binutils-gdb/gdb/infrun.c

1854 lines
54 KiB
C
Raw Normal View History

/* Target-struct-independent code to start (run) and stop an inferior process.
Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993
Free Software Foundation, Inc.
1991-03-28 17:26:26 +01:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
1991-03-28 17:26:26 +01:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1991-03-28 17:26:26 +01:00
This program is distributed in the hope that it will be useful,
1991-03-28 17:26:26 +01:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
1991-03-28 17:26:26 +01:00
/* Notes on the algorithm used in wait_for_inferior to determine if we
just did a subroutine call when stepping. We have the following
information at that point:
Current and previous (just before this step) pc.
Current and previous sp.
Current and previous start of current function.
If the starts of the functions don't match, then
1991-03-28 17:26:26 +01:00
a) We did a subroutine call.
In this case, the pc will be at the beginning of a function.
b) We did a subroutine return.
Otherwise.
c) We did a longjmp.
If we did a longjump, we were doing "nexti", since a next would
have attempted to skip over the assembly language routine in which
the longjmp is coded and would have simply been the equivalent of a
continue. I consider this ok behaivior. We'd like one of two
things to happen if we are doing a nexti through the longjmp()
routine: 1) It behaves as a stepi, or 2) It acts like a continue as
above. Given that this is a special case, and that anybody who
thinks that the concept of sub calls is meaningful in the context
of a longjmp, I'll take either one. Let's see what happens.
Acts like a subroutine return. I can handle that with no problem
at all.
-->So: If the current and previous beginnings of the current
function don't match, *and* the pc is at the start of a function,
we've done a subroutine call. If the pc is not at the start of a
function, we *didn't* do a subroutine call.
-->If the beginnings of the current and previous function do match,
either:
a) We just did a recursive call.
In this case, we would be at the very beginning of a
function and 1) it will have a prologue (don't jump to
before prologue, or 2) (we assume here that it doesn't have
a prologue) there will have been a change in the stack
pointer over the last instruction. (Ie. it's got to put
the saved pc somewhere. The stack is the usual place. In
a recursive call a register is only an option if there's a
prologue to do something with it. This is even true on
register window machines; the prologue sets up the new
window. It might not be true on a register window machine
where the call instruction moved the register window
itself. Hmmm. One would hope that the stack pointer would
also change. If it doesn't, somebody send me a note, and
I'll work out a more general theory.
bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
so) on all machines I'm aware of:
m68k: Call changes stack pointer. Regular jumps don't.
sparc: Recursive calls must have frames and therefor,
prologues.
vax: All calls have frames and hence change the
stack pointer.
b) We did a return from a recursive call. I don't see that we
have either the ability or the need to distinguish this
from an ordinary jump. The stack frame will be printed
when and if the frame pointer changes; if we are in a
function without a frame pointer, it's the users own
lookout.
c) We did a jump within a function. We assume that this is
true if we didn't do a recursive call.
d) We are in no-man's land ("I see no symbols here"). We
don't worry about this; it will make calls look like simple
jumps (and the stack frames will be printed when the frame
pointer moves), which is a reasonably non-violent response.
*/
#include "defs.h"
#include <string.h>
1992-10-15 02:57:45 +01:00
#include <ctype.h>
1991-03-28 17:26:26 +01:00
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "wait.h"
#include "gdbcore.h"
#include "gdbcmd.h"
1991-03-28 17:26:26 +01:00
#include "target.h"
#include <signal.h>
/* unistd.h is needed to #define X_OK */
#ifdef USG
#include <unistd.h>
#else
#include <sys/file.h>
#endif
/* Prototypes for local functions */
1991-03-28 17:26:26 +01:00
static void
signals_info PARAMS ((char *, int));
static void
handle_command PARAMS ((char *, int));
static void
sig_print_info PARAMS ((int));
static void
sig_print_header PARAMS ((void));
static void
resume_cleanups PARAMS ((int));
static int
hook_stop_stub PARAMS ((char *));
/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
program. It needs to examine the jmp_buf argument and extract the PC
from it. The return value is non-zero on success, zero otherwise. */
#ifndef GET_LONGJMP_TARGET
#define GET_LONGJMP_TARGET(PC_ADDR) 0
#endif
/* Some machines have trampoline code that sits between function callers
and the actual functions themselves. If this machine doesn't have
such things, disable their processing. */
#ifndef SKIP_TRAMPOLINE_CODE
#define SKIP_TRAMPOLINE_CODE(pc) 0
#endif
/* For SVR4 shared libraries, each call goes through a small piece of
trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
to nonzero if we are current stopped in one of these. */
#ifndef IN_SOLIB_TRAMPOLINE
#define IN_SOLIB_TRAMPOLINE(pc,name) 0
#endif
* hppa-pinsn.c (print_insn): Improve handling of be and ble branch targets to compute target address using const from previous instruction if necessary. * Add `Q' operator to print out bit position field various instructions. * hppah-nat.c: #include sys/param.h, and sys/user.h. General cleanups, use new code from Utah. * (store_inferior_registers): Update to new code from Utah. * (initialize_kernel_u_addr): Re-enable decl of struct user u. * (fetch_register): Clear out priv level when reading PCs. * hppah-tdep.c: Get rid of gobs of KERNELDEBUG stuff. * Remove decl of errno, #include wait.h and target.h. * (frame_saved_pc): Check `flags' pseudo-register to see if we were inside of a kernel call. If so, then PC is in a different register. Also, mask out bottom two bits of all PCs so as not to confuse higher level code. * (push_dummy_frame): Create from #define in tm-hppa.h. * (find_dummy_frame_regs): Update from Utah. * (hp_pop_frame): Create from #define in tm-hppa.h. * (hp_restore_pc_queue): New, from Utah. * (hp_push_arguments): Big fixes from Utah. * (pa_do_registers_info, pa_print_registers): Only print out fp regs upon request. * (skip_trampoline_code): New routine to deal with stubs that live in nowhereland between callers and callees. * i860-tdep.c: Remove decl of attach_flag. * infrun.c (wait_for_inferior): Add new macro INSTRUCTION_NULLIFIED, which can tell if the instruction pointed at by PC will be nullified. If so, then step the target once more so as to avoid confusing the user. * (just before step_over_function:): Use stop_func_start, not stop_pc when checking for the existance of line number info. stop_func_start will reflect the proper address of the target routine, not of the stub that we may be traversing to get there. * tm-hppa.h: define SKIP_TRAMPOLINE_CODE and IN_SOLIB_TRAMPOLINE to deal with the stubs that PA compilers sometimes stick between callers and callees. Also, define FLAGS_REGNUM for access to the `flags' pseudo-reg. * (REGISTER_CONVERT_TO_VIRTUAL, REGISTER_CONVERT_TO_RAW): Use memcpy, not bcopy. * (CANNOT_STORE_REGISTER): New from Utah. Says that we can't write gr0, PC regs, and PSW! * (FRAME_FIND_SAVED_REGS): Bug fixes from Utah. * (PUSH_DUMMY_FRAME, POP_FRAME): Make into real routines in hppah-nat.c. * (CALL_DUMMY, FIX_CALL_DUMMY): Fixes from Utah. * Define struct unwind_table_entry. * valops.c (call_function_by_hand): Add another arg to FIX_CALL_DUMMY (under #ifdef GDB_TARGET_IS_HPPA). Why is this necessary?
1992-12-22 04:18:46 +01:00
/* On some systems, the PC may be left pointing at an instruction that won't
actually be executed. This is usually indicated by a bit in the PSW. If
we find ourselves in such a state, then we step the target beyond the
nullified instruction before returning control to the user so as to avoid
confusion. */
#ifndef INSTRUCTION_NULLIFIED
#define INSTRUCTION_NULLIFIED 0
#endif
1991-03-28 17:26:26 +01:00
/* Tables of how to react to signals; the user sets them. */
static unsigned char *signal_stop;
static unsigned char *signal_print;
static unsigned char *signal_program;
#define SET_SIGS(nsigs,sigs,flags) \
do { \
int signum = (nsigs); \
while (signum-- > 0) \
if ((sigs)[signum]) \
(flags)[signum] = 1; \
} while (0)
#define UNSET_SIGS(nsigs,sigs,flags) \
do { \
int signum = (nsigs); \
while (signum-- > 0) \
if ((sigs)[signum]) \
(flags)[signum] = 0; \
} while (0)
1991-03-28 17:26:26 +01:00
/* Command list pointer for the "stop" placeholder. */
static struct cmd_list_element *stop_command;
1991-03-28 17:26:26 +01:00
/* Nonzero if breakpoints are now inserted in the inferior. */
static int breakpoints_inserted;
1991-03-28 17:26:26 +01:00
/* Function inferior was in as of last step command. */
static struct symbol *step_start_function;
/* Nonzero if we are expecting a trace trap and should proceed from it. */
static int trap_expected;
/* Nonzero if the next time we try to continue the inferior, it will
step one instruction and generate a spurious trace trap.
This is used to compensate for a bug in HP-UX. */
static int trap_expected_after_continue;
/* Nonzero means expecting a trace trap
and should stop the inferior and return silently when it happens. */
int stop_after_trap;
/* Nonzero means expecting a trap and caller will handle it themselves.
It is used after attach, due to attaching to a process;
when running in the shell before the child program has been exec'd;
and when running some kinds of remote stuff (FIXME?). */
int stop_soon_quietly;
/* Nonzero if proceed is being used for a "finish" command or a similar
situation when stop_registers should be saved. */
int proceed_to_finish;
/* Save register contents here when about to pop a stack dummy frame,
if-and-only-if proceed_to_finish is set.
Thus this contains the return value from the called function (assuming
values are returned in a register). */
char stop_registers[REGISTER_BYTES];
/* Nonzero if program stopped due to error trying to insert breakpoints. */
static int breakpoints_failed;
/* Nonzero after stop if current stack frame should be printed. */
static int stop_print_frame;
#ifdef NO_SINGLE_STEP
extern int one_stepped; /* From machine dependent code */
extern void single_step (); /* Same. */
#endif /* NO_SINGLE_STEP */
/* Things to clean up if we QUIT out of resume (). */
/* ARGSUSED */
static void
resume_cleanups (arg)
int arg;
{
normal_stop ();
}
/* Resume the inferior, but allow a QUIT. This is useful if the user
wants to interrupt some lengthy single-stepping operation
(for child processes, the SIGINT goes to the inferior, and so
we get a SIGINT random_signal, but for remote debugging and perhaps
other targets, that's not true).
STEP nonzero if we should step (zero to continue instead).
SIG is the signal to give the inferior (zero for none). */
void
resume (step, sig)
int step;
int sig;
{
struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
QUIT;
#ifdef NO_SINGLE_STEP
if (step) {
1992-02-29 07:03:43 +01:00
single_step(sig); /* Do it the hard way, w/temp breakpoints */
step = 0; /* ...and don't ask hardware to do it. */
}
#endif
Make writing to files work properly. (Fixes to BFD are also needed.) * core.c (core_open): Open file ourselves, read or r/w, depending on write_files. Use bfd_fdopenr. * gdbcore.h (write_files): New variable. * exec.c (write_files): Define variable, add set&show for it. (exec_file_command): Use write_files to open for read or r/write. Make shared library reading happen automatically. These changes are mostly from Peter Schauer <pes@regent.e-technik.tu-muenchen.de>. * inferior.h (stop_soon_quietly): Add to exported variables. * infrun.c (child_create_inferior): call solib hook, if defined. (child_attach): call solib hook, if defined. * solib.c: Include inferior.h. Add from_tty to so_list as kludge. (find_solib): Use lookup_misc_func rather than hand-rolled. (symbol_add_stub): New stub for catch_errors. (solib_add): Avoid output if !from_tty. Catch errors rather than just calling symbol_file_add and bombing. (solib_create_inferior_hook): Interface with the target process to let it read and alloc shared libs, then figure out what it did. * core.c (validate_files): Fix typo, soften warning. (Fix from Hiroto Kagotani <kagotani@cs.titech.ac.jp>.) * utils.c (fputs_demangled): Avoid duplicate printing if demangling is off. (Fix from J.T. Conklin <jtc@cayenne.com>.) * infrun.c (proceed): Cast -1 to (CORE_ADDR) before comparing. (Fix from pierre@la.tce.com (Pierre Willard).) * main.c (catch_errors): Change argument to a char * from an int, since a char * can point to a struct full of glop, but an int is not guaranteed to be able to hold a pointer. * breakpoint.c (breakpoint_cond_eval, bpstat_stop_status, breakpoint_re_set_one, breakpoint_re_set): Adapt. * core.c (core_open, solib_add_stub): Adapt. * remote-vx.c (symbol_stub, add_symbol_stub, callers): Adapt.
1991-09-04 09:43:50 +02:00
/* Handle any optimized stores to the inferior NOW... */
#ifdef DO_DEFERRED_STORES
DO_DEFERRED_STORES;
#endif
target_resume (inferior_pid, step, sig);
discard_cleanups (old_cleanups);
}
1991-03-28 17:26:26 +01:00
/* Clear out all variables saying what to do when inferior is continued.
First do this, then set the ones you want, then call `proceed'. */
void
clear_proceed_status ()
{
trap_expected = 0;
step_range_start = 0;
step_range_end = 0;
step_frame_address = 0;
step_over_calls = -1;
stop_after_trap = 0;
stop_soon_quietly = 0;
proceed_to_finish = 0;
breakpoint_proceeded = 1; /* We're about to proceed... */
/* Discard any remaining commands or status from previous stop. */
bpstat_clear (&stop_bpstat);
}
/* Basic routine for continuing the program in various fashions.
ADDR is the address to resume at, or -1 for resume where stopped.
SIGGNAL is the signal to give it, or 0 for none,
or -1 for act according to how it stopped.
STEP is nonzero if should trap after one instruction.
-1 means return after that and print nothing.
You should probably set various step_... variables
before calling here, if you are stepping.
You should call clear_proceed_status before calling proceed. */
void
proceed (addr, siggnal, step)
CORE_ADDR addr;
int siggnal;
int step;
{
int oneproc = 0;
if (step > 0)
step_start_function = find_pc_function (read_pc ());
if (step < 0)
stop_after_trap = 1;
Make writing to files work properly. (Fixes to BFD are also needed.) * core.c (core_open): Open file ourselves, read or r/w, depending on write_files. Use bfd_fdopenr. * gdbcore.h (write_files): New variable. * exec.c (write_files): Define variable, add set&show for it. (exec_file_command): Use write_files to open for read or r/write. Make shared library reading happen automatically. These changes are mostly from Peter Schauer <pes@regent.e-technik.tu-muenchen.de>. * inferior.h (stop_soon_quietly): Add to exported variables. * infrun.c (child_create_inferior): call solib hook, if defined. (child_attach): call solib hook, if defined. * solib.c: Include inferior.h. Add from_tty to so_list as kludge. (find_solib): Use lookup_misc_func rather than hand-rolled. (symbol_add_stub): New stub for catch_errors. (solib_add): Avoid output if !from_tty. Catch errors rather than just calling symbol_file_add and bombing. (solib_create_inferior_hook): Interface with the target process to let it read and alloc shared libs, then figure out what it did. * core.c (validate_files): Fix typo, soften warning. (Fix from Hiroto Kagotani <kagotani@cs.titech.ac.jp>.) * utils.c (fputs_demangled): Avoid duplicate printing if demangling is off. (Fix from J.T. Conklin <jtc@cayenne.com>.) * infrun.c (proceed): Cast -1 to (CORE_ADDR) before comparing. (Fix from pierre@la.tce.com (Pierre Willard).) * main.c (catch_errors): Change argument to a char * from an int, since a char * can point to a struct full of glop, but an int is not guaranteed to be able to hold a pointer. * breakpoint.c (breakpoint_cond_eval, bpstat_stop_status, breakpoint_re_set_one, breakpoint_re_set): Adapt. * core.c (core_open, solib_add_stub): Adapt. * remote-vx.c (symbol_stub, add_symbol_stub, callers): Adapt.
1991-09-04 09:43:50 +02:00
if (addr == (CORE_ADDR)-1)
1991-03-28 17:26:26 +01:00
{
/* If there is a breakpoint at the address we will resume at,
step one instruction before inserting breakpoints
so that we do not stop right away. */
if (breakpoint_here_p (read_pc ()))
1991-03-28 17:26:26 +01:00
oneproc = 1;
}
else
write_pc (addr);
1991-03-28 17:26:26 +01:00
if (trap_expected_after_continue)
{
/* If (step == 0), a trap will be automatically generated after
the first instruction is executed. Force step one
instruction to clear this condition. This should not occur
if step is nonzero, but it is harmless in that case. */
oneproc = 1;
trap_expected_after_continue = 0;
}
if (oneproc)
/* We will get a trace trap after one instruction.
Continue it automatically and insert breakpoints then. */
trap_expected = 1;
else
{
int temp = insert_breakpoints ();
if (temp)
{
print_sys_errmsg ("ptrace", temp);
error ("Cannot insert breakpoints.\n\
The same program may be running in another process.");
}
breakpoints_inserted = 1;
}
/* Install inferior's terminal modes. */
target_terminal_inferior ();
if (siggnal >= 0)
stop_signal = siggnal;
/* If this signal should not be seen by program,
give it zero. Used for debugging signals. */
else if (stop_signal < NSIG && !signal_program[stop_signal])
stop_signal= 0;
/* Resume inferior. */
resume (oneproc || step || bpstat_should_step (), stop_signal);
1991-03-28 17:26:26 +01:00
/* Wait for it to stop (if not standalone)
and in any case decode why it stopped, and act accordingly. */
wait_for_inferior ();
normal_stop ();
}
/* Record the pc and sp of the program the last time it stopped.
These are just used internally by wait_for_inferior, but need
to be preserved over calls to it and cleared when the inferior
is started. */
static CORE_ADDR prev_pc;
static CORE_ADDR prev_sp;
static CORE_ADDR prev_func_start;
static char *prev_func_name;
1991-03-28 17:26:26 +01:00
/* Start remote-debugging of a machine over a serial link. */
void
start_remote ()
{
init_wait_for_inferior ();
clear_proceed_status ();
stop_soon_quietly = 1;
trap_expected = 0;
wait_for_inferior ();
normal_stop ();
1991-03-28 17:26:26 +01:00
}
/* Initialize static vars when a new inferior begins. */
void
init_wait_for_inferior ()
{
/* These are meaningless until the first time through wait_for_inferior. */
prev_pc = 0;
prev_sp = 0;
prev_func_start = 0;
prev_func_name = NULL;
trap_expected_after_continue = 0;
breakpoints_inserted = 0;
mark_breakpoints_out ();
stop_signal = 0; /* Don't confuse first call to proceed(). */
}
static void
delete_breakpoint_current_contents (arg)
PTR arg;
{
struct breakpoint **breakpointp = (struct breakpoint **)arg;
if (*breakpointp != NULL)
delete_breakpoint (*breakpointp);
}
1991-03-28 17:26:26 +01:00
/* Wait for control to return from inferior to debugger.
If inferior gets a signal, we may decide to start it up again
instead of returning. That is why there is a loop in this function.
When this function actually returns it means the inferior
should be left stopped and GDB should read more commands. */
void
wait_for_inferior ()
{
struct cleanup *old_cleanups;
1991-03-28 17:26:26 +01:00
WAITTYPE w;
int another_trap;
int random_signal;
CORE_ADDR stop_sp = 0;
1991-03-28 17:26:26 +01:00
CORE_ADDR stop_func_start;
char *stop_func_name;
CORE_ADDR prologue_pc = 0, tmp;
1991-03-28 17:26:26 +01:00
struct symtab_and_line sal;
int remove_breakpoints_on_following_step = 0;
int current_line;
int handling_longjmp = 0; /* FIXME */
struct breakpoint *step_resume_breakpoint = NULL;
int pid;
1991-03-28 17:26:26 +01:00
old_cleanups = make_cleanup (delete_breakpoint_current_contents,
&step_resume_breakpoint);
sal = find_pc_line(prev_pc, 0);
current_line = sal.line;
/* Are we stepping? */
#define CURRENTLY_STEPPING() ((step_resume_breakpoint == NULL \
&& !handling_longjmp \
&& (step_range_end \
|| trap_expected)) \
|| bpstat_should_step ())
1991-03-28 17:26:26 +01:00
while (1)
{
/* Clean up saved state that will become invalid. */
flush_cached_frames ();
registers_changed ();
pid = target_wait (&w);
1991-03-28 17:26:26 +01:00
#ifdef SIGTRAP_STOP_AFTER_LOAD
/* Somebody called load(2), and it gave us a "trap signal after load".
Ignore it gracefully. */
SIGTRAP_STOP_AFTER_LOAD (w);
#endif
1991-03-28 17:26:26 +01:00
/* See if the process still exists; clean up if it doesn't. */
if (WIFEXITED (w))
{
target_terminal_ours (); /* Must do this before mourn anyway */
if (WEXITSTATUS (w))
printf_filtered ("\nProgram exited with code 0%o.\n",
1991-03-28 17:26:26 +01:00
(unsigned int)WEXITSTATUS (w));
else
if (!batch_mode())
printf_filtered ("\nProgram exited normally.\n");
1991-03-28 17:26:26 +01:00
fflush (stdout);
target_mourn_inferior ();
#ifdef NO_SINGLE_STEP
one_stepped = 0;
#endif
stop_print_frame = 0;
break;
}
else if (!WIFSTOPPED (w))
{
char *signame;
1991-03-28 17:26:26 +01:00
stop_print_frame = 0;
stop_signal = WTERMSIG (w);
target_terminal_ours (); /* Must do this before mourn anyway */
target_kill (); /* kill mourns as well */
1991-03-28 17:26:26 +01:00
#ifdef PRINT_RANDOM_SIGNAL
printf_filtered ("\nProgram terminated: ");
1991-03-28 17:26:26 +01:00
PRINT_RANDOM_SIGNAL (stop_signal);
#else
printf_filtered ("\nProgram terminated with signal ");
signame = strsigno (stop_signal);
if (signame == NULL)
printf_filtered ("%d", stop_signal);
else
/* Do we need to print the number in addition to the name? */
printf_filtered ("%s (%d)", signame, stop_signal);
printf_filtered (", %s\n", safe_strsignal (stop_signal));
1991-03-28 17:26:26 +01:00
#endif
printf_filtered ("The program no longer exists.\n");
1991-03-28 17:26:26 +01:00
fflush (stdout);
#ifdef NO_SINGLE_STEP
one_stepped = 0;
#endif
break;
}
if (pid != inferior_pid)
{
int printed = 0;
if (!in_thread_list (pid))
{
fprintf (stderr, "[New %s]\n", target_pid_to_str (pid));
add_thread (pid);
target_resume (pid, 0, 0);
continue;
}
else
{
stop_signal = WSTOPSIG (w);
if (stop_signal >= NSIG || signal_print[stop_signal])
{
char *signame;
printed = 1;
target_terminal_ours_for_output ();
printf_filtered ("\nProgram received signal ");
signame = strsigno (stop_signal);
if (signame == NULL)
printf_filtered ("%d", stop_signal);
else
printf_filtered ("%s (%d)", signame, stop_signal);
printf_filtered (", %s\n", safe_strsignal (stop_signal));
fflush (stdout);
}
if (stop_signal >= NSIG || signal_stop[stop_signal])
{
inferior_pid = pid;
printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
flush_cached_frames ();
registers_changed ();
trap_expected = 0;
if (step_resume_breakpoint)
{
delete_breakpoint (step_resume_breakpoint);
step_resume_breakpoint = NULL;
}
prev_pc = 0;
prev_sp = 0;
prev_func_name = NULL;
step_range_start = 0;
step_range_end = 0;
step_frame_address = 0;
handling_longjmp = 0;
another_trap = 0;
}
else
{
if (printed)
target_terminal_inferior ();
/* Clear the signal if it should not be passed. */
if (signal_program[stop_signal] == 0)
stop_signal = 0;
target_resume (pid, 0, stop_signal);
continue;
}
}
}
1991-03-28 17:26:26 +01:00
#ifdef NO_SINGLE_STEP
if (one_stepped)
single_step (0); /* This actually cleans up the ss */
#endif /* NO_SINGLE_STEP */
* hppa-pinsn.c (print_insn): Improve handling of be and ble branch targets to compute target address using const from previous instruction if necessary. * Add `Q' operator to print out bit position field various instructions. * hppah-nat.c: #include sys/param.h, and sys/user.h. General cleanups, use new code from Utah. * (store_inferior_registers): Update to new code from Utah. * (initialize_kernel_u_addr): Re-enable decl of struct user u. * (fetch_register): Clear out priv level when reading PCs. * hppah-tdep.c: Get rid of gobs of KERNELDEBUG stuff. * Remove decl of errno, #include wait.h and target.h. * (frame_saved_pc): Check `flags' pseudo-register to see if we were inside of a kernel call. If so, then PC is in a different register. Also, mask out bottom two bits of all PCs so as not to confuse higher level code. * (push_dummy_frame): Create from #define in tm-hppa.h. * (find_dummy_frame_regs): Update from Utah. * (hp_pop_frame): Create from #define in tm-hppa.h. * (hp_restore_pc_queue): New, from Utah. * (hp_push_arguments): Big fixes from Utah. * (pa_do_registers_info, pa_print_registers): Only print out fp regs upon request. * (skip_trampoline_code): New routine to deal with stubs that live in nowhereland between callers and callees. * i860-tdep.c: Remove decl of attach_flag. * infrun.c (wait_for_inferior): Add new macro INSTRUCTION_NULLIFIED, which can tell if the instruction pointed at by PC will be nullified. If so, then step the target once more so as to avoid confusing the user. * (just before step_over_function:): Use stop_func_start, not stop_pc when checking for the existance of line number info. stop_func_start will reflect the proper address of the target routine, not of the stub that we may be traversing to get there. * tm-hppa.h: define SKIP_TRAMPOLINE_CODE and IN_SOLIB_TRAMPOLINE to deal with the stubs that PA compilers sometimes stick between callers and callees. Also, define FLAGS_REGNUM for access to the `flags' pseudo-reg. * (REGISTER_CONVERT_TO_VIRTUAL, REGISTER_CONVERT_TO_RAW): Use memcpy, not bcopy. * (CANNOT_STORE_REGISTER): New from Utah. Says that we can't write gr0, PC regs, and PSW! * (FRAME_FIND_SAVED_REGS): Bug fixes from Utah. * (PUSH_DUMMY_FRAME, POP_FRAME): Make into real routines in hppah-nat.c. * (CALL_DUMMY, FIX_CALL_DUMMY): Fixes from Utah. * Define struct unwind_table_entry. * valops.c (call_function_by_hand): Add another arg to FIX_CALL_DUMMY (under #ifdef GDB_TARGET_IS_HPPA). Why is this necessary?
1992-12-22 04:18:46 +01:00
/* If PC is pointing at a nullified instruction, then step beyond it so that
the user won't be confused when GDB appears to be ready to execute it. */
if (INSTRUCTION_NULLIFIED)
{
resume (1, 0);
continue;
}
1991-03-28 17:26:26 +01:00
stop_pc = read_pc ();
set_current_frame ( create_new_frame (read_fp (), stop_pc));
1991-03-28 17:26:26 +01:00
stop_frame_address = FRAME_FP (get_current_frame ());
stop_sp = read_sp ();
1991-03-28 17:26:26 +01:00
stop_func_start = 0;
stop_func_name = 0;
/* Don't care about return value; stop_func_start and stop_func_name
will both be 0 if it doesn't work. */
find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
(CORE_ADDR *)NULL);
1991-03-28 17:26:26 +01:00
stop_func_start += FUNCTION_START_OFFSET;
another_trap = 0;
bpstat_clear (&stop_bpstat);
stop_step = 0;
stop_stack_dummy = 0;
stop_print_frame = 1;
random_signal = 0;
stopped_by_random_signal = 0;
breakpoints_failed = 0;
/* Look at the cause of the stop, and decide what to do.
The alternatives are:
1) break; to really stop and return to the debugger,
2) drop through to start up again
(set another_trap to 1 to single step once)
3) set random_signal to 1, and the decision between 1 and 2
will be made according to the signal handling tables. */
stop_signal = WSTOPSIG (w);
/* First, distinguish signals caused by the debugger from signals
that have to do with the program's own actions.
Note that breakpoint insns may cause SIGTRAP or SIGILL
or SIGEMT, depending on the operating system version.
Here we detect when a SIGILL or SIGEMT is really a breakpoint
and change it to SIGTRAP. */
if (stop_signal == SIGTRAP
|| (breakpoints_inserted &&
(stop_signal == SIGILL
#ifdef SIGEMT
|| stop_signal == SIGEMT
#endif
))
1991-03-28 17:26:26 +01:00
|| stop_soon_quietly)
{
if (stop_signal == SIGTRAP && stop_after_trap)
{
stop_print_frame = 0;
break;
}
if (stop_soon_quietly)
break;
/* Don't even think about breakpoints
if just proceeded over a breakpoint.
However, if we are trying to proceed over a breakpoint
and end up in sigtramp, then step_resume_breakpoint
1991-03-28 17:26:26 +01:00
will be set and we should check whether we've hit the
step breakpoint. */
if (stop_signal == SIGTRAP && trap_expected
&& step_resume_breakpoint == NULL)
1991-03-28 17:26:26 +01:00
bpstat_clear (&stop_bpstat);
else
{
/* See if there is a breakpoint at the current PC. */
stop_bpstat = bpstat_stop_status
(&stop_pc, stop_frame_address,
1991-03-28 17:26:26 +01:00
#if DECR_PC_AFTER_BREAK
/* Notice the case of stepping through a jump
that lands just after a breakpoint.
Don't confuse that with hitting the breakpoint.
What we check for is that 1) stepping is going on
and 2) the pc before the last insn does not match
the address of the breakpoint before the current pc. */
(prev_pc != stop_pc - DECR_PC_AFTER_BREAK
&& CURRENTLY_STEPPING ())
#else /* DECR_PC_AFTER_BREAK zero */
0
#endif /* DECR_PC_AFTER_BREAK zero */
);
/* Following in case break condition called a
function. */
stop_print_frame = 1;
1991-03-28 17:26:26 +01:00
}
1991-03-28 17:26:26 +01:00
if (stop_signal == SIGTRAP)
random_signal
= !(bpstat_explains_signal (stop_bpstat)
|| trap_expected
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
1991-03-28 17:26:26 +01:00
|| PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
|| (step_range_end && step_resume_breakpoint == NULL));
1991-03-28 17:26:26 +01:00
else
{
random_signal
= !(bpstat_explains_signal (stop_bpstat)
/* End of a stack dummy. Some systems (e.g. Sony
news) give another signal besides SIGTRAP,
so check here as well as above. */
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
|| PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
1991-03-28 17:26:26 +01:00
);
if (!random_signal)
stop_signal = SIGTRAP;
}
}
else
random_signal = 1;
1991-03-28 17:26:26 +01:00
/* For the program's own signals, act according to
the signal handling tables. */
1991-03-28 17:26:26 +01:00
if (random_signal)
{
/* Signal not for debugging purposes. */
int printed = 0;
stopped_by_random_signal = 1;
if (stop_signal >= NSIG
|| signal_print[stop_signal])
{
char *signame;
1991-03-28 17:26:26 +01:00
printed = 1;
target_terminal_ours_for_output ();
#ifdef PRINT_RANDOM_SIGNAL
PRINT_RANDOM_SIGNAL (stop_signal);
#else
printf_filtered ("\nProgram received signal ");
signame = strsigno (stop_signal);
if (signame == NULL)
printf_filtered ("%d", stop_signal);
else
/* Do we need to print the number as well as the name? */
printf_filtered ("%s (%d)", signame, stop_signal);
printf_filtered (", %s\n", safe_strsignal (stop_signal));
1991-03-28 17:26:26 +01:00
#endif /* PRINT_RANDOM_SIGNAL */
fflush (stdout);
}
if (stop_signal >= NSIG
|| signal_stop[stop_signal])
break;
/* If not going to stop, give terminal back
if we took it away. */
else if (printed)
target_terminal_inferior ();
/* Clear the signal if it should not be passed. */
if (signal_program[stop_signal] == 0)
stop_signal = 0;
/* I'm not sure whether this needs to be check_sigtramp2 or
whether it could/should be keep_going. */
goto check_sigtramp2;
1991-03-28 17:26:26 +01:00
}
1991-03-28 17:26:26 +01:00
/* Handle cases caused by hitting a breakpoint. */
{
CORE_ADDR jmp_buf_pc;
struct bpstat_what what;
what = bpstat_what (stop_bpstat);
1991-03-28 17:26:26 +01:00
if (what.call_dummy)
{
stop_stack_dummy = 1;
#ifdef HP_OS_BUG
trap_expected_after_continue = 1;
#endif
}
switch (what.main_action)
{
case BPSTAT_WHAT_SET_LONGJMP_RESUME:
/* If we hit the breakpoint at longjmp, disable it for the
duration of this command. Then, install a temporary
breakpoint at the target of the jmp_buf. */
disable_longjmp_breakpoint();
remove_breakpoints ();
breakpoints_inserted = 0;
if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
/* Need to blow away step-resume breakpoint, as it
interferes with us */
if (step_resume_breakpoint != NULL)
{
delete_breakpoint (step_resume_breakpoint);
step_resume_breakpoint = NULL;
what.step_resume = 0;
}
#if 0
/* FIXME - Need to implement nested temporary breakpoints */
if (step_over_calls > 0)
set_longjmp_resume_breakpoint(jmp_buf_pc,
get_current_frame());
else
#endif /* 0 */
set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
handling_longjmp = 1; /* FIXME */
goto keep_going;
case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
remove_breakpoints ();
breakpoints_inserted = 0;
#if 0
/* FIXME - Need to implement nested temporary breakpoints */
if (step_over_calls
&& (stop_frame_address
INNER_THAN step_frame_address))
{
another_trap = 1;
goto keep_going;
}
#endif /* 0 */
disable_longjmp_breakpoint();
handling_longjmp = 0; /* FIXME */
if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
break;
/* else fallthrough */
case BPSTAT_WHAT_SINGLE:
if (breakpoints_inserted)
remove_breakpoints ();
breakpoints_inserted = 0;
another_trap = 1;
/* Still need to check other stuff, at least the case
where we are stepping and step out of the right range. */
break;
case BPSTAT_WHAT_STOP_NOISY:
stop_print_frame = 1;
/* We are about to nuke the step_resume_breakpoint via the
cleanup chain, so no need to worry about it here. */
goto stop_stepping;
case BPSTAT_WHAT_STOP_SILENT:
stop_print_frame = 0;
/* We are about to nuke the step_resume_breakpoint via the
cleanup chain, so no need to worry about it here. */
goto stop_stepping;
case BPSTAT_WHAT_KEEP_CHECKING:
break;
}
if (what.step_resume)
{
delete_breakpoint (step_resume_breakpoint);
step_resume_breakpoint = NULL;
/* If were waiting for a trap, hitting the step_resume_break
doesn't count as getting it. */
if (trap_expected)
another_trap = 1;
}
}
/* We come here if we hit a breakpoint but should not
stop for it. Possibly we also were stepping
and should stop for that. So fall through and
test for stepping. But, if not stepping,
do not stop. */
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
/* This is the old way of detecting the end of the stack dummy.
An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
handled above. As soon as we can test it on all of them, all
architectures should define it. */
1991-03-28 17:26:26 +01:00
/* If this is the breakpoint at the end of a stack dummy,
just stop silently, unless the user was doing an si/ni, in which
case she'd better know what she's doing. */
if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
&& !step_range_end)
{
stop_print_frame = 0;
stop_stack_dummy = 1;
1991-03-28 17:26:26 +01:00
#ifdef HP_OS_BUG
trap_expected_after_continue = 1;
1991-03-28 17:26:26 +01:00
#endif
break;
}
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
if (step_resume_breakpoint)
1991-03-28 17:26:26 +01:00
/* Having a step-resume breakpoint overrides anything
else having to do with stepping commands until
that breakpoint is reached. */
/* I suspect this could/should be keep_going, because if the
check_sigtramp2 check succeeds, then it will put in another
step_resume_breakpoint, and we aren't (yet) prepared to nest
them. */
goto check_sigtramp2;
if (step_range_end == 0)
/* Likewise if we aren't even stepping. */
/* I'm not sure whether this needs to be check_sigtramp2 or
whether it could/should be keep_going. */
goto check_sigtramp2;
1991-03-28 17:26:26 +01:00
/* If stepping through a line, keep going if still within it. */
if (stop_pc >= step_range_start
&& stop_pc < step_range_end
/* The step range might include the start of the
function, so if we are at the start of the
step range and either the stack or frame pointers
just changed, we've stepped outside */
&& !(stop_pc == step_range_start
&& stop_frame_address
&& (stop_sp INNER_THAN prev_sp
|| stop_frame_address != step_frame_address)))
1991-03-28 17:26:26 +01:00
{
/* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
So definately need to check for sigtramp here. */
goto check_sigtramp2;
1991-03-28 17:26:26 +01:00
}
1991-03-28 17:26:26 +01:00
/* We stepped out of the stepping range. See if that was due
to a subroutine call that we should proceed to the end of. */
/* Did we just take a signal? */
if (IN_SIGTRAMP (stop_pc, stop_func_name)
&& !IN_SIGTRAMP (prev_pc, prev_func_name))
1991-03-28 17:26:26 +01:00
{
/* This code is needed at least in the following case:
The user types "next" and then a signal arrives (before
the "next" is done). */
/* We've just taken a signal; go until we are back to
the point where we took it and one more. */
{
struct symtab_and_line sr_sal;
sr_sal.pc = prev_pc;
sr_sal.symtab = NULL;
sr_sal.line = 0;
step_resume_breakpoint =
set_momentary_breakpoint (sr_sal, get_current_frame (),
bp_step_resume);
if (breakpoints_inserted)
insert_breakpoints ();
}
1991-03-28 17:26:26 +01:00
/* If this is stepi or nexti, make sure that the stepping range
gets us past that instruction. */
if (step_range_end == 1)
/* FIXME: Does this run afoul of the code below which, if
we step into the middle of a line, resets the stepping
range? */
step_range_end = (step_range_start = prev_pc) + 1;
remove_breakpoints_on_following_step = 1;
goto keep_going;
}
if (stop_func_start)
{
/* Do this after the IN_SIGTRAMP check; it might give
an error. */
prologue_pc = stop_func_start;
SKIP_PROLOGUE (prologue_pc);
}
/* ==> See comments at top of file on this algorithm. <==*/
if ((stop_pc == stop_func_start
|| IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
&& (stop_func_start != prev_func_start
|| prologue_pc != stop_func_start
|| stop_sp != prev_sp))
{
/* It's a subroutine call. */
if (step_over_calls == 0)
{
/* I presume that step_over_calls is only 0 when we're
supposed to be stepping at the assembly language level
("stepi"). Just stop. */
stop_step = 1;
break;
}
if (step_over_calls > 0)
/* We're doing a "next". */
goto step_over_function;
/* If we are in a function call trampoline (a stub between
the calling routine and the real function), locate the real
function. That's what tells us (a) whether we want to step
into it at all, and (b) what prologue we want to run to
the end of, if we do step into it. */
tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
if (tmp != 0)
stop_func_start = tmp;
/* If we have line number information for the function we
are thinking of stepping into, step into it.
If there are several symtabs at that PC (e.g. with include
files), just want to know whether *any* of them have line
numbers. find_pc_line handles this. */
{
struct symtab_and_line tmp_sal;
tmp_sal = find_pc_line (stop_func_start, 0);
if (tmp_sal.line != 0)
goto step_into_function;
}
step_over_function:
/* A subroutine call has happened. */
{
/* Set a special breakpoint after the return */
struct symtab_and_line sr_sal;
sr_sal.pc =
ADDR_BITS_REMOVE
(SAVED_PC_AFTER_CALL (get_current_frame ()));
sr_sal.symtab = NULL;
sr_sal.line = 0;
step_resume_breakpoint =
set_momentary_breakpoint (sr_sal, get_current_frame (),
bp_step_resume);
if (breakpoints_inserted)
insert_breakpoints ();
}
goto keep_going;
step_into_function:
/* Subroutine call with source code we should not step over.
Do step to the first line of code in it. */
SKIP_PROLOGUE (stop_func_start);
sal = find_pc_line (stop_func_start, 0);
/* Use the step_resume_break to step until
the end of the prologue, even if that involves jumps
(as it seems to on the vax under 4.2). */
/* If the prologue ends in the middle of a source line,
continue to the end of that source line.
Otherwise, just go to end of prologue. */
1991-03-28 17:26:26 +01:00
#ifdef PROLOGUE_FIRSTLINE_OVERLAP
/* no, don't either. It skips any code that's
legitimately on the first line. */
1991-03-28 17:26:26 +01:00
#else
if (sal.end && sal.pc != stop_func_start)
stop_func_start = sal.end;
1991-03-28 17:26:26 +01:00
#endif
if (stop_func_start == stop_pc)
{
/* We are already there: stop now. */
stop_step = 1;
break;
}
else
/* Put the step-breakpoint there and go until there. */
{
struct symtab_and_line sr_sal;
sr_sal.pc = stop_func_start;
sr_sal.symtab = NULL;
sr_sal.line = 0;
/* Do not specify what the fp should be when we stop
since on some machines the prologue
is where the new fp value is established. */
step_resume_breakpoint =
set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
if (breakpoints_inserted)
insert_breakpoints ();
/* And make sure stepping stops right away then. */
step_range_end = step_range_start;
1991-03-28 17:26:26 +01:00
}
goto keep_going;
}
/* We've wandered out of the step range (but haven't done a
subroutine call or return). (Is that true? I think we get
here if we did a return and maybe a longjmp). */
sal = find_pc_line(stop_pc, 0);
if (step_range_end == 1)
{
/* It is stepi or nexti. We always want to stop stepping after
one instruction. */
stop_step = 1;
break;
}
if (sal.line == 0)
{
/* We have no line number information. That means to stop
stepping (does this always happen right after one instruction,
when we do "s" in a function with no line numbers,
or can this happen as a result of a return or longjmp?). */
stop_step = 1;
break;
}
if (stop_pc == sal.pc && current_line != sal.line)
{
/* We are at the start of a different line. So stop. Note that
we don't stop if we step into the middle of a different line.
That is said to make things like for (;;) statements work
better. */
stop_step = 1;
break;
1991-03-28 17:26:26 +01:00
}
/* We aren't done stepping.
Optimize by setting the stepping range to the line.
(We might not be in the original line, but if we entered a
new line in mid-statement, we continue stepping. This makes
things like for(;;) statements work better.) */
step_range_start = sal.pc;
step_range_end = sal.end;
goto keep_going;
check_sigtramp2:
if (trap_expected
&& IN_SIGTRAMP (stop_pc, stop_func_name)
&& !IN_SIGTRAMP (prev_pc, prev_func_name))
1991-03-28 17:26:26 +01:00
{
/* What has happened here is that we have just stepped the inferior
with a signal (because it is a signal which shouldn't make
us stop), thus stepping into sigtramp.
So we need to set a step_resume_break_address breakpoint
and continue until we hit it, and then step. FIXME: This should
be more enduring than a step_resume breakpoint; we should know
that we will later need to keep going rather than re-hitting
the breakpoint here (see testsuite/gdb.t06/signals.exp where
it says "exceedingly difficult"). */
struct symtab_and_line sr_sal;
sr_sal.pc = prev_pc;
sr_sal.symtab = NULL;
sr_sal.line = 0;
step_resume_breakpoint =
set_momentary_breakpoint (sr_sal, get_current_frame (),
bp_step_resume);
1991-03-28 17:26:26 +01:00
if (breakpoints_inserted)
insert_breakpoints ();
1991-03-28 17:26:26 +01:00
remove_breakpoints_on_following_step = 1;
another_trap = 1;
}
keep_going:
/* Come to this label when you need to resume the inferior.
It's really much cleaner to do a goto than a maze of if-else
conditions. */
1991-03-28 17:26:26 +01:00
/* Save the pc before execution, to compare with pc after stop. */
prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
BREAK is defined, the
original pc would not have
been at the start of a
function. */
prev_func_name = stop_func_name;
prev_sp = stop_sp;
/* If we did not do break;, it means we should keep
running the inferior and not return to debugger. */
if (trap_expected && stop_signal != SIGTRAP)
{
/* We took a signal (which we are supposed to pass through to
the inferior, else we'd have done a break above) and we
haven't yet gotten our trap. Simply continue. */
resume (CURRENTLY_STEPPING (), stop_signal);
1991-03-28 17:26:26 +01:00
}
else
{
/* Either the trap was not expected, but we are continuing
anyway (the user asked that this signal be passed to the
child)
-- or --
The signal was SIGTRAP, e.g. it was our signal, but we
decided we should resume from it.
We're going to run this baby now!
Insert breakpoints now, unless we are trying
to one-proceed past a breakpoint. */
/* If we've just finished a special step resume and we don't
want to hit a breakpoint, pull em out. */
if (step_resume_breakpoint == NULL &&
1991-03-28 17:26:26 +01:00
remove_breakpoints_on_following_step)
{
remove_breakpoints_on_following_step = 0;
remove_breakpoints ();
breakpoints_inserted = 0;
}
else if (!breakpoints_inserted &&
(step_resume_breakpoint != NULL || !another_trap))
1991-03-28 17:26:26 +01:00
{
breakpoints_failed = insert_breakpoints ();
if (breakpoints_failed)
break;
breakpoints_inserted = 1;
}
trap_expected = another_trap;
if (stop_signal == SIGTRAP)
stop_signal = 0;
#ifdef SHIFT_INST_REGS
/* I'm not sure when this following segment applies. I do know, now,
that we shouldn't rewrite the regs when we were stopped by a
random signal from the inferior process. */
if (!bpstat_explains_signal (stop_bpstat)
&& (stop_signal != SIGCLD)
1991-03-28 17:26:26 +01:00
&& !stopped_by_random_signal)
SHIFT_INST_REGS();
1991-03-28 17:26:26 +01:00
#endif /* SHIFT_INST_REGS */
resume (CURRENTLY_STEPPING (), stop_signal);
1991-03-28 17:26:26 +01:00
}
}
stop_stepping:
1991-03-28 17:26:26 +01:00
if (target_has_execution)
{
/* Assuming the inferior still exists, set these up for next
time, just like we did above if we didn't break out of the
loop. */
prev_pc = read_pc ();
prev_func_start = stop_func_start;
prev_func_name = stop_func_name;
prev_sp = stop_sp;
}
do_cleanups (old_cleanups);
1991-03-28 17:26:26 +01:00
}
/* Here to return control to GDB when the inferior stops for real.
Print appropriate messages, remove breakpoints, give terminal our modes.
STOP_PRINT_FRAME nonzero means print the executing frame
(pc, function, args, file, line number and line text).
BREAKPOINTS_FAILED nonzero means stop was due to error
attempting to insert breakpoints. */
void
normal_stop ()
{
/* Make sure that the current_frame's pc is correct. This
is a correction for setting up the frame info before doing
DECR_PC_AFTER_BREAK */
if (target_has_execution)
(get_current_frame ())->pc = read_pc ();
if (breakpoints_failed)
{
target_terminal_ours_for_output ();
print_sys_errmsg ("ptrace", breakpoints_failed);
printf_filtered ("Stopped; cannot insert breakpoints.\n\
1991-03-28 17:26:26 +01:00
The same program may be running in another process.\n");
}
if (target_has_execution && breakpoints_inserted)
if (remove_breakpoints ())
{
target_terminal_ours_for_output ();
printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1991-03-28 17:26:26 +01:00
It might be running in another process.\n\
Further execution is probably impossible.\n");
}
breakpoints_inserted = 0;
/* Delete the breakpoint we stopped at, if it wants to be deleted.
Delete any breakpoint that is to be deleted at the next stop. */
breakpoint_auto_delete (stop_bpstat);
/* If an auto-display called a function and that got a signal,
delete that auto-display to avoid an infinite recursion. */
if (stopped_by_random_signal)
disable_current_display ();
if (step_multi && stop_step)
return;
target_terminal_ours ();
/* Look up the hook_stop and run it if it exists. */
if (stop_command->hook)
{
catch_errors (hook_stop_stub, (char *)stop_command->hook,
"Error while running hook_stop:\n", RETURN_MASK_ALL);
}
1991-03-28 17:26:26 +01:00
if (!target_has_stack)
return;
/* Select innermost stack frame except on return from a stack dummy routine,
or if the program has exited. Print it without a level number if
we have changed functions or hit a breakpoint. Print source line
if we have one. */
1991-03-28 17:26:26 +01:00
if (!stop_stack_dummy)
{
select_frame (get_current_frame (), 0);
if (stop_print_frame)
{
int source_only;
source_only = bpstat_print (stop_bpstat);
source_only = source_only ||
( stop_step
1991-03-28 17:26:26 +01:00
&& step_frame_address == stop_frame_address
&& step_start_function == find_pc_function (stop_pc));
print_stack_frame (selected_frame, -1, source_only? -1: 1);
1991-03-28 17:26:26 +01:00
/* Display the auto-display expressions. */
do_displays ();
}
}
/* Save the function value return registers, if we care.
We might be about to restore their previous contents. */
if (proceed_to_finish)
read_register_bytes (0, stop_registers, REGISTER_BYTES);
if (stop_stack_dummy)
{
/* Pop the empty frame that contains the stack dummy.
POP_FRAME ends with a setting of the current frame, so we
can use that next. */
POP_FRAME;
select_frame (get_current_frame (), 0);
}
}
static int
hook_stop_stub (cmd)
char *cmd;
{
execute_user_command ((struct cmd_list_element *)cmd, 0);
* Makefile.in (VERSION): Bump to 4.7.4. * Makefile.in (SFILES_MAINDIR): Add typeprint.c, c-typeprint.c, m2-typeprint.c, c-valprint.c cp-valprint.c m2-valprint.c. * Makefile.in (HFILES): Add valprint.h. * Makefile.in (OBS): Add typeprint.o, c-typeprint.o, m2-typeprint.o, c-valprint.o, cp-valprint.o m2-valprint.o. * typeprint.c, typeprint.h: New files for language independent type printing functions. * c-typeprint.c, m2-typeprint.c: New files for language dependent type printing functions and definitions. * valprint.h: New include file for language independent value printing definitions. * c-valprint.c, cp-valprint.c, m2-valprint.c: New files for language dependent value printing functions. * c-exp.y (production ptype): Add range_type variable and use new create_range_type function. * c-exp.y (tokentab2, tokentab3), c-lang.c (c_op_print_tab), infcmd.c (path_var_name), language.c (unk_op_print_tab), m2-lang.c (m2_op_print_tab): Change from ANSI-obsolescent "const static" to ANSI-conformant "static const". * c-exp.y (c_create_fundamental_type): Remove unused nbytes. * c-exp.y (c_language_defn, cplus_language_defn): Add c_print_type, and c_val_print. * c-lang.h (c_print_type, c_val_print): Add prototypes. * coffread.c (decode_type): Add range_type variable and call to new create_range_type function. * complaints.c (complain): Remove unused val variable. * complaints.c (_initialize_complaints): Make it void. * convex-tdep.c (value_of_trapped_internalvar): Add range_type variable and call new create_range_type function. * defs.h (enum val_prettyprint): Move enum from value.h to here so we can avoid having to include value.h just for prototypes that need the enum (thanks ANSI). * dwarfread.c (struct_type): Local anonymous_size variable is only used if !BITS_BIG_ENDIAN. * dwarfread.c (decode_subscript_data_item): Add rangetype variable and call new create_range_type function. * elfread.c (elf_symfile_read): Remove unused dbx and text_sect variables. * eval.c (evaluate_subexp): Remove unused local variable name and the statement with no side effects that initializes it. * expprint.c (print_subexp): Change local_printstr to LA_PRINT_STRING. * gdbtypes.c (create_range_type): New function that creates a range type using code fragments from object file readers as an example of what has to be initialized. * gdbtypes.c (create_array_type): Removed index_type, low_bound, and high_bound parameters, replaced with a single range_type parameter. Change function body to use passed in range_type rather than handcrafting one. * gdbtypes.h (create_range_type): Add prototype. * gdbtypes.h (create_array_type): Change prototype parameters. * infrun.c (normal_stop): Remove unused local variables tem and c. * infrun.c (hook_stop_stub): Return 0 rather than random value. * language.c (unk_lang_print_type, unk_lang_val_print): Add stub functions that call error if called. * language.c (unknown_language_defn, auto_language_defn, local_language_defn): Add initializers unk_lang_print_type and unk_lang_val_print. * language.h (struct language_defn): Reformat for larger comments, add la_print_type and la_val_print members. Add LA_PRINT_TYPE and LA_VAL_PRINT macros. Change local_printchar to LA_PRINT_CHAR and local_printstr to LA_PRINT_STRING. * m2-lang.c (m2_create_fundamental_type): Remove unused local variable nbytes. * m2-lang.c (m2_language_defn): Add initializers m2_print_type and m2_val_print. * m2-lang.h (m2_print_type, m2_val_print): Add prototypes. * main.c (execute_command): Remove unused local variable cmdlines. * main.c (echo_command), stabsread.c (read_type), printcmd.c (clear_displays), symmisc.c (block_depth), values.c (clear_value_history): Make testing of truth value of assignment result explicit. * mipsread.c (upgrade_type): Update FIXME to include future use of create_range_type. * printcmd.c (ptype_command, ptype_eval, whatis_command, whatis_exp, maintenance_print_type): Move prototypes and functions to new typeprint.c. * printcmd.c (_initialize_printcmd): Move add_com calls for ptype_command and whatis_command to new typeprint.c. * ser-bsd.c (serial_open): Remove unused variable sgttyb. * source.c (find_source_lines): Local variable c only used when LSEEK_NOT_LINEAR is defined. * stabsread.c (read_array_type): Use new create_range_type function. * stabsread.c (read_range_type): Add new index_type variable and call new create_range_type function rather than handcrafting range types. * symmisc.c (type_print_1): Change usages to LA_PRINT_TYPE. * symtab.c (typedef_print usages): Use c_typedef_print, renamed. * symtab.c (type_print_base usages): Use c_type_print_base. * symtab.c (type_print_varspec_prefix usages): Use c_type_print_varspec_prefix. * symtab.c (type_print_method_args usages): Use cp_type_print_method_args. * valprint.c: Completely ripped apart and the fragments used to create c-valprint.c, cp-valprint.c, m2-valprint.c, and valprint.h. Remaining stuff is language independent. * value.h (struct fn_field): Forward declare for prototypes. * value.h (type_print_1): Remove prototype. * value.h (enum val_prettyprint): Moved to defs.h. * value.h (typedef_print): Prototype renamed to c_typedef_print. * value.h (baseclass_offset): Add prototype. **** start-sanitize-chill **** * Makefile.in (SFILES_MAINDIR): Add ch-typeprint.c, ch-valprint.c. * Makefile.in (OBS): Add ch-typeprint.o, ch-valprint.o. * ch-typeprint.c: New file for language dependent type printing. * ch-valprint.c: New file for language dependent value printing. * ch-exp.y (parse_number): Remove prototype and stub function. * ch-exp.y (decode_integer_literal): Removed unused digits and temp variables. * ch-exp.y (convert_float): Completely ifdef out for now. * ch-exp.y (tokentab2, tokentab3, tokentab4, tokentab5), ch-lang.c (chill_op_print_tab): Change from ANSI-obsolescent "const static" to ANSI-conformant "static const". * ch-exp.y (yylex): Add unhandled storage class enumeration literals to switch statement for completeness. * ch-lang.c (chill_create_fundamental_types): Remove unused nbytes variable. Change dummy type to 2 bytes to match int. Handle FT_VOID types gratuituously added to chill DWARF by compiler. Change FT_CHAR case to generate an TYPE_CODE_CHAR type rather than a one byte TYPE_CODE_INT type. * ch-lang.c (chill_language_defn): Add chill_print_type and chill_val_print. * ch-lang.h (chill_print_type, chill_val_print): Add prototypes. **** end-sanitize-chill ****
1992-12-18 21:21:32 +01:00
return (0);
}
1991-03-28 17:26:26 +01:00
int signal_stop_state (signo)
int signo;
{
return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
}
int signal_print_state (signo)
int signo;
{
return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
}
int signal_pass_state (signo)
int signo;
{
return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
}
1991-03-28 17:26:26 +01:00
static void
sig_print_header ()
{
printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
}
static void
sig_print_info (number)
int number;
{
char *name;
if ((name = strsigno (number)) == NULL)
1991-03-28 17:26:26 +01:00
printf_filtered ("%d\t\t", number);
else
printf_filtered ("%s (%d)\t", name, number);
1991-03-28 17:26:26 +01:00
printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
printf_filtered ("%s\n", safe_strsignal (number));
1991-03-28 17:26:26 +01:00
}
/* Specify how various signals in the inferior should be handled. */
static void
handle_command (args, from_tty)
char *args;
int from_tty;
{
char **argv;
int digits, wordlen;
int sigfirst, signum, siglast;
int allsigs;
int nsigs;
unsigned char *sigs;
struct cleanup *old_chain;
if (args == NULL)
{
error_no_arg ("signal to handle");
}
1991-03-28 17:26:26 +01:00
/* Allocate and zero an array of flags for which signals to handle. */
nsigs = signo_max () + 1;
sigs = (unsigned char *) alloca (nsigs);
memset (sigs, 0, nsigs);
1991-03-28 17:26:26 +01:00
/* Break the command line up into args. */
argv = buildargv (args);
if (argv == NULL)
1991-03-28 17:26:26 +01:00
{
nomem (0);
}
old_chain = make_cleanup (freeargv, (char *) argv);
1991-03-28 17:26:26 +01:00
/* Walk through the args, looking for signal numbers, signal names, and
actions. Signal numbers and signal names may be interspersed with
actions, with the actions being performed for all signals cumulatively
specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1991-03-28 17:26:26 +01:00
while (*argv != NULL)
{
wordlen = strlen (*argv);
for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
allsigs = 0;
sigfirst = siglast = -1;
if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
{
/* Apply action to all signals except those used by the
debugger. Silently skip those. */
allsigs = 1;
sigfirst = 0;
siglast = nsigs - 1;
}
else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
{
SET_SIGS (nsigs, sigs, signal_stop);
SET_SIGS (nsigs, sigs, signal_print);
}
else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
{
UNSET_SIGS (nsigs, sigs, signal_program);
}
else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
{
SET_SIGS (nsigs, sigs, signal_print);
}
else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
{
SET_SIGS (nsigs, sigs, signal_program);
}
else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
{
UNSET_SIGS (nsigs, sigs, signal_stop);
}
else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
{
SET_SIGS (nsigs, sigs, signal_program);
}
else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
{
UNSET_SIGS (nsigs, sigs, signal_print);
UNSET_SIGS (nsigs, sigs, signal_stop);
}
else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
{
UNSET_SIGS (nsigs, sigs, signal_program);
}
else if (digits > 0)
1991-03-28 17:26:26 +01:00
{
sigfirst = siglast = atoi (*argv);
if ((*argv)[digits] == '-')
1991-03-28 17:26:26 +01:00
{
siglast = atoi ((*argv) + digits + 1);
1991-03-28 17:26:26 +01:00
}
if (sigfirst > siglast)
1991-03-28 17:26:26 +01:00
{
/* Bet he didn't figure we'd think of this case... */
signum = sigfirst;
sigfirst = siglast;
siglast = signum;
1991-03-28 17:26:26 +01:00
}
if (sigfirst < 0 || sigfirst >= nsigs)
{
error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
}
if (siglast < 0 || siglast >= nsigs)
1991-03-28 17:26:26 +01:00
{
error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1991-03-28 17:26:26 +01:00
}
}
else if ((signum = strtosigno (*argv)) != 0)
1991-03-28 17:26:26 +01:00
{
sigfirst = siglast = signum;
1991-03-28 17:26:26 +01:00
}
else
1991-03-28 17:26:26 +01:00
{
/* Not a number and not a recognized flag word => complain. */
error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1991-03-28 17:26:26 +01:00
}
/* If any signal numbers or symbol names were found, set flags for
which signals to apply actions to. */
for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1991-03-28 17:26:26 +01:00
{
switch (signum)
{
case SIGTRAP:
case SIGINT:
if (!allsigs && !sigs[signum])
{
if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
{
sigs[signum] = 1;
}
else
{
printf ("Not confirmed, unchanged.\n");
fflush (stdout);
}
}
break;
default:
sigs[signum] = 1;
break;
}
1991-03-28 17:26:26 +01:00
}
argv++;
1991-03-28 17:26:26 +01:00
}
target_notice_signals();
1991-03-28 17:26:26 +01:00
if (from_tty)
{
/* Show the results. */
sig_print_header ();
for (signum = 0; signum < nsigs; signum++)
{
if (sigs[signum])
{
sig_print_info (signum);
}
}
1991-03-28 17:26:26 +01:00
}
do_cleanups (old_chain);
1991-03-28 17:26:26 +01:00
}
/* Print current contents of the tables set by the handle command. */
static void
signals_info (signum_exp, from_tty)
1991-03-28 17:26:26 +01:00
char *signum_exp;
int from_tty;
1991-03-28 17:26:26 +01:00
{
register int i;
sig_print_header ();
if (signum_exp)
{
/* First see if this is a symbol name. */
i = strtosigno (signum_exp);
if (i == 0)
1991-03-28 17:26:26 +01:00
{
/* Nope, maybe it's an address which evaluates to a signal
number. */
i = parse_and_eval_address (signum_exp);
if (i >= NSIG || i < 0)
error ("Signal number out of bounds.");
}
sig_print_info (i);
return;
}
printf_filtered ("\n");
for (i = 0; i < NSIG; i++)
{
QUIT;
sig_print_info (i);
}
printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
}
/* Save all of the information associated with the inferior<==>gdb
connection. INF_STATUS is a pointer to a "struct inferior_status"
(defined in inferior.h). */
void
save_inferior_status (inf_status, restore_stack_info)
struct inferior_status *inf_status;
int restore_stack_info;
{
inf_status->stop_signal = stop_signal;
inf_status->stop_pc = stop_pc;
inf_status->stop_frame_address = stop_frame_address;
inf_status->stop_step = stop_step;
inf_status->stop_stack_dummy = stop_stack_dummy;
inf_status->stopped_by_random_signal = stopped_by_random_signal;
inf_status->trap_expected = trap_expected;
inf_status->step_range_start = step_range_start;
inf_status->step_range_end = step_range_end;
inf_status->step_frame_address = step_frame_address;
inf_status->step_over_calls = step_over_calls;
inf_status->stop_after_trap = stop_after_trap;
inf_status->stop_soon_quietly = stop_soon_quietly;
/* Save original bpstat chain here; replace it with copy of chain.
If caller's caller is walking the chain, they'll be happier if we
hand them back the original chain when restore_i_s is called. */
inf_status->stop_bpstat = stop_bpstat;
stop_bpstat = bpstat_copy (stop_bpstat);
inf_status->breakpoint_proceeded = breakpoint_proceeded;
inf_status->restore_stack_info = restore_stack_info;
inf_status->proceed_to_finish = proceed_to_finish;
memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1991-03-28 17:26:26 +01:00
record_selected_frame (&(inf_status->selected_frame_address),
&(inf_status->selected_level));
return;
}
struct restore_selected_frame_args {
FRAME_ADDR frame_address;
int level;
};
static int restore_selected_frame PARAMS ((char *));
/* Restore the selected frame. args is really a struct
restore_selected_frame_args * (declared as char * for catch_errors)
telling us what frame to restore. Returns 1 for success, or 0 for
failure. An error message will have been printed on error. */
static int
restore_selected_frame (args)
char *args;
{
struct restore_selected_frame_args *fr =
(struct restore_selected_frame_args *) args;
FRAME fid;
int level = fr->level;
fid = find_relative_frame (get_current_frame (), &level);
/* If inf_status->selected_frame_address is NULL, there was no
previously selected frame. */
if (fid == 0 ||
FRAME_FP (fid) != fr->frame_address ||
level != 0)
{
warning ("Unable to restore previously selected frame.\n");
return 0;
}
select_frame (fid, fr->level);
return(1);
}
1991-03-28 17:26:26 +01:00
void
restore_inferior_status (inf_status)
struct inferior_status *inf_status;
{
stop_signal = inf_status->stop_signal;
stop_pc = inf_status->stop_pc;
stop_frame_address = inf_status->stop_frame_address;
stop_step = inf_status->stop_step;
stop_stack_dummy = inf_status->stop_stack_dummy;
stopped_by_random_signal = inf_status->stopped_by_random_signal;
trap_expected = inf_status->trap_expected;
step_range_start = inf_status->step_range_start;
step_range_end = inf_status->step_range_end;
step_frame_address = inf_status->step_frame_address;
step_over_calls = inf_status->step_over_calls;
stop_after_trap = inf_status->stop_after_trap;
stop_soon_quietly = inf_status->stop_soon_quietly;
bpstat_clear (&stop_bpstat);
stop_bpstat = inf_status->stop_bpstat;
breakpoint_proceeded = inf_status->breakpoint_proceeded;
proceed_to_finish = inf_status->proceed_to_finish;
memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1991-03-28 17:26:26 +01:00
/* The inferior can be gone if the user types "print exit(0)"
(and perhaps other times). */
if (target_has_execution)
write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
/* The inferior can be gone if the user types "print exit(0)"
(and perhaps other times). */
/* FIXME: If we are being called after stopping in a function which
is called from gdb, we should not be trying to restore the
selected frame; it just prints a spurious error message (The
message is useful, however, in detecting bugs in gdb (like if gdb
clobbers the stack)). In fact, should we be restoring the
inferior status at all in that case? . */
1991-03-28 17:26:26 +01:00
if (target_has_stack && inf_status->restore_stack_info)
{
struct restore_selected_frame_args fr;
fr.level = inf_status->selected_level;
fr.frame_address = inf_status->selected_frame_address;
/* The point of catch_errors is that if the stack is clobbered,
walking the stack might encounter a garbage pointer and error()
trying to dereference it. */
if (catch_errors (restore_selected_frame, &fr,
"Unable to restore previously selected frame:\n",
RETURN_MASK_ERROR) == 0)
/* Error in restoring the selected frame. Select the innermost
frame. */
select_frame (get_current_frame (), 0);
1991-03-28 17:26:26 +01:00
}
}
void
_initialize_infrun ()
{
register int i;
register int numsigs;
1991-03-28 17:26:26 +01:00
add_info ("signals", signals_info,
"What debugger does when program gets various signals.\n\
Specify a signal number as argument to print info on that signal only.");
add_info_alias ("handle", "signals", 0);
1991-03-28 17:26:26 +01:00
add_com ("handle", class_run, handle_command,
"Specify how to handle a signal.\n\
Args are signal numbers and actions to apply to those signals.\n\
Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
The special arg \"all\" is recognized to mean all signals except those\n\
used by the debugger, typically SIGTRAP and SIGINT.\n\
Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1991-03-28 17:26:26 +01:00
Stop means reenter debugger if this signal happens (implies print).\n\
Print means print a message if this signal happens.\n\
1991-03-28 17:26:26 +01:00
Pass means let program see this signal; otherwise program doesn't know.\n\
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1991-03-28 17:26:26 +01:00
Pass and Stop may be combined.");
* Makefile.in (VERSION): Bump to 4.7.4. * Makefile.in (SFILES_MAINDIR): Add typeprint.c, c-typeprint.c, m2-typeprint.c, c-valprint.c cp-valprint.c m2-valprint.c. * Makefile.in (HFILES): Add valprint.h. * Makefile.in (OBS): Add typeprint.o, c-typeprint.o, m2-typeprint.o, c-valprint.o, cp-valprint.o m2-valprint.o. * typeprint.c, typeprint.h: New files for language independent type printing functions. * c-typeprint.c, m2-typeprint.c: New files for language dependent type printing functions and definitions. * valprint.h: New include file for language independent value printing definitions. * c-valprint.c, cp-valprint.c, m2-valprint.c: New files for language dependent value printing functions. * c-exp.y (production ptype): Add range_type variable and use new create_range_type function. * c-exp.y (tokentab2, tokentab3), c-lang.c (c_op_print_tab), infcmd.c (path_var_name), language.c (unk_op_print_tab), m2-lang.c (m2_op_print_tab): Change from ANSI-obsolescent "const static" to ANSI-conformant "static const". * c-exp.y (c_create_fundamental_type): Remove unused nbytes. * c-exp.y (c_language_defn, cplus_language_defn): Add c_print_type, and c_val_print. * c-lang.h (c_print_type, c_val_print): Add prototypes. * coffread.c (decode_type): Add range_type variable and call to new create_range_type function. * complaints.c (complain): Remove unused val variable. * complaints.c (_initialize_complaints): Make it void. * convex-tdep.c (value_of_trapped_internalvar): Add range_type variable and call new create_range_type function. * defs.h (enum val_prettyprint): Move enum from value.h to here so we can avoid having to include value.h just for prototypes that need the enum (thanks ANSI). * dwarfread.c (struct_type): Local anonymous_size variable is only used if !BITS_BIG_ENDIAN. * dwarfread.c (decode_subscript_data_item): Add rangetype variable and call new create_range_type function. * elfread.c (elf_symfile_read): Remove unused dbx and text_sect variables. * eval.c (evaluate_subexp): Remove unused local variable name and the statement with no side effects that initializes it. * expprint.c (print_subexp): Change local_printstr to LA_PRINT_STRING. * gdbtypes.c (create_range_type): New function that creates a range type using code fragments from object file readers as an example of what has to be initialized. * gdbtypes.c (create_array_type): Removed index_type, low_bound, and high_bound parameters, replaced with a single range_type parameter. Change function body to use passed in range_type rather than handcrafting one. * gdbtypes.h (create_range_type): Add prototype. * gdbtypes.h (create_array_type): Change prototype parameters. * infrun.c (normal_stop): Remove unused local variables tem and c. * infrun.c (hook_stop_stub): Return 0 rather than random value. * language.c (unk_lang_print_type, unk_lang_val_print): Add stub functions that call error if called. * language.c (unknown_language_defn, auto_language_defn, local_language_defn): Add initializers unk_lang_print_type and unk_lang_val_print. * language.h (struct language_defn): Reformat for larger comments, add la_print_type and la_val_print members. Add LA_PRINT_TYPE and LA_VAL_PRINT macros. Change local_printchar to LA_PRINT_CHAR and local_printstr to LA_PRINT_STRING. * m2-lang.c (m2_create_fundamental_type): Remove unused local variable nbytes. * m2-lang.c (m2_language_defn): Add initializers m2_print_type and m2_val_print. * m2-lang.h (m2_print_type, m2_val_print): Add prototypes. * main.c (execute_command): Remove unused local variable cmdlines. * main.c (echo_command), stabsread.c (read_type), printcmd.c (clear_displays), symmisc.c (block_depth), values.c (clear_value_history): Make testing of truth value of assignment result explicit. * mipsread.c (upgrade_type): Update FIXME to include future use of create_range_type. * printcmd.c (ptype_command, ptype_eval, whatis_command, whatis_exp, maintenance_print_type): Move prototypes and functions to new typeprint.c. * printcmd.c (_initialize_printcmd): Move add_com calls for ptype_command and whatis_command to new typeprint.c. * ser-bsd.c (serial_open): Remove unused variable sgttyb. * source.c (find_source_lines): Local variable c only used when LSEEK_NOT_LINEAR is defined. * stabsread.c (read_array_type): Use new create_range_type function. * stabsread.c (read_range_type): Add new index_type variable and call new create_range_type function rather than handcrafting range types. * symmisc.c (type_print_1): Change usages to LA_PRINT_TYPE. * symtab.c (typedef_print usages): Use c_typedef_print, renamed. * symtab.c (type_print_base usages): Use c_type_print_base. * symtab.c (type_print_varspec_prefix usages): Use c_type_print_varspec_prefix. * symtab.c (type_print_method_args usages): Use cp_type_print_method_args. * valprint.c: Completely ripped apart and the fragments used to create c-valprint.c, cp-valprint.c, m2-valprint.c, and valprint.h. Remaining stuff is language independent. * value.h (struct fn_field): Forward declare for prototypes. * value.h (type_print_1): Remove prototype. * value.h (enum val_prettyprint): Moved to defs.h. * value.h (typedef_print): Prototype renamed to c_typedef_print. * value.h (baseclass_offset): Add prototype. **** start-sanitize-chill **** * Makefile.in (SFILES_MAINDIR): Add ch-typeprint.c, ch-valprint.c. * Makefile.in (OBS): Add ch-typeprint.o, ch-valprint.o. * ch-typeprint.c: New file for language dependent type printing. * ch-valprint.c: New file for language dependent value printing. * ch-exp.y (parse_number): Remove prototype and stub function. * ch-exp.y (decode_integer_literal): Removed unused digits and temp variables. * ch-exp.y (convert_float): Completely ifdef out for now. * ch-exp.y (tokentab2, tokentab3, tokentab4, tokentab5), ch-lang.c (chill_op_print_tab): Change from ANSI-obsolescent "const static" to ANSI-conformant "static const". * ch-exp.y (yylex): Add unhandled storage class enumeration literals to switch statement for completeness. * ch-lang.c (chill_create_fundamental_types): Remove unused nbytes variable. Change dummy type to 2 bytes to match int. Handle FT_VOID types gratuituously added to chill DWARF by compiler. Change FT_CHAR case to generate an TYPE_CODE_CHAR type rather than a one byte TYPE_CODE_INT type. * ch-lang.c (chill_language_defn): Add chill_print_type and chill_val_print. * ch-lang.h (chill_print_type, chill_val_print): Add prototypes. **** end-sanitize-chill ****
1992-12-18 21:21:32 +01:00
stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
"There is no `stop' command, but you can set a hook on `stop'.\n\
This allows you to set a list of commands to be run each time execution\n\
of the program stops.", &cmdlist);
numsigs = signo_max () + 1;
signal_stop = (unsigned char *)
xmalloc (sizeof (signal_stop[0]) * numsigs);
signal_print = (unsigned char *)
xmalloc (sizeof (signal_print[0]) * numsigs);
signal_program = (unsigned char *)
xmalloc (sizeof (signal_program[0]) * numsigs);
for (i = 0; i < numsigs; i++)
1991-03-28 17:26:26 +01:00
{
signal_stop[i] = 1;
signal_print[i] = 1;
signal_program[i] = 1;
}
/* Signals caused by debugger's own actions
should not be given to the program afterwards. */
signal_program[SIGTRAP] = 0;
signal_program[SIGINT] = 0;
/* Signals that are not errors should not normally enter the debugger. */
#ifdef SIGALRM
signal_stop[SIGALRM] = 0;
signal_print[SIGALRM] = 0;
#endif /* SIGALRM */
#ifdef SIGVTALRM
signal_stop[SIGVTALRM] = 0;
signal_print[SIGVTALRM] = 0;
#endif /* SIGVTALRM */
#ifdef SIGPROF
signal_stop[SIGPROF] = 0;
signal_print[SIGPROF] = 0;
#endif /* SIGPROF */
#ifdef SIGCHLD
signal_stop[SIGCHLD] = 0;
signal_print[SIGCHLD] = 0;
#endif /* SIGCHLD */
#ifdef SIGCLD
signal_stop[SIGCLD] = 0;
signal_print[SIGCLD] = 0;
#endif /* SIGCLD */
#ifdef SIGIO
signal_stop[SIGIO] = 0;
signal_print[SIGIO] = 0;
#endif /* SIGIO */
#ifdef SIGURG
signal_stop[SIGURG] = 0;
signal_print[SIGURG] = 0;
#endif /* SIGURG */
}