRI
linker, @command{ld} can use MRI compatible linker scripts as an
1999-05-03 09:29:11 +02:00
alternative to the more general-purpose linker scripting language
described in @ref{Scripts}. MRI compatible linker scripts have a much
simpler command set than the scripting language otherwise used with
2001-11-09 21:30:40 +01:00
@command{ld}. @sc{gnu} @command{ld} supports the most commonly used MRI
1999-05-03 09:29:11 +02:00
linker commands; these commands are described here.
In general, MRI scripts aren't of much use with the @code{a.out} object
file format, since it only has three sections and MRI scripts lack some
features to make use of them.
You can specify a file containing an MRI-compatible script using the
@samp{-c} command-line option.
Each command in an MRI-compatible script occupies its own line; each
command line starts with the keyword that identifies the command (though
blank lines are also allowed for punctuation). If a line of an
2001-11-09 21:30:40 +01:00
MRI-compatible script begins with an unrecognized keyword, @command{ld}
1999-05-03 09:29:11 +02:00
issues a warning message, but continues processing the script.
Lines beginning with @samp{*} are comments.
You can write these commands using all upper-case letters, or all
lower case; for example, @samp{chip} is the same as @samp{CHIP}.
The following list shows only the upper-case form of each command.
@table @code
@cindex @code{ABSOLUTE} (MRI)
@item ABSOLUTE @var{secname}
@itemx ABSOLUTE @var{secname}, @var{secname}, @dots{} @var{secname}
2001-11-09 21:30:40 +01:00
Normally, @command{ld} includes in the output file all sections from all
1999-05-03 09:29:11 +02:00
the input files. However, in an MRI-compatible script, you can use the
@code{ABSOLUTE} command to restrict the sections that will be present in
your output program. If the @code{ABSOLUTE} command is used at all in a
script, then only the sections named explicitly in @code{ABSOLUTE}
commands will appear in the linker output. You can still use other
input sections (whatever you select on the command line, or using
@code{LOAD}) to resolve addresses in the output file.
@cindex @code{ALIAS} (MRI)
@item ALIAS @var{out-secname}, @var{in-secname}
Use this command to place the data from input section @var{in-secname}
in a section called @var{out-secname} in the linker output file.
@var{in-secname} may be an integer.
@cindex @code{ALIGN} (MRI)
@item ALIGN @var{secname} = @var{expression}
Align the section called @var{secname} to @var{expression}. The
@var{expression} should be a power of two.
@cindex @code{BASE} (MRI)
@item BASE @var{expression}
Use the value of @var{expression} as the lowest address (other than
absolute addresses) in the output file.
@cindex @code{CHIP} (MRI)
@item CHIP @var{expression}
@itemx CHIP @var{expression}, @var{expression}
This command does nothing; it is accepted only for compatibility.
@cindex @code{END} (MRI)
@item END
This command does nothing whatever; it's only accepted for compatibility.
@cindex @code{FORMAT} (MRI)
@item FORMAT @var{output-format}
Similar to the @code{OUTPUT_FORMAT} command in the more general linker
2001-03-17 22:24:26 +01:00
language, but restricted to one of these output formats:
1999-05-03 09:29:11 +02:00
@enumerate
2001-03-17 22:24:26 +01:00
@item
1999-05-03 09:29:11 +02:00
S-records, if @var{output-format} is @samp{S}
@item
IEEE, if @var{output-format} is @samp{IEEE}
@item
COFF (the @samp{coff-m68k} variant in BFD), if @var{output-format} is
@samp{COFF}
@end enumerate
@cindex @code{LIST} (MRI)
@item LIST @var{anything}@dots{}
Print (to the standard output file) a link map, as produced by the
2001-11-09 21:30:40 +01:00
@command{ld} command-line option @samp{-M}.
1999-05-03 09:29:11 +02:00
The keyword @code{LIST} may be followed by anything on the
same line, with no change in its effect.
@cindex @code{LOAD} (MRI)
@item LOAD @var{filename}
@itemx LOAD @var{filename}, @var{filename}, @dots{} @var{filename}
Include one or more object file @var{filename} in the link; this has the
2001-11-09 21:30:40 +01:00
same effect as specifying @var{filename} directly on the @command{ld}
1999-05-03 09:29:11 +02:00
command line.
@cindex @code{NAME} (MRI)
@item NAME @var{output-name}
2001-11-09 21:30:40 +01:00
@var{output-name} is the name for the program produced by @command{ld}; the
1999-05-03 09:29:11 +02:00
MRI-compatible command @code{NAME} is equivalent to the command-line
option @samp{-o} or the general script language command @code{OUTPUT}.
@cindex @code{ORDER} (MRI)
@item ORDER @var{secname}, @var{secname}, @dots{} @var{secname}
@itemx ORDER @var{secname} @var{secname} @var{secname}
2001-11-09 21:30:40 +01:00
Normally, @command{ld} orders the sections in its output file in the
1999-05-03 09:29:11 +02:00
order in which they first appear in the input files. In an MRI-compatible
script, you can override this ordering with the @code{ORDER} command. The
sections you list with @code{ORDER} will appear first in your output
file, in the order specified.
@cindex @code{PUBLIC} (MRI)
@item PUBLIC @var{name}=@var{expression}
@itemx PUBLIC @var{name},@var{expression}
@itemx PUBLIC @var{name} @var{expression}
Supply a value (@var{expression}) for external symbol
@var{name} used in the linker input files.
@cindex @code{SECT} (MRI)
@item SECT @var{secname}, @var{expression}
@itemx SECT @var{secname}=@var{expression}
@itemx SECT @var{secname} @var{expression}
You can use any of these three forms of the @code{SECT} command to
specify the start address (@var{expression}) for section @var{secname}.
If you have more than one @code{SECT} statement for the same
@var{secname}, only the @emph{first} sets the start address.
@end table
2008-11-19 17:22:48 +01:00
@node GNU Free Documentation License
@appendix GNU Free Documentation License
2003-02-21 11:27:06 +01:00
@include fdl.texi
2000-11-06 20:24:16 +01:00
2006-05-11 18:11:29 +02:00
@node LD Index
@unnumbered LD Index
1999-05-03 09:29:11 +02:00
@printindex cp
@tex
% I think something like @colophon should be in texinfo. In the
% meantime:
\long\def\colophon{\hbox to0pt{}\vfill
\centerline{The body of this manual is set in}
\centerline{\fontname\tenrm,}
\centerline{with headings in {\bf\fontname\tenbf}}
\centerline{and examples in {\tt\fontname\tentt}.}
\centerline{{\it\fontname\tenit\/} and}
\centerline{{\sl\fontname\tensl\/}}
\centerline{are used for emphasis.}\vfill}
\page\colophon
% Blame: doc@cygnus.com, 28mar91.
@end tex
@bye